
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Introduction 
 

In the mid-20th century, molecular biology revolutionized 
biological sciences through the discovery of the molecular information 
flow through which proteins are built based on DNA sequences. This 
discovery has been known as the central dogma of molecular biology 
[1]. Since its discovery, the “secret of life” or the “essence of life”, in a 
popular sense, has often been attributed to DNA or genes. The 
molecular function of DNA is quite simple and static and can be 
summarized as follows: DNA stores and supplies information 
regarding how proteins are built. Proteins perform almost all the 
functions necessary for life, including the retrieval and maintenance of 
genetic information. In this sense, the secret or essence of life likely 
resides not only in DNA but also in proteins. 

The language of DNA (the information coded by DNA) simply 
involves the use of triplet codons to specify protein amino acid 
sequences. These amino acid sequences, in turn, specify their own 
protein structures and functions. This intra-molecular information 
decoding process, i.e., folding process, is the final step that completes 
the biological information flow delineated in the central dogma. How 
does this intra-molecular information flow take place? Anfinsen 
partially answered this question by stipulating the general rule known 
as Anfinsen’s dogma [2]. Anfinsen’s dogma states that structural  and 

 
 
 
 
 
 

 
 

 
  

 

functional information about a protein is coded in that protein’s 
amino acid sequences and nowhere else. This leads researchers to 
question how the structural and functional information is coded 
within amino acid sequences. Unfortunately, Anfinsen’s dogma does 
not provide any clues in this regard. 

Since early endeavors to decipher protein structures [3,4], many 
protein three-dimensional structures (as of October 16, 2012, 85,435 
structures in the Protein Data Bank [5]) have been determined with 
atomic or subatomic resolution, greatly improving our understanding 
of how these proteins work. BLAST [6], the most influential 
alignment tool, and other computational tools have also greatly 
improved our understanding of primary structures. As a cumulative 
result of these and other multi-faceted protein studies, there have been 
many attempts to rationally design proteins [7-10]. Nonetheless, no 
reasonable answer upon which most scientists can agree has been 
found for this half-century-old problem regarding the intra-molecular 
information codes contained within proteins [11,12]. Today, we 
remain far from a complete understanding of the protein codes of 
amino acid sequences.  

A brave new idea may be required to break the protein codes 
written in amino acid sequences [13-15]. Strictly speaking, our idea of 
analyzing amino acid sequences based on frequencies (also called 
composition, occurrence, and count) of amino acids and short 
constituent sequences (SCSs) is neither new nor brave [15,16]. 
However, thanks to advancements in computer technology and the 
accumulation of sequence and structure records in databases, this 
classical idea can be realized without using a supercomputer. We are 
now able to perform exhaustive frequency searches for all possible n-
aa SCSs (or words) when n is reasonably small. This paper reviews the 
current status of the frequency-based approach, focusing on our 
simple linguistic approach, while, for simplicity, excluding other 
related but more complicated approaches [e.g., 16-19]. We conclude 
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with possible future directions aimed toward cracking protein codes. 
More philosophical and basic discussions can be found in a previous 
review article [15]. 
 

Beyond alignment-based analysis 
 
There is no doubt that alignment-based programs are very 

powerful tools for examining relationships among proteins with 
regard to amino acid sequences. However, protein biochemists know 
that different sequences can result in similar three-dimensional 
structures and functions and that identical sequences can have 
different structures and functions in a context-dependent manner 
[20], suggesting that information extraction by alignment-based 
methods is not sufficient to understand the folding process. For 
example, despite the three-dimensional structural similarities in G-
protein-coupled receptors (GPCRs), analyses and classification of 
GPCRs cannot rely entirely on simple alignment methods because of 
the lack of significant sequence similarities except particular short 
constituent sequences (SCSs) in restricted sites. This is one of the 
most important reasons for the development of alignment-free 
methods for sequence comparison. Many of the alignment-free 
methods use tuple or n-gram analysis [16-19], principal component 
analysis [21], and other advanced computational methods. Our group 
obtained reasonable results for GPCR analyses in an alignment-free 
fashion using membrane topology [22] and self-organizing map 
(SOM) [23]. However, these methods are more or less specific to 
GPCRs, and most alignment-free algorithms, including our self-
organizing map [23], are often mathematically complicated. We 
looked for a simple operation and endeavored to decode proteins 
using a more general approach with the hope of increasing 
applicability to all proteins. 

Alignment-based programs also suffer some fundamental 
limitations. They are not particularly successful at handling gaps or 
length differences generated by recombination and shuffling. 
Furthermore, high level comparisons between species (such as 
comparisons at the genomic level) are difficult to obtain by alignment 
alone. Although short similar sequences can be used as seeds for 
homology searches [6], short similar sequences are generally 
considered to be biologically insignificant noise events that occur with 
particular probabilities. However, specific short sequences could be 
functionally positioned even if their probability of being located at 
that particular position is close to the background noise levels of the 
alignment search programs. 

To illustrate these limitations, we use the conceptual analogy 
between a protein and an English sentence, both of which are 
constructed by short constituent sequences (SCSs) or words, 
respectively. Consider the following two sentences: 

 

I usually ate an apple when I was a boy because I liked it.                     1  
 

Among fruits, apple was my favorite in my childhood days.                  

 
These two sentences do not have any similarity at all except 

“apple” and “was”. Nevertheless, they have almost the same meanings. 
In these sentences, “apple” is not noise but the key word that implies 
the similar meanings of these two sentences. Of course, we can also 
imagine a very different sentence, for instance, the following: 
 

I did not like apples at all when I was a little boy.                           

 
Except for the word “apple(s)”, this sentence (3) has no 

similarities with sentences (1) and (2). The meanings of sentence (3) 

and sentences (1) and (2) are also very different. Nonetheless, the 
word “apple(s)” still provides common ground because apple(s) is the 
key word and has the same meaning in all three sentences. Moreover, 
despite its opposite meaning, the topic of sentence (3) is similar to 
that of sentences (1) and (2). In analogy with proteins, sentences (1) 
and (2) may share identical binding sites and ligands. Though they 
have very different amino acid sequences, their folded structures may 
be similar. Likewise, though sentence (3) may be more structurally 
and functionally different, it may still have some functional similarity 
to sentences (2) and (3) at a sub-molecular level.  

Furthermore, one can change the key word, apple(s), in one or 
more of these sentences to a different fruit, for instance, orange. In 
this case, sentence (4) will read: 

 

I did not like oranges at all when I was a little boy.                                     

 
Sentences (3) and (4) are almost identical except for their key 

words, apple or orange. In the same way, ligand specificity may be 
very different because of a difference in binding sites (apple vs. 
orange). They have high alignment scores and are considered to be 
similar proteins, but it is important to note that the non-aligned 
words, apple and orange, are as important as the aligned words. If one 
examines a sufficiently large number of sentences, it will be discovered 
that “apple” and “orange” emerge in the context of a group of other 
words such as “like”, “fruit”, and “eat”. And it is possible to calculate 
how often these words appear in the vicinity of one another. 

The discussion above assumes that the units of amino acid 
sequences and English sentences are SCSs and words, respectively. 
This standpoint appears to be justifiable considering the structural 
and functional importance of such small protein sequences [24,25]. In 
the early stages of biological evolution on Earth, small peptides were 
likely more extensive than complex proteins in terms of functionality. 
It is suggested that the earliest protein had the size of 7 amino acids 
[26]. Given that a small peptide contains just a few “words”, the SCS 
may constitute an evolutionary unit from an early stage of biological 
and chemical evolution. The SCS may also be a unit of structure as 
well as function. We acknowledge that the entire protein structure is 
also an important component of the protein’s code. In this regard, 
artificial intelligence systems, which can identify hidden patterns that 
are not recognized readily by human intelligence, may be useful [e.g., 
23].  

 
Simple frequency-based approach 

 
    Overcoming alignment-associated limitations could eventually 

lead researchers to an understanding of sequence-structure 
relationships. We have focused on the frequency-based analysis of 
SCSs. The technical advantage of this SCS analysis is that SCSs in a 
given sequence are “compared” to the entire non-redundant amino 
acid (nr-aa) database simultaneously and without any sequence-
imposed restrictions [13-15]. We use the term “SCS” in this paper, 
although other groups have used “oligopeptides”, “oligomers”, and 
others. It is important to note that, because there are only 20 amino 
acids, SCS repertories are limited in number. Theoretically, there are 
exactly 8,000 triplets (3-aa SCSs, trimers, or tripeptides) that 
constitute all possible combinations of the 20 amino acids (203). 
Similarly, there are theoretically 160,000 quartets (4-aa SCSs, 
tetramers, or tertapaptides) and 3,200,000 pentats (5-aa SCSs, 
pentamers, or pentapeptides). The post-genome era has produced 
large protein databases that are readily available to researchers and 
that are usable in comparison with the large number of SCSs. 
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Our simple strategy is to count the number of each SCS species in 
a large database. Count value (occurrence or frequency), which we 
designate R for real count, is assigned to each SCS species when a 
database is defined. On the other hand, we can simply calculate the 
probabilistic occurrence of a given SCS species in the database based 
on amino acid occurrence. This expected count value, which we 
designate E, can be calculated easily by multiplying occurrences of 
constituent amino acids. In the case of a triplet, E is calculated as 
follows: 

 

321 PPPQE                                                                     

 
where Q is the total number of existing triplets in a database, and P1, 
P2 and P3 (derived from the occurrence(s) of each amino acid in that 
database) are the probabilities that each amino acid appears at a given 
position. The probabilistically estimated count E does not consider 
influences from nearby amino acids and thus cannot be used 
singularly as a frequency indicator for real proteins. We are interested 
in the differences between the real and expected counts (of each SCS). 
The differences are summarized via the availability score, which is 
simply expressed as follows: 

  

1)/(/)(  EREERA                                            

 
In this equation, A, R, and E indicate availability score, real count, 

and expected count, respectively. Availability scores are assigned to all 
SCS species when a database is defined. In the case of the triplet, we 
have a list of R, E, and A for all 8,000 SCSs that are associated with a 
particular protein database. We primarily use the nr-aa, which is 
considered the universal proteome. 

Availability scores are usually not zero. For some SCSs, the 
availability scores are very large, while, for others, they are –1 (non-
existent) [14]. The availability score pertains to an “unexpected” bias 
on SCS usage that cannot be explained from the expected usage of 
amino acids. The origin of this bias is not entirely apparent, but it is 
likely to be evolutionary [14]. One study states that the codon 
number is related to this bias [27]. 

Fortunately, our findings regarding SCS usage have been 
confirmed independently by other groups [28,29]. We now know 
that there are rare or non-existent SCSs in the nr-aa database (i.e., the 
universal proteome), and they can be synthesized chemically and 
biologically with little difficulty [14]. Non-existent SCS peptides have 
been analyzed, and, when contained in the sequence, have been 
suggested to disrupt a folding process [30]. 

 
Optimal SCS length 

 
We used 3-aa, 4-aa, and 5-aa SCSs in our research including the 

SCS Package (see below). But what is the optimal SCS length? Rare 
or non-existent SCSs in a given database of interest (such as a 
secondary structure database) can be found relatively easily if a set of 
5-aa SCSs is used [14,15,31,32]. This is because the repertoire of 5-
aa SCSs (205 = 3.2 × 106) is large enough to describe the sequence 
complexity of proteins and small enough to find similarities among 
different proteins.  

Practically, longer SCSs may not be very useful. It should be 
noted that repertoire of n-aa SCS (i.e., all possible combinations of n 
amino acids) dramatically increases as SCS length (n) increases 
[14,15]. For example, the repertoire of 6-aa SCSs (206 = 6.4 × 107) 
is already comparable to the number of SCS samples in the nr-aa 
database [14]. As a result, many of theoretically possible 6-aa SCSs or 

longer SCSs do not occur at all in the nr-aa database. This situation 
makes 6-aa or longer SCSs unsuitable for analyzing sequence 
complexity of proteins.  

Therefore, we state that an optimal SCS length is 5 amino acids. 
Interestingly, this is in concert with other independent analysis called 
structural alphabet, where 16 representative “proteins blocks” (5-aa 
structural fragments) define three-dimensional structures [33,34]. 
However, we think that there is no need to exclusively focus on a 
particular SCS length. We believe that 3-aa, 4-aa, and 5-aa SCSs are 
all unique, and one of them (or all of them) can be used on a case-by-
case basis. For example, in our availability plot program (see below), 
all three types of SCSs were used, but in our idiom search programs 
(see below), we concentrated on 3-aa SCSs, just for simplicity.  

 
Word-oriented applications: from structural predictions to 
vaccines 

 
Our frequency-based approach has a high potential for various 

applications. First of all, it can be used as a tool to examine amino 
acid sequences in one dimension. This was realized as “availability 
plot” (see below). Simply because the frequency-based approach is 
entirely free from alignment, it may be productive to efficiently 
combine both approaches to observe both sides of proteins. The 
frequency-based approach could improve alignment algorithm when 
two very different sequences show similar structure and function. 

Additionally, secondary structure characterization is one of the 
important applications of the frequency-based word analysis 
[18,19,31,32,35]. Through the construction and analysis of 
secondary-structure-specific databases, we have shown that some SCSs 

are favored in α-helices and others in β-strands [31]. These structure-
specific SCSs may be used as markers or discriminant sequences for 
particular secondary structures. Similarly, we have demonstrated that 

parallel and antiparallel β-strands differ in their amino acid 
compositions and the availabilities of their SCSs [32]. Although these 
results have been expected historically, this is the first time that they 
have been demonstrated conclusively. Cap structures of helixes and 
sheets [36] may be analyzed similarly and thus identify the beginning 
and end of a given secondary structure. C-terminal sequences have 
already been analyzed with success [37]. These studies are the first 
step to decoding amino acid sequences in order to understand the 
sequence-structure relationships. Using similar methodologies, we can 
search for SCS signatures in any database system. For example, 
phylum-dependent signatures have been reported [38]. This example 
demonstrates the power of frequency-based analysis when proper and 
reasonably large databases are constructed. We have also performed a 
similar study to examine species relationships using species-specific 
databases [39]. 

Non-existent SCSs may also have important applications. The 
first application of a “wet” system has just been published [40] and 
shows that rare or non-existent SCSs are useful as immunological 
adjuvents. The idea of using peptides in vaccines is not new [24,25], 
but using non-existent SCSs in vaccines is a completely new idea. We 
have to recognize that the number of combinatorial sets of amino 
acids is almost infinite [15]. Proteins on the earth constitute a very 
tiny, possibly negligible, fraction of the entire protein space. The 
possible use of non-earth-type protein space provides us with a 
tremendous opportunity to explore artificial proteins [39]. 

These dry and wet applications will continue to emerge with 
focuses on specific SCSs. As such, we refer to them as word-oriented 
applications in contrast to context-oriented applications, which are 
discussed below. 
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Context-oriented applications: from words to sentences 
 
The applications discussed thus far pertain to identifying specific 

SCSs to infer secondary structures, or using SCSs in vaccines. These 
word-oriented applications are a direct extension of compositional 
analyses of amino acids. On the other hand, just as words are 
connected in sentences, SCSs are connected in the entire amino acid 
sequences of proteins. Although they cannot be completely 
differentiated from word-oriented applications, we refer to analyses of 
proteins in terms of their entire amino-acid (sentence) structure as 
context-oriented applications. 

There is a rank-frequency relationship in quantitative linguistics 
known as Zipf’s law [41,42]. To illustrate how the rank-frequency 
relationship is examined, let us consider the following sentences from 
one of our recent papers [43]. 
 

The amino acid sequences of proteins determine 
their three-dimensional structures and functions. 
However, how sequence information is related to 
structures and functions is still enigmatic. In this 
study, we show that at least a part of the 
sequence information can be extracted by 
treating amino acid sequences of proteins as a 
collection of English words, based on a working 
hypothesis that amino acid sequences of proteins 
are composed of short constituent amino acid 
sequences (SCSs) or ‘‘words’’. We first confirmed 
that the English language highly likely follows 
Zipf’s law, a special case of power law. 

 
The frequency of words (or the number of words, or word count) 

in the above sentences can be summarized as follows (words with only 
one count are not listed): the (3 times), amino (4), acid (4), sequences 
(6), of (7), proteins (3), structures (2), and (2), functions (2), 
information (2), is (2), we (2), that (3), a (4), English (2), and words 
(2). Now, based on the frequency data, these words are ranked in 
descending order as follows: Rank 1, of (7 times); Rank 2, sequences 
(6); Rank 3 amino (4), acid (4), and so on. This way, a given word is 
associated with two numerals, rank and frequency. One can now make 
a rank-frequency plot. The mathematical relationship between rank 
and frequency is known as Zipf’s law, or more generally, power law.  

Zipf’s law states that, in a natural language system, the occurrence 
or frequency of words is inversely proportional to their ranks. 
Importantly, this relationship is valid at least over a few orders of 
magnitude. The scale-free nature of these rank-frequency relationships 
has been thought to originate from communication tradeoffs 
(between the speaker and the hearer) described by the least effort 
principle [42,44]. Speakers try to minimize their verbal efforts to 
convey their ideas, whereas hearers try to minimize the process of 
understanding. Both prefer brief expressions, but speakers can use 
ambiguous words at will, whereas hearers prefer unambiguous words 
that better enable them to understand expressions instantly and 
without much effort. 

The basis of natural language evolution discussed above may have 
conceptual similarities to the relationships between primary and 
tertiary structures. The primary structure changes randomly via 
random mutation during evolution. As such, this process has no 
constraints and produces functionally ambiguous changes. However, 
the tertiary structure has functional constraints, and unambiguous 
functional changes are preferred. In light of the above analogy, we 
have compared protein amino acid sequences and English sentences in 
a manner inspired by Zipf’s law, or more generally, power law [43]. 

Our recent study has demonstrated a scale-free nature of protein 
amino acid sequences that is comparable to or even larger than that of 
the English language [43]. However, dissimilarity is also apparent. A 
unique feature of proteins is the sharp deviation of their low 
frequency SCSs from a straight line in rank-frequency plots. We also 
observed species-specific trends in SCS distribution patterns. Further 
research may reveal a natural language with a similar distribution 
pattern to that of proteins. Likewise, we may be able to find a specific 
proteome that has a similar distribution pattern to that of the English 
language. 

Encouraged by this analogy, we devised a so-called availability 
plot as a tool for finding possible functional sites [43]. This 
availability plot is implemented as part of the SCS Package (see 
below). High availability sites correspond to known motifs in some 
but not all proteins [43]. The fact that there are high-availability sites 
that do not correspond to known motifs may simply mean that we 
have not discovered new motifs at those or other functionally 
important sites. Alternatively, high-availability sites may have no 
apparent biological significance. We also must examine low 
availability sites, which may serve as key SCSs in particular sequences. 

A related study proposed “protein conservation profile” [45]. 
This is a simple frequency plot along a given amino acid sequence and 
thus different from our availability plot, which shows availability 
scores of SCSs along a given amino acid sequence. Nonetheless, their 
claim that the frequency plot can reveal a common feature of 
prokaryotic proteins [45] is supportive of our frequency-based 
approach to protein decoding.  

Again, using linguistic ideas to analyze proteins is not new. In 
fact, numerous studies have used linguistically oriented algorithms for 
protein analysis, and at least one study has compared protein 
sequences to human languages [46]. However, our recent study [43] is 
thought-provoking in that the rank-frequency plots therein reveal 
both similarities and dissimilarities between protein sequences and the 
English language. These comparisons between proteins and English 
may pave the way for yet a new method of analyzing protein 
sequences, in addition to availability plots (see below). 

 
The SCS Package 
 

To help researchers get accustomed to the simple concept of 
availability and to examine proteins or proteomes of interest based on 
SCS availability scores, we have developed a collection of web-based 
applications called the SCS Package (Figure 1), which is freely 
accessible at http://bio.ads.ie.u-ryukyu.ac.jp. This web server is 
primarily in Japanese but English is also used. For the most part, the 
applications are very easy to use, such that the programs may be run 
easily without requiring the reading of explanatory sentences. It is 
important to recognize that the SCS Package is not built to handle 
collections of data automatically. Users are expected to use this web 
service manually. The SCS Package contains five different 
applications, the icons for which are located on the home page of the 
SCS Package URL site. Below, we delineate how to use the 
applications from the top down (in the order shown on the home 
page). The SCS Package contains the pre-calculated on-board SCS 
databases that were produced from the nr-aa database and English 
Wikipedia [39,43]. The databases upon which the availability plot is 
based were updated on August 2012. Other programs are based on 
the databases downloaded on November 2009. Development of the 
SCS Package and other related programs and their preliminary 
applications were presented in the thesis of one of the authors 
(written in Japanese but containing an English summary) [39], which 
is also available via the SCS Package site. 

Frequency-based linguistic approach 

4 

Volume No: 5, Issue: 6, February 2013, e201302010 Computational and Structural Biotechnology Journal | www.csbj.org 

http://bio.ads.ie.u-ryukyu.ac.jp/


 
 
 
 
 

 
 
 
 
 
 
 

 

The first program pertains to the availability plots discussed 
above (Figure 2A). This application analyzes distributions of 
availability scores of 3-aa, 4-aa, and 5-aa SCSs throughout a given 
amino acid sequence. The resulting availability plot is useful in 
examining high and low availability sites. In a fashion similar to the 
well known Kyte-Doolittle hydropathy plot [47], availability scores 
are assigned to all SCSs and are connected by lines (Figure 2B). 
Availability plots of triplets (3-aa SCSs), quartets (4-aa SCSs), and 
pentats (5-aa SCSs) are shown in red, blue, and green, respectively, in 
the identical graphic window. The residues at the end of protein 

chains do not have availability scores, because they do not form these 
SCSs. In the graphics, the X-axis is the query amino acid sequence, 
and the Y-axis corresponds to the relative availability scores that are 
calculated by setting the highest raw availability score in the query 
sequence to 100% and adjusting the other scores proportionally. We 
encourage users to make their own graphs using the spreadsheet-
friendly output data and Microsoft Excel. The plot results may be 
compared via motif analysis, hydropathy plots, and other methods, in 
order to infer the functionality of specific sites within that particular 
sequence. We have demonstrated that availability plots can identify 
known motifs in at least some proteins [43]. 

Figure 1. Home page of the SCS Package. Five web-interactive applications are listed, and these are freely accessible at http://bio.ads.ie.u-ryukyu.ac.jp  
 

Figure 2. Availability plot program. (A) Input page of the first program of the SCS Package. User puts the query sequence in the box provided. In this case, it is 
green fluorescent protein (GFP) from Aequorea victoria (GenBank Accession No. AAA27722). (B) Output page. Excel-friendly numerical outputs (top) and 
graphical outputs (bottom) are shown. The X-axis is protein amino acid sequence, and the Y-axis is relative availability (%). To calculate the relative availability, 
the highest peak of the original availability score in this sequence was set at 100%, and other scores were proportionally adjusted. Graphs of 3-aa, 4-aa, and 5-
aa SCSs (triplet, quartet, and pentat) are shown in red, blue, and green, respectively. 
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The second application extracts species-specific SCSs between 
two species or among several different species (Figure 3A). This 
program takes full advantage of the alignment-free nature of the 
availability-based analysis. In comparing two or more sequences, there 
is no need for any sequence similarity among them. Closely related 
species, such as human and chimpanzee, often show almost identical 
sequences. Since almost all proteins in a species have orthologous and 
paralogous proteins in another related species, it is difficult to discern 
species-specific features in a given proteome. SCS distribution 
patterns may help solve this problem. For example, a user can specify 
Homo sapiens as a species of interest and then select one (or up to 
10) species from the list to be compared with H. sapiens. Users can 
choose the type of score, either availability distance or ranking 
distance, to be compared, noting that ‘distance’ means simple 
subtraction. Users can also choose lengths of SCSs from 3 to 5. 
When a user specifies one species, say Pan troglodytes, to be 
compared with H. sapiens, the availability distance or rank distance is 
calculated, and the top 100 and bottom 100 (specified by the user) 
SCSs are listed on the output page (Figure 3B). When a user specifies 
two species to be compared to H. sapiens, the availability score of H. 

sapiens is doubled (due to two species), and the availability scores of 
both species are subtracted, giving the availability distance. 

The third application is no more than a simple search program for 
given SCSs in a given species (Figure 3C). A user specifies a single 
species and inputs an SCS of interest. The program then shows a list 
of proteins that contain the specified SCS in the specified species. For 
example, when a user specifies H. sapiens and KENTA as the SCS of 
interest, the program shows a list of proteins that contain KENTA 
(Figure 3D). 

 

The fourth program is a “grammar search” based on idiomatic 
connections between triplets in proteins. Some definitions are 
necessary here (Figure 4A, B). “Core triplet” refers to a triplet of 
interest, and “sub triple” refers to a triplet that is strongly associated 
with the core triplet. “Relation” means a positional relation between 
the core and sub triplets. For example, relation +1 means that a sub 
triplet is just next to the core triplet on the right (i.e., on the C-
terminal side). The “sub triplet count” is the raw number of sub 
triplets found anywhere in the nr-aa database. This sub triplet count is  

Figure 3. Identification of species-specific amino acid sequences. (A) Input page of the second program of the SCS Package. The user first specifies a species of 
interest, and then specifies another species for comparison (up to 10 species simultaneously). The user can choose either availability distance or rank distance 
and specifies the number of amino acids in the SCSs to be analyzed. The user further specifies how many top and bottom specific sequences will be shown. (B) 
Output page. Identified species-specific SCSs are listed. One can click on the SCSs shown in blue and examine the list of proteins containing each SCS. The 
availability scores of three species, in this case Homo sapiens, Mus musculus, and Pan troglodytes, are shown on the right side of this output table. (C) Input 
page of the third program of the SCS Package. The user specifies a species of interest and query SCS. (D) Output page. Proteins that contain the query SCS in a 
species of interest are listed with RefSeq links. 
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divided by the total number of triplets in the nr-aa database, 
2,173,898,133, producing the sub triplet frequency (X). This is a 
probability that this triplet is found at a given position in this 
database. Additionally, “relation count” indicates the number of a 
given idiom (core and sub triplets at the particular positions just as its 
relation indicates). This relation count is divided by the total number 

of potential idioms that have the same core triplet but have any sub 
triplet at the position indicated, producing the relation frequency (Y). 
In this grammar search program, the denominators for producing Y 
values are not indicated explicitly, but one can calculate them, if 
necessary, by the numerators and Y values shown. The relation 
frequency Y indicates a probability of having a particular idiom, but a 

Figure 4. Grammar search based on idiomatic connections between triplets in proteins. (A) Definition of positional relations between core and sub triplets. (B, 
C) Input page of the fourth program of the SCS Package. As a default, this page shows a list of idioms that have high evaluation scores. Positional relations 
between the core and sub triplets are shown on the right side of the output table. (D) Interactive output page. Using idiomatic connections between two 
triplets, the user can design a protein amino acid sequence using a single core triplet as a seed. (E) Input page of the fifth program of the SCS Package. The user 
puts a query sequence in the box provided. In this case, the GFP sequence was used, as in Figure 1. (F) Output page. The query sequence is shown on the left 
side of the output table, in which core triplets are shown in red and sub triplets in purple. The core triplet located in the vicinity of the N terminus is shown at 
the top of this list. Idiomatic connections are found throughout the GFP sequence, which most likely signifies a β-barrel structure. In other proteins, idiomatic 
connections are not so abundant. Thus, such idiomatic sites may be functionally important in proteins. This application may be used together with the 
availability plot program. 
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Y value may be large simply because its triplet is abundant in the 
database. This is why the evaluation score is defined as (Y – X) / X. 
A high evaluation score means that connections between the core and 
sub triplets at the given positions (i.e., idioms) are frequently observed 
in comparison with a frequency of that sub triplet without positional 
restrictions.  

One can use the above program to identify frequently used triplets 
within a ±10 amino acid range from a given triplet in question 
(Figure 4B, C). Opening the first page of this program reveals a top 
100 list of triplets having strong idiomatic connections with other 
triplets. This is the default screen. Users can let the program show up 
to the top 1,000 idioms (Figure 4B). Furthermore, one can specify a 
triplet and let the program automatically show a list of idioms of high 
ranks (from rank 1 to 1,000) that contain the specified triplet as a 
core or sub triplet. 

It is possible to perform sequential searches with this program 
using the search log and relation graph (Figure 4C, D). One can click 
on a core triplet and then a sub triplet in the list and perform several 
sequential idiom searches to obtain a high-frequency cluster of a long 
stretch of amino acids. Alternatively, one can start a sequential idiom 
search by specifying the triplet of interest in the query box at the 
bottom of this page (Figure 4C). The resultant amino acid stretches 
(Figure 4D) may serve as clusters of idioms that show ideal relations 
among triplets, and they may correspond to real protein sequences. In 
this way, ideal artificial protein sequences can be devised. We believe 
that this program provides a prototype with which a future protein 
designer can “write” protein sentences using a computer. 

It is possible to design non-existent proteins in a similar fashion 
to that described above, but the algorithms are more complicated and 
are not built into the SCS Package. Nonetheless, we have successfully 
designed long, artificial, non-earth-type proteins [39], which will be 
formally published elsewhere. Because non-existent protein space is so 
vast, such non-existent (or non-earth-type) artificial proteins will 
open up a whole new field of protein engineering.  

The fifth and final application identifies spatial relationships 
between SCSs in a given amino acid sequence (Figure 4E). Rather 
than examining particular triplets and their associated triplets via the 
program discussed above, researchers are often interested in a 
particular protein. Using the fifth application, one can enter the entire 
sequence of a particular protein of interest, set the rank border (i.e., 
threshold; a list of 100 usually suffices, but the default is 1,000), and 
run the program (Figure 4E). Within a given sequence, idiomatic 
connections of triplets are highlighted, with core triplets in red and 
sub triplets in purple, and the ranks of idioms are shown immediately 

beside the sequence (Figure 4F). The well-known β-barrel structure 
of green fluorescent protein (GFP) is shown as an example. Idioms 
are found throughout the entire amino acid sequences, demonstrating 
the highly organized SCS usage of the GFP structure. We are now 
evaluating the performance of these idiom programs. 

 
Conclusions 

 
Availability-based analyses are still in their infancy. More 

computational studies are necessary to construct a solid foundation 
for SCS usage bias in proteins. Direct applications to in vivo systems 
are just emerging. Furthermore, linguistic approaches, i.e., direct 
comparisons with languages using the availability-based concept as a 
tool, may enable a comprehensive understanding of protein language 
and may open up a new field of protein decoding and rational protein 
design. 
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