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Abstract

Background and purpose

Machine learning (ML) has attracted much attention with the hope that it could make use of

large, routinely collected datasets and deliver accurate personalised prognosis. The aim of

this systematic review is to identify and critically appraise the reporting and developing of

ML models for predicting outcomes after stroke.

Methods

We searched PubMed and Web of Science from 1990 to March 2019, using previously pub-

lished search filters for stroke, ML, and prediction models. We focused on structured clinical

data, excluding image and text analysis. This review was registered with PROSPERO

(CRD42019127154).

Results

Eighteen studies were eligible for inclusion. Most studies reported less than half of the terms

in the reporting quality checklist. The most frequently predicted stroke outcomes were mor-

tality (7 studies) and functional outcome (5 studies). The most commonly used ML methods

were random forests (9 studies), support vector machines (8 studies), decision trees (6 stud-

ies), and neural networks (6 studies). The median sample size was 475 (range 70–3184),

with a median of 22 predictors (range 4–152) considered. All studies evaluated discrimina-

tion with thirteen using area under the ROC curve whilst calibration was assessed in three.

Two studies performed external validation. None described the final model sufficiently well

to reproduce it.
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Conclusions

The use of ML for predicting stroke outcomes is increasing. However, few met basic report-

ing standards for clinical prediction tools and none made their models available in a way

which could be used or evaluated. Major improvements in ML study conduct and reporting

are needed before it can meaningfully be considered for practice.

Introduction

Stroke is the second leading cause of mortality and disability adjusted life years in the world

[1,2]. Both the outcomes and presentation of stroke can be extremely varied and timely assess-

ment is essential for optimal management. The complexity of a condition such as stroke poten-

tially lends itself well to the use of ML methods which are able to incorporate a large variety of

variables and observations into one predictive framework without the need for prepro-

grammed rules. There has been increasing interest in the use of ML to predict stroke out-

comes, with the hope that such methods could make use of large, routinely collected datasets

and deliver accurate personalised prognoses.

While papers applying ML methods to stroke are published regularly, the main focus of

these has been on stroke imaging application [3–5]. As far as we are aware, there have been no

reviews of studies which have developed ML models to predict stroke outcomes from struc-

tured data specifically. The goal of the review was to identify gaps in the literature, critically

appraise the reporting and methods of the algorithms and provide the foundation for a wider

research program focused on developing novel machine learning based predictive algorithms

in stroke care.

Methods

This is a systematic review which was registered with the international prospective register of

systematic reviews (PROSPERO) (CRD42019127154): a database of systematic review proto-

cols, maintained by the Centre for Reviews and Dissemination at the University of York. The

PRISMA [6] statement was followed as a reporting guideline. Risk of bias and quality of the

studies were not assessed because the objective of this paper was to be descriptive, not to draw

conclusions about the validity of estimates of predictive accuracy from the included studies.

The reporting quality was assessed according to TRIPOD [7] with a few terms adjusted to fit

ML methods (See Table 1 for explanations of ML terms).

Search strategy

We searched PubMed and Web of Science for studies on prediction models for stroke out-

comes using ML, published in English between 1990 and March 2019. We combined pub-

lished PubMed search filters for stroke [8], ML [9], and prediction models [10]. To ensure

consistency in the searches in both databases, these PubMed filters were translated to Web of

Science together with the support of a librarian. We verified the search strategy (S1 Text) with

a validation set of seven publications identified manually by the researchers across PubMed

and Web of Science and the results of our database queries included all the seven papers in this

validation set.
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Table 1. Notations of special machine learning terms.

Term Explanation

Supervised learning A subgroup of ML models that requires both predictors and outcomes

(labels)

Unsupervised learning A subgroup of ML models meant to find previously unknown patterns in

data without pre-existing labels

Feature Predictor or variable in a ML model

Feature selection Variable selection or attribute selection

Generalisation ability The ability of a model to generalise the learned pattern to new data

Over-fitting A model corresponds too closely or exactly to a particular set of data, and

may fail to fit new data

Missing data mechanism Three missing-data mechanisms: missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR)

Imputation The process of replacing missing data with substituted values

Training The learning process of the data pattern by a model

Testing A validation set used for testing the model

LASSO Least Absolute Shrinkage and Selection Operator: a regression technique

that performs both variable selection and regularization

Support Vector Machine (SVM) A supervised classifier that seeks to find the best hyperplane to separate

the data

Naïve Bayes (NB) A family of simple "probabilistic classifiers" based on applying Bayes’

theorem with strong (naïve) independence assumptions between the

features

Bayesian Network (BN) A type of probabilistic graphical model that uses Bayesian inference for

probability computations

k-nearest neighbours (kNN) A type of instance-based learning, where the predictionis only

approximated locally with the k nearest neighbours

Artificial Neural Network (ANN) A computational model based on a collection of connected units or nodes

called artificial neurons, which loosely model the neurons in a biological

brain

Decision Tree A tree with a set of hierarchical decisions which eventually gives a final

decision

Random Forest (RF) An ensemble learning method that uses a multitude of decision trees

Super learner A stacking algorithm using cross-validated predictions of other models

and assigning weights to these predictions to optimise the final prediction

Adaptive network based fuzzy inference

system (ANFIS)

A fuzzy Sugeno model put in the framework of adaptive systems to

facilitate learning and adaptation

Xgboost A decision-tree-based ensemble ML algorithm that uses a gradient

boosting framework

Adaptive Boosting, (Adaboost) An algorithm used in combination with others to convert a set of weak

classifiers into a strong one

Parameters Coefficients of a model that need to be learned from the data

Hyperparameters Configurations of a model which are often selected and set before training

the model

Validation The process of a trained model evaluated with a testing dataset

Discrimination The ability of a model to separate individual observations in multiple

classes

Calibration Adjusting the predicted probability from the model to more closely match

the observed probability in the test set

Cross-validation (CV) A model validation technique for assessing how the results of a statistical

analysis (model) will generalize to an independent data set

Leave One Out CV A performance measurement approach that uses one observation as the

validation set and the remaining observations as the training set

(Continued)
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Study selection

We assessed the eligibility of the studies returned by the searches through a two-stage screen-

ing process. We first screened the titles and abstracts of all articles. Two authors (WW and

MK) independently screened 50% of articles each and a random sample of 10% in duplicate.

Any disagreement was solved through discussion, involving a third author (BB) if necessary.

For all studies deemed relevant, the full text was reviewed using the same screening procedure

as in the first stage.

Studies were eligible if they adhered to the following inclusion criteria:

• Focusing on predicting clinical outcomes of stroke, excluding studies predicting the occur-

rence of stroke

• Using structured patient level health data (electronic health records, insurance claims data,

registries, cohort studies data, or clinical trials data), excluding studies using text or imaging

data

• Primary research only, excluding reviews

• Complete paper available rather than just an abstract or notes

Reporting quality assessment

Reporting guidelines for ML as prediction models are currently not available. TRIPOD was fol-

lowed as a reporting standard which was originally developed for regression modelling. As men-

tioned in TRIPOD’s documentation, most terms apply equally to ML methods developed,

validated, or updated as prediction tools. We adopted most terms for reporting of methods and

results in TRIPOD with two terms adjusted specifically for ML (S1 Table). Reporting of hyper-

parameter selection if needed was added to 10b (Specify type of model, all model building proce-

dures) and 15a (Present the full prediction model to allow predictions for individuals) was

adjusted for the specification of ML models (links to the final model online, coding of predictors,

code, final parameters/coefficients, and with the architecture described in full in the article).

Data extraction

An structured data collection form was developed to aid extraction of items related to: general

study characteristics (authors, publication year, type, venue, country under study population,

study objective); study population (source of data, single or multi-centre, sample size, features,

feature size); data pre-processing methods (handling missing data and unbalanced outcomes,

other data pre-processing steps); clinical outcomes; analytical methods (statistical models, ML

models, feature selection methods, validation methods, performance measurements); results

(feature importance, best performing model) (S2 Table).

Table 1. (Continued)

Term Explanation

Leave One Centre Out CV A performance measurement approach that uses observations from one

centre as the validation set and the remaining observations as the training

set

Bootstrapping Resampling multiple new datasets with replacement from the original

data set

https://doi.org/10.1371/journal.pone.0234722.t001
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Data for all papers were extracted by two authors (WW and MK), with discrepancies

resolved by consensus through discussion between and with another author (BB) if necessary.

Results

We identified 111 studies from PubMed and 346 studies from Web of Science. After the

removal of duplicates, as well as abstract and title screening, 44 studies were considered poten-

tially relevant. After full article screening, 18 studies were identified for information extraction

(Fig 1).

Almost all studies (17) were published as peer reviewed publications in biostatistical or clin-

ical journals. All included studies were published after 2007, with almost half (8) published

after 2016, and 3 studies were published in 2018 [11–13] and 2019 [14–16] each (Fig 2). In

terms of regions under study, UK (3) [17–19], Germany (2) [20,21], Turkey (2) [22,23] and

China (2) [13,14] make up half of the sample. Saudi Arabia [24], Australia [25], Korea [15],

USA [26], Denmark [27], Netherlands [11], Portugal [12], Taiwan [28] and Japan [16] had one

study each. Single centre studies (10) were slightly more common than multi-centre studies

(8). For sources of data, half of the studies (9) used registry data while the rest used EHR (4)

[13,22,24,28], cohort (3) [14,15,27], and clinical trial data (2) [11,18]. All the included studies

focused on developing new models using ML whilst no study validated existing ML based pre-

dictive models on independent data. Most of the studies used only variables collected at admis-

sion (Table 2) though three studies [11,12,16] explored model performance with information

available at different time points.

Twenty terms were assessed for each study, including thirteen terms for methods and seven

terms for results. Half of the studies reported less than half of the terms in the checklist

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0234722.g001
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(excluding NA) and the other half of the studies reported less than around two thirds of the

terms (Fig 3). The study design and source of data (4a), study setting (5a), eligibility criteria for

participants (5b), measures to assess the model (10d), flow of participants (13a), number of

participants and outcomes (14a) were relatively better reported (with more than 13 studies)

(Fig 3). Blind assessment of outcome and predictors (6b and 7b), presentation of the full

model (15a), and explanation on how to use the model (15b) were not reported in almost any

of the studies. Definition of all predictors (7a) and description of how predictors were handled

(10a) were reported in four and six studies respectively. Performance measures with confi-

dence intervals (CI) (16) were only reported in 6 studies.

Mortality (7) was the most frequently predicted clinical outcome. Studies focused on mor-

tality at different time points during follow-up, including short term (10 days [22], 30 days

[28], 2 months [19], 3 months [12,27], 100 days [20]) and long term (1/3/5 years) [27]. One

study [26] predicted discharge mortality (modified Rankin Score (mRS) = 6). The ML algo-

rithms used for mortality prediction were ANN [22,28], Naïve Bayes [18,26], SVM [26,28], DT

Fig 2. Number of papers published according to the algorithms used (top) and outcomes (bottom) predicted at each year.

https://doi.org/10.1371/journal.pone.0234722.g002
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Table 2. A brief summary of the included studies.

Reference Sample

(Feature)

size

Outcomes Predictors/

variables/

features

Missing values

handled

Hyperparameter

selection

Validation Calibration Best

Algorithm

Compared

algorithms

Al Taleb

et al. 2017

358 (15) Length of Stay At admission Single

imputation

Not reported 10-fold CV No Bayesian

Network

DT (C4.5)

Asadi et al.

2014

107 (8) 90-day binary

and 7 scale mRS

At admission Not reported No Training, test,

validation for

ANN, Nested

CV for SVM

No SVM ANN, Linear

Regression

Liang et al.

2019

435 (4) 90-day binary

mRS

Admission,

laboratory data

Not reported Not reported Training and

test split

No ANN LR

Heo et al.

2019

2604 (38) 90-day binary

mRS

Admission Complete case

analysis

No Training and

test split

No DNN RF, LR

Konig et al.

2007

3184 (43) 100-day Bathel

Index

first 72h after

admission

Complete case

analysis

Yes, Grid search Temporal and

external

validation

Yes for LR - RF, SVM, LR

Celik et al.

2014

570 (22) 10-day

mortality

At admission - Yes, grid search 5-fold CV No LR ANN

Ho et al.

2014

190 (26) Discharge

mortality

Admission and

interventions

Complete case

analysis

Not reported 10-fold CV No SVM Naïve Bayes,

DT, RF, PCA

+SVM, LR

Cox et al.

2016

2580 (72) Post stroke

spasticity

Not clear Not reported Not reported Training, test

and validation

split

No RF DT (CART),

Adaboost

Kruppa

et al. 2014

3184 (43) 100-day Bathel

Index

First 72h after

admission data

Complete case

analysis

Yes, For KNN,

bNN and RF

Temporal and

external

validation

Yes, Brier

score

SVM and

LR

K-NN, b-NN,

RF

Easton et al.

2014

933 (-) Short/very short

mortality

Not clear Not reported Yes, DT is pruned Training and

test split

No - Naïve Bayes,

DT, LR

Mogensen

and Gerds

2013

516 (12) 3-month/

1-year/3-year/

5-year mortality

Admissiondata Complete case

analysis

No, manually set up Bootstrap CV Yes, Brier

score

- Pseudo RF, Cox

Regression, and

Random

survival forest

Van Os

et al. 2018

1383 (83) Good

reperfusion

socre, 3-month

binary mRS

Admission,

laboratory and

treatment data

Multiple

imputation by

chained

equations

Yes, nested CV with

random grid search

Nested CV No - RF, SVM, ANN,

super learner,

LR

Peng et al.

2010

423 (10) 30-day

mortality

Admission,

laboratory,

radiographic data

No missing

values

Yes, empirically 4-fold CV No RF ANN, SVM, LR

Tokmakci

et al. 2008

70 (6) Quality of life Admissiondata Not reported Not reported Training and

test split

No ANFIS

Monteiro

et al. 2018

425 (152) 3-month binary

mRS

Admission/2

hours/24 hours/7

days data

single

imputation

Yes, Grid search 10-fold CV No RF and

Xgboost

DT, SVM, RF,

LR (LASSO)

Tjortjis

et al. 2007

671 (37) 2-month

mortality

Admission data Cases

discarded with

missing

outcomes

Yes, pruned Training and

test split

No DT (T3) DT (C4.5)

Lin et al.

2018

382 (5) Neurologic

deterioration

Admission and

laboratory data

Not reported Yes, CV Training and

test split

No - SVM

Tanioka

et al. 2019

95 (20) Delayed

cerebral

ischemic after

SAH

Admission/1-3

days variables

Complete case

analysis

Yes, Grid search Leave one out

CV

No - RF

https://doi.org/10.1371/journal.pone.0234722.t002

PLOS ONE Systematic review of machine learning for predicting stroke outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234722 June 12, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0234722.t002
https://doi.org/10.1371/journal.pone.0234722


PLOS ONE Systematic review of machine learning for predicting stroke outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234722 June 12, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0234722


[18,19,26], and RF [26–28]. Functional outcome (measure of functional independence which

relates to an individual’s physical, psychological and social functioning, and the extent to

which the depend on assistance from others to fulfill activities of daily living. It is usually mea-

sured by mRS) (5) was the second most commonly predicted clinical outcome. Three studies

[14,15,25] predicted functional outcome (such as the ability to carry out activities of daily liv-

ing e.g. washing and dressing) at 90 days, two studies [11,12] predicted it at 3 months. All of

those studies used dichotomised mRS (mRS> 2 vs mRS < = 2) whilst Asadi et al. [25] also

predicted 7-scale mRS (0–6). The ML algorithms used for predicting functional outcome were

ANN [11,14,15,25], SVM [11,12,25], DT [12], RF [11,12,15], Super Learner [11], and Xgboost

[12]. Other than mortality and mRS, Barthel Index [20,21] used RF, SVM, and kNN, hospital

Fig 3. Number of terms reported in each study (top) and number of studies reported for each assessment term (bottom). � indicates criteria adjusted for ML

models.

https://doi.org/10.1371/journal.pone.0234722.g003

Fig 4. Boxplots showing the distribution of sample size and feature size according to algorithms used (top) and outcomes predicted (bottom).

https://doi.org/10.1371/journal.pone.0234722.g004
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length of stay [18] used DT and Bayesian Network, post-stroke spasticity [25] used RF, DT,

and Adaboost, neurologic deterioration [13] used SVM, quality of life [23] used ANFIS, and

delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage (SAH) [16] used RF

were also predicted as stroke outcomes.

Among the included studies, ten studies reported having missing values, one study [28]

reported no missing values, and seven studies did not mention missing values. In terms of

imputation methods, complete case analysis (6) was the most commonly used among the ten

studies that included information on how missing data were handled. Other imputation meth-

ods included single imputation (2) [12,24] and multiple imputation (1) [11]. For dealing with

imbalanced data distributions, three studies [16,22,26] reported addressing it, of which two

studies [16,26] used Synthetic Minority Over-sampling Technique (SMOTE) [16] and one

study [26] did not report the method used. Four studies [12,15,16,27] did not report perform-

ing feature selection and fourteen studies reported that the features were selected before apply-

ing their algorithms.

The most commonly used ML methods were RF (9), SVM (8), DT (6), and ANN (6). The

following algorithms were each used in one study: kNN [20], NB [18], BN [24], boosting

[12,17], Super learner [11], and ANFIS [23]. Details of ML models is shown in S2 Text. There

were fourteen models used across the studies as comparators, including logistic regression

(10), Cox regression (1) [27], linear regression (1) [25], random survival forest (1) [27], and

multivariate discriminant analysis (MDA) (1) [22].

For hyperparameter selection (Table 2), five studies [14,17,23,24,26] did not mention the

method or rationale for hyperparameter choice, three studies [15,25,27] subjectively set a value

for the hyperparameters, and ten studies performed hyperparameter tuning using the develop-

ment data. Among these ten studies, grid search (5) [11,12,16,21,22] was the most widely used

tuning method. Four studies [18–20,28] reported tuning hyperparameters empirically without

a specific method. One study [13] used CV on the training set.

There was no apparent relationship between the algorithms used and the sample size or

number of features (Fig 4). Only one dataset had a sample size bigger than 3000 patients and

was used by two studies [20,21]. The median sample size was 475 and the smallest was 70. The

median number of features was 22 [range: 4–152].

Twelve studies compared the performance of regression models with ML algorithms

(Table 2), of which six studies [12,14,15,25,26,28] reported that ML models outperformed the

compared regression models and five studies [11,18,20,21,27] concluded that there was no sig-

nificant difference between the ML and statistical models. One study [22] reported that LR

outperformed ANN. In total, SVM outperformed the comparison algorithms in three studies

[20,25,26], ANN outperformed the comparison algorithms in two studies [14,19], RF outper-

formed the comparisons in two studies [12,28], and LR outperformed competing algorithms

in two studies [20,22].

With regards to validation methods (Table 2), CV was the most commonly used method

(10) for internal validation. Eight studies split the data into training and test (and/or valida-

tion) sets. Only two studies [20,21] used external validation.

For discrimination measures, AUC (13) was the most commonly used among the classifica-

tion models. Nine studies (9/13) used AUC accompanied by other discrimination measures.

Four studies used only AUC. Other commonly used discrimination measures were accuracy

(9), sensitivity (8), and specificity (7). Calibration was assessed in three studies [20,21,27]. One

study [21] assessed calibration by plotting the observed outcome frequencies against the pre-

dicted probabilities. Two studies [20,27] used the Brier score.
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Discussion

This is the first systematic review on the application of ML methods using structured data to

predict outcomes of stroke. Our results show that the interest in using ML to predict stroke

outcomes using structured data has markedly increased in recent years: almost all studies in

this review were published since 2014. The data sizes used in many included studies are rela-

tively small to fully explore the potential of ML methods. Only one dataset had a sample size of

over 3000 patients with a feature size of 43.

For handling missing values, almost all of the studies used only relatively simple methods

such as complete case analysis and single imputation. Only one study [11] used multiple impu-

tation. Previous studies have shown that more complicated imputation methods such as multi-

ple imputation [29,30] are better at restoring the natural variability of the missing values than

single imputation and retain more useful information than complete case analysis [31]. Future

studies in the application of ML methods to stroke outcome prediction would benefit from

using more sophisticated imputation methods to handle missing values.

The reporting and conducting of hyperparameter selection in the studies were often

neglected though the choice of hyperparameters can greatly impact the model’s performance

[32,33]. To the best of our knowledge, there exist no guidelines on reporting the hyperpara-

meter tuning result/procedure for ML as clinical prediction models.

The most commonly used ML methods were RF, SVM, ANN, and DT. In this review, we

did not compare the performance of algorithms across studies due to the different characteris-

tics of each study. SVM performed the best in 3 studies. ANN and RF outperformed the com-

parison algorithms in 2 studies. Even though DTs were commonly used, they did not

outperform other algorithms in the reviewed studies. The performance of ML models com-

pared to regression models was found to be mixed, which is consistent with other ML related

systematic reviews [34,35].

Performance evaluation can typically be thought to include discrimination and calibration.

All studies reported discrimination whilst only three studies discussed calibration. This is con-

cerning because poor calibration can lead to harmful decisions [36] and reporting both is

essential for prediction models [37].

Validation is a crucial step for obtaining a model that can be generalised beyond the sample

population. A majority of studies used internal validation methods (training and test split and

CV), whilst only two studies used external validation [20,21]. External validation is an invalu-

able part of implementing the model in routine clinical practice–it assesses the transportability

of the predictions to new data (and hence the generalisability of the model) and should be

undertaken before clinical use [21,38].

None of the studies reported decision-analytic measures to assess the clinical utility of pre-

diction models [37,39,40]. Also, no study discussed real-life implementation of the model in

clinical practice even though the ultimate goal is presumably to assist the clinicians making

treatment decisions and estimating prognoses. There are also several reasons why implement-

ing ML models could be challenging in clinical settings. ML algorithms are typically not very

transparent in terms of how the prediction has been made and how individual predictors have

contributed to the overall prediction. This may limit the acceptability and face validity of the

predictions generated by the model for clinical decision makers. In addition, we found that the

reporting of the models and model building was not clear enough in most studies to enable the

models to be replicated in other datasets or externally validated. This means that the models

will have limited evidence of accuracy in different settings or may not be implementable at all

in real-world settings.
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Thus, guidelines and reporting standards for implementing ML algorithms might improve

the utility of studies and future studies would benefit from attempting to evaluate potential

impact and clinical utility [41]. Reporting guidelines for developing and validating clinical pre-

dictions models [7,40] provide a good starting point at this stage. Potential ethical challenges

of implementing ML models was also addressed in recent studies [42]. Making algorithms and

the developed models fully and publicly available with transparent and full reporting is imper-

ative to allow independent external validation across various settings and facilitate clinical util-

ity [43].

This systematic review has its strength and limitations. It is the first systematic review that

has reviewed not only the reporting quality of the ML studies, but also the development of the

ML models. Yet, even though we used published search filters for stroke, prediction models

and ML, we might not have found all studies in PubMed and Web of Science, or studies that

are not included in these databases and not published in English. For conference proceedings,

Web of Science does include proceedings of major international conferences on machine

learning such as International Conference on Machine Learning (ICML); European Confer-

ence on Machine Learning and Principles and Practices of Knowledge Discovery in Databases

(ECMLPKDD); Asian Conference on Machine Learning (ACML); and International Confer-

ence on Machine Learning and Machine Intelligence (MLMI). However, there could still be

smaller conferences that are not included in Web of Science.

Conclusions

As the first systematic review on current applications of ML methods using structured data to

predict outcomes of stroke, we see increasing interest in using ML for predicting stroke out-

come. However, despite a surge of research articles, few met basic reporting standards for clin-

ical prediction tools, and none of them made their models available in a way which could be

used or evaluated. There is significant scope for improvement in how ML prediction algo-

rithms are developed and validated, including using larger, richer, and more diverse data

sources, improvements in model design, and fully reporting on the development process as

well as the final model. As a result, it cannot be confidently said whether ML is any better than

traditional statistical approaches. Major improvements in ML study conduct and reporting are

needed before these methods could be meaningfully considered for practice. Guidelines and

reporting standards of implementing ML algorithms could improve the utility of studies in

this regard and future studies would benefit from attempting to evaluate potential impact and

clinical utility.
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