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Abstract: Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical
used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development.
Clinical and epidemiological studies exploring potential connections between BPA and neurodevel-
opmental disorders in humans have repeatedly identified correlations between early BPA exposure
and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum
disorder. Investigations using invertebrate and vertebrate animal models have revealed that devel-
opmental exposure to BPA can impair multiple aspects of neuronal development, including neural
stem cell proliferation and differentiation, synapse formation, and synaptic plasticity—neuronal
phenotypes that are thought to underpin the fundamental changes in behavior-associated neurode-
velopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses
of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to
neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits,
and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental
disorders in humans, this review summarizes the current literature on the developmental neurotoxic-
ity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms,
and behavioral outcomes. The collective works described here predominantly support the notion that
gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.

Keywords: bisphenol A; endocrine disruptors; neurodevelopmental disorder; neural stem cell
development; synaptogenesis; synaptic plasticity; behavior

1. Introduction

Bisphenol A (BPA, 2,2-bis (4′-hydroxyphenyl) propane), a ubiquitous chemical used in
the synthesis of polycarbonate plastic and epoxy resins, is taking shape as a risk factor for
neurodevelopmental disorders (NDDs). NDDs refer to a heterogeneous group of nervous
system disorders caused by changes in brain development, including autism spectrum
disorder (ASD), attention deficit/hyperactivity disorder (ADHD), intellectual disability
(ID), learning disabilities, cerebral palsy, seizure disorders, and impairments in vision and
hearing. Analysis of the prevalence of developmental disabilities in the United States (U.S.)
between 2009 and 2017 indicated that 16.93% of children were diagnosed with an NDD [1].
Studies have also found that the prevalence of NDDs has increased significantly over the
past several decades—most notably, the incidence ASD has increased by almost 300 percent
in the last 20 years [2,3].

NDDs have complex etiologies and can result from both genetic susceptibilities and
environmental factors [4,5]. Given the increasing prevalence of BPA in our environment [6],
along with numerous studies showing an association between human BPA exposure and
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NDDs [7–9], BPA has garnered increasing attention over the past fifteen years for its ability
to disrupt brain development. The aim of this review is to summarize studies that have
delineated neurodevelopmental consequences of early (prenatal or perinatal) BPA exposure
in animal models in an effort to illuminate the mechanisms by which it may impede human
brain development.

BPA is categorized as an endocrine disrupting chemical (EDC) due to its ability to bind
endogenous hormone receptors and cause adverse effects. Structurally similar to estradiol,
BPA is most well-known for its ability to agonize and antagonize estrogen receptor (ER)
subtypes and antagonize androgen receptors [10,11]. BPA also elicits non-estrogenic/non-
androgenic impacts on development by binding other receptors, including the thyroid
hormone receptor [12,13], glucocorticoid receptor [14–16], the G protein-coupled receptor,
GPR30 [17] and Peroxisome Proliferator-Activated Receptor γ (PPARγ) [18,19]. The ability
of BPA to influence hormonal signaling was first documented in the 1930s [20,21]. Despite
awareness of its endocrine disrupting capability, BPA was adapted for use in the synthesis of
polycarbonate plastics in the 1950s and quickly became one of the most prevalent synthetic
compounds in the world [6,22]. An estimated 7.7 million metric tons of BPA were generated
worldwide in 2015, and production is expected to rise to 10.6 million metric tons in 2022 [6].

BPA enters the body via ingestion, dermal absorption, and inhalation, with ingestion
being the most common route of exposure [23–25]. A wide array of products used in
everyday life contain BPA, including plastic containers, thermal papers, food cans, and
beverage cans [26–28]. Residual BPA can leach from these products due to incomplete
polymerization during production or from depolymerization when exposed to high tem-
peratures or extreme pH conditions, which speed up the hydrolysis of ester bonds that link
BPA monomers [6].

Due to concerns surrounding the endocrine disrupting capabilities of BPA, the Eu-
ropean Union banned its use in all infant products beginning in 2011, and the U.S. Food
and Drug Administration followed suit in 2012. However, BPA remains pervasive in our
environments; of greatest concern, pregnant women are still persistently exposed to BPA in
a variety of ways. The lipophilic structure of BPA allows it to readily cross cell membranes,
as well as both placental and blood–brain barriers [29–31], enabling its ability to potentially
affect the neurodevelopmental program of a growing embryo or fetus.

Despite vast evidence that BPA should be more tightly regulated, establishing safe
exposure levels is complicated as is evidenced by the varied reference doses in different
countries. For example, the current reference dose set by the Environmental Protection
Agency in the U.S. is 50 mg/kg/day [32], the set tolerable dose intake (TDI) in Canada
is 25 mg/kg/day [33], while the European Food Safety Authority (EFSA) set their TDI at
4 mg/kg/day [34].

The reference doses of BPA may be reasonable limits for adults, but the research
summarized in this review and others suggest that doses in the ng/kg/day range may have
deleterious impacts on the developing brains of laboratory animals [35]. In adult humans,
BPA does not bioaccumulate and is metabolized and excreted within 48 h; however, given
its environmental prevalence, many individuals experience chronic exposure. In addition,
while BPA exposure levels are generally low in adults, averaging 0.043 mg/kg/day in
Canada and 0.073 mg/kg/day in the U.S. [32], fetal, infant, and child exposure levels are
much higher. In Canada, infants were found to consume up to 1.32 mg /kg/day [32], and
in Europe the estimates for child BPA exposure were as high as 13 mg/kg/day [36,37]. Of
particular concern regarding NDD pathophysiology, analysis of free versus conjugated
BPA in human fetal samples demonstrated a reduced capacity of the fetus to metabolize
BPA [38]. In this study, measurement of BPA in fetal liver samples indicated a geometric
mean of 2.26 ng/g BPA/wet weight, with individual samples measuring as high as 50 ng/g
(or 50 mg/kg) [38]—higher than the daily recommended exposure limitations for BPA in
some countries.

Like many other EDCs, BPA can elicit non-monotonic dose responses [39,40], which
yield U-shaped dose response curves instead of linear dose response curves. BPA may also



Int. J. Mol. Sci. 2022, 23, 2894 3 of 19

cause distinct responses depending on the developmental time point of exposure. Thus,
depending on the dose administered and duration of exposure, a higher dose of BPA can
elicit a milder phenotype than a lower dose [22,40,41], meaning that, when a particular
dose of BPA fails to elicit a negative health impact, it cannot be assumed that all lower
doses are safe.

Consistent with the brain being a commonly reported target of EDCs [42], early BPA ex-
posure is associated with behavioral impairment and NDDs in children [7–9]. Longitudinal
studies that measured maternal BPA exposure levels during pregnancy and subsequently
examined the children identified positive correlations between BPA and ADHD-related
symptoms [43], learning deficits [44,45], externalizing behaviors [46], and anxiety and
depression [47]. Cross-sectional and case-controlled studies examining concurrent BPA
exposure levels found positive correlations between BPA exposure and both ASD [48,49]
and ADHD [50,51]. A recent longitudinal study went a step further by examining both
behavior and diffusion magnetic resonance images of children’s brains. In this study,
analysis of 98 mother-child pairs revealed higher maternal urinary BPA concentrations
at mid-gestation correlated with both internalizing problems and altered white matter
microstructure when their children reached preschool age [52].

While studies examining the impact of BPA on brain structure in humans are rare,
numerous studies have investigated the developmental neurotoxicity of BPA by examining
the brains of animal models or cultured neurons. Here, we describe recent studies that
have shed light on some of the cellular and molecular mechanisms by which BPA interferes
with brain development to cause behavioral endophenotypes common to NDDs.

2. Neural Stem Cell Proliferation and Differentiation Are Affected by BPA

One of the first critical cellular processes of neurodevelopment is neurogenesis, a
tightly regulated process that involves the migration, proliferation, and differentiation of
neural precursor cells into functional units of circuitry [53,54]. During this process, neural
stem cells (NSCs) and neural progenitor cells (NPCs) transition into neurons and glia [55].
Neurogenesis begins during embryonic brain development and continues in localized areas
of the adult mammalian brain, including the subventricular zone and the dentate gyrus in
the hippocampus [55,56].

Disruptions and abnormalities in neurogenesis have been implicated in various NDDs
and neuropsychiatric illnesses [57,58]. Neurogenesis can be investigated at the cellular and
molecular levels by evaluating proliferation rates and expression patterns of key genes and
proteins during differentiation of NSCs/NPCs. Proper proliferation and differentiation of
precursor cell types relies heavily on intrinsic factors, such as mitogens, small molecules,
and cell signaling pathways, but are also influenced by extrinsic factors, such as environ-
mental chemical exposures [59–66]. Indeed, maternal exposure to BPA has been studied
in various model organisms and has been shown to influence the proliferative capacity of
NSCs and neuronal differentiation (Table 1) [54,67–74].

As the developing nervous system is highly complex, in vitro assays using cell-based
models of neurogenesis have become a valuable tool to study NSC/NPC proliferation and
differentiation [75]. Following exposure to BPA, disruptions in rates of cell proliferation
and neuronal differentiation have been observed in NSCs/NPCs and neuron cultures
derived from the rat hippocampus [54,71], embryonic and fetal brain [68,69], the mouse
brain [72], human umbilical cord blood [70], and human brain-derived cell lines [73,74] in
response to various dosing regimens of BPA. In NSCs derived from the rat hippocampus
and in human brain-derived cells, BPA was found to cause a significant decrease in BrdU-
positive [71] and β-III tubulin-positive cells [71,74], which are biomarkers of neuronal
proliferation and differentiation, respectively. In cells derived from rat embryonic and fetal
brains, BPA was also found to have adverse effects on the processes of neuronal and glial
maturation [68,69]. Upon exposure to concentrations of BPA ranging from 0.05 to 100 µM,
decreases in neuron and oligodendrocyte maturation were observed as was an increase in
astrocyte differentiation [68].
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BPA exposure has also been found to affect regions of the brain important for neu-
ronal and glial homeostasis. Rats chronically exposed to 100 µg/L BPA during prenatal
development and postnatal weaning were found to have significantly enlarged lateral
ventricles [76]. Lateral ventricle enlargement was speculated as being caused by a BPA-
induced increase in cerebrospinal fluid (CSF) pressure and circulation [76], which could
directly affect developing neurons and glia given the critical role CSF plays in maintaining
brain homeostasis.

Investigators have also identified multiple molecular mechanisms by which BPA
exposure disrupts the differentiation of cultured NSCs/NPCs. One such mechanism is
the BPA-mediated disruption of the Wnt pathway, a signaling pathway that influences
NSC/NPC development and a known contributor to the pathophysiology of NDDs and
neuropsychiatric disorders [77,78]. BPA treatment was found to significantly reduce the
activity of the Wnt pathway, demonstrated by altered expression of Wnt pathway genes, as
well as reduced cellular β-catenin levels, reduced phosphorylation of GSK-3β (Glycogen
Synthase Kinase 3 Beta), and reduced β-catenin translocation to the nucleus [54,71]. Tran-
scription factors critical for neuronal differentiation are also impacted by BPA treatment.
One study using cells derived from human umbilical cord blood showed decreased mRNA
and protein levels of Sox1, Pax6, and Ngn1, and increased levels of Oct4 and Gdf3 [70].
Sox1, Pax6, and Ngn1 are actively expressed during neuronal differentiation, while ex-
pression of multipotential markers, such as Oct4 and Gdf3, is repressed [70,79]. Another
analysis using human brain-derived NSCs found that concentrations of BPA as low as 1 µM
resulted in a decrease in GFAP (Glial fibrillary acidic protein) and MAP2 (Microtubule
associated protein 2) protein expression (markers of neuronal differentiation) as well as an
increase in Nestin and Sox2 expression (markers of NSC maintenance) [73].

Although not as extensive as in vitro studies, there have also been studies investigat-
ing the impact of BPA on NSC/NPC proliferation and differentiation in vivo. For example,
Tiwari et al. found that perinatal exposure in rats to 40 and 400 ug/kg/day caused a signif-
icant reduction in BrdU-positive NPCs in the hippocampus and subventricular zone (SVZ)
of offspring [54]. Further, immunofluorescent labeling of lineage-specific markers showed
BPA exposure caused a significant increase in GFAP-positive cells (a glial marker) and a
concomitant decrease in nestin, b-tubulin, neuroD1, and doublecortin (DCX) expression
(neuronal markers) [54]. This data suggests that early BPA exposure can increase glial
differentiation and decrease neuronal differentiation, therein, disrupting the ratio of glia to
neurons in the rat hippocampus. BPA was also shown to cause premature neurogenesis in
the hypothalamus of zebrafish brains at concentrations as low as 0.0068 µM [67]. Another
study using fruit flies demonstrated that embryonic and larval exposure to 1 mM BPA
caused a reduction in the number of mitotically active cells in the larval brain [41].

The ability of NSCs/NPCs to proliferate and differentiate at appropriate rates is crit-
ical for neurogenesis and brain function. Both in vitro studies with cells derived from
mammalian models and in vivo studies using vertebrate and invertebrate models have
provided evidence that BPA exposure disrupts NSC/NPC proliferation. The delineated
mechanisms involve BPA-mediated impairment of signaling pathways and gene expres-
sion critical for NSC/NPC development. Given the key role neurogenesis plays in brain
development, this data demonstrates that BPA may confer a risk of NDDs by interrupting
NSC/NPC development.

Table 1. Summary of studies on BPA-associated impacts on neural stem cell (NSC) development.

Neural Structure/
Cell Type Organism Phenotype Concentration Reference

Central brain
(larval)

Drosophila
melanogaster

Reduced proliferation of
neuroblasts

1 mM
(developmental) Nguyen et al., 2021 [41]

Hypothalamus Danio rerio Premature neurogenesis 0.0068 µM
(developmental) Kinch et al., 2015 [67]
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Table 1. Cont.

Neural Structure/
Cell Type Organism Phenotype Concentration Reference

Neural progenitor cells Mus musculus
High concentration
(>100 µM) resulted in
decrease in proliferation

1 nM–500 µM (in vitro) Kim et al., 2007 [72]

Fetal neural stem cells Rattus
norvegicus

Increased cell proliferation;
decreased maturation of
oligodendrocytes and
neurons;
increased astrocyte
differentiation and
morphological changes;
reduced arborization by
astrocytes,
oligodendrocytes, and
neurons

0.05 µM, 0.25 µM,
10 µM, 50 µM, and
100 µM (in vitro)

Gill and
Kumara., 2021 [68]

Lateral ventricles Rattus
norvegicus

Enlargement of lateral
ventricles

100 µg/L; equivalent to
10 µg/kg/day
(perinatal)

Santoro et al., 2021 [76]

Primary neuronal
cultures from
embryonic rat brains

Rattus
norvegicus

Reduced maturation of
neural progenitor cells (at
200 µM)

50, 100, or 200 µM
(in vitro) Cho et al., 2018 [69]

Hippocampus and
lateral ventricle
(in vivo); hippocampal
neural stem cells
(in vitro)

Rattus
norvegicus

Impaired neural stem cell
proliferation and
differentiation (hippocampus
and subventricular zone);
altered expression/protein
levels of neurogenic genes
(hippocampus); reduced Wnt
pathway activity
(hippocampus)

4, 40, and
400 µg/kg/day
(perinatal)

Tiwari et al., 2015 [54]

Hippocampus (in vivo)
and hippocampal
neural stem cells
(in vitro)

Rattus
norvegicus

Inhibited
hippocampal-derived neural
stem cell proliferation and
differentiation

40 µg/kg/day
(perinatal)

Agarwal et al.,
2016 [71]

Neural stem cells Homo sapiens

Promoted cell proliferation
(0.1 and 1 µM); inhibited
differentiation (1 µM);
reduced GFAP and MAP2
expression (1 µM); increased
expression of nestin and
Sox2 (1 µM)

0.1, 1, 5, and 10 µM
(in vitro) Dong et al., 2021 [73]

Fetal brain-
derived neural
progenitor cells

Homo sapiens

Reduced neuronal
differentiation (decreased β

III-tubulin mRNA levels and
β III-tubulin-positive cells)

10−16, 10−13, and 10−10

M (in vitro)
Fujiwara et al.,
2018 [74]

Neural stem cells from
umbilical cord blood Homo sapiens Reduced NSC proliferation

and differentiation
50 and 100 µmol/L
(in vitro) Huang et al., 2019 [70]

3. Synapse Formation Is Disrupted by BPA

The process of synapse formation, or synaptogenesis, occurs when a neuron responds
to guidance cues by extending its axon toward a target cell (a neuron, gland, or muscle cell)
and forms an adhesion that enables neuronal communication across a synapse. Throughout
the central and peripheral nervous systems, synaptogenesis gives rise to the specialized
neural networks responsible for receiving and integrating sensory stimuli in order to actuate
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functional responses [80–82]. Thus, the input–output mechanisms of the brain that facilitate
appropriate behavioral responses are dependent on successful synapse formation [80–82].

NDDs, which are often behaviorally-defined, can be caused by disruptions in synap-
togenesis [80]; therefore, elucidating the impacts of BPA on synapse formation is critical
because of the implications for risk of neurodevelopmental impairment. Experimentally,
synapse formation can be measured at the cellular and molecular level by evaluating axon
growth and guidance [41,83–85], dendrite length and arborization patterns [86–88], and
the expression levels of genes and proteins critical for the synaptogenic program [89].
BPA-associated deficits in synapse formation have been examined in the fruit fly [41,85],
zebrafish [83,84], rodents [87–89], and embryonic stem cell-derived models from humans
(Table 2) [86].

Table 2. Summary of studies that have investigated the impact of BPA on synapse formation.

Neural Structure/Cell
Type Organism Phenotype Exposure Reference

Mushroom body Drosophila
melanogaster

Increased axon midline
crossing (axon guidance
defect)

0.1 and 1 mM
(developmental) Nguyen et al., 2021 [41]

Neuromuscular
junction (NMJ)

Drosophila
melanogaster Increased axonal branches 1 mM

(developmental) Welch et al., 2022 [85]

Motor neuron Danio rerio
Reduced motor axon length
and branching; reduced NMJ
integrity

50 µM
(developmental) Morrice et al., 2018 [83]

Motor neuron Danio rerio

Decreased ventral and dorsal
axons from secondary
motoneurons (specifically at
15 µM)

1, 5, and 15 µM
(developmental) Wang et al., 2013 [84]

Neuroblasts
(Neuro-2A cell line) Mus musculus

Cell shrinkage, rounding, and
reduced number of synapses;
decreased relative protein and
mRNA expression levels of
Dbn, MAP2 and Tau; increased
the relative protein and mRNA
expression levels of SYP

50, 100, 150, or 200 µM
(in vitro) Yin et al., 2020 [89]

Hippocampus
(CA1 area)

Mus musculus
(males only)

Inhibited synaptogenesis;
altered synaptic structure

0.04, 0.4, and
4.0 mg/kg/day
(perinatal)

Xu et al., 2013 [88]

Hippocampal
neurons

Rattus
norvegicus

Increased total length of
dendrites; increased motility
and density of dendritic
filipodia

1, 10, and 100 nM
(in vitro) Xu et al., 2014 [87]

Embryonic stem
cell-derived neural
stem cells

Homo sapiens Decreased neurite outgrowth 1, 10, and 100 nM
(in vitro) Liang et al., 2020 [86]

Early exposure to BPA has been found to dysregulate axon growth and guidance
in fruit flies and zebrafish. In the fruit fly, developmental exposure to 0.1, 1, and 2 mM
BPA caused axon guidance defects in a midbrain structure called the mushroom body [41],
a neural structure critical for learning and memory [90,91]. Axonal branching has also
been examined at the larval neuromuscular junction (NMJ)—a relatively accessible and
highly specialized synapse between the nerve terminals of motor neurons and larval body
wall muscle fibers [80,92]. Analysis of the NMJ in fruit fly larvae showed that exposure
to 1 mM BPA can increase axonal branching, which corresponded to transcriptomic data
indicating that BPA causes the misexpression of genes involved in axogenesis and synapse
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development [85]. In zebrafish, exposure to 15 mM BPA decreased the length of dorsal and
ventral axons extending from secondary NMJ motoneurons [84]. A separate study using
zebrafish also demonstrated a BPA-mediated inhibition of motor axon growth, this time
showing a dose-dependent decrease in motor axon length following exposure to 15–90 mM
during embryogenesis [83]. These studies indicate that developmental exposure to BPA
can have adverse effects on axon growth and guidance.

BPA-associated impacts on synapse formation have also been measured in mammalian
model organisms and cell lines [87–89]. Similar to the reduced axon outgrowth observed
in zebrafish [83,84], BPA treatment of human embryonic stem cell-derived NSCs led to
a reduction in neurite length [86]. In contrast, analysis of dendritogenesis in cultured
rat hippocampal neurons found treatment with 10–100 nM BPA increased the motility
and density of dendritic filipodia, as well as dendrite length [87]. Studies focused on
synaptic morphology have revealed BPA can also affect synaptogenesis after the presynaptic
and postsynaptic membranes come into contact. Analysis of the hippocampus in male
mice following perinatal BPA exposure (0.4–4 mg/kg/day) revealed altered structural
characteristics of synapses, including enlarged synaptic clefts, reduced active zones, thinned
postsynaptic densities, and increased synaptic curvature [88]. Cultured mouse neuroblasts
(Neuro-2a/N2a cells) exhibited cell shrinkage and a reduced number of synapses upon
exposure to BPA ranging from 50 µM to 200 µM [89]. BPA also caused reduced expression
of Dbn (Drebin), MAP2, and Tau, and increased expression of SYP (Synaptophysin) in N2a
cells [90]. Dbn and SYP regulate synaptic morphology and MAP2 and Tau are critical for
maintaining stability of the neuronal cytoskeleton. Thus, the BPA-induced misexpression of
these critical synaptic proteins provides a molecular explanation for its deleterious impacts
on synapse formation and synaptic integrity.

Studies using invertebrate and vertebrate models, in addition to cultured cells, provide
evidence that BPA exposure can impair synapse formation by disrupting axogenesis, den-
dritogenesis, and synaptic structural integrity. BPA has been found to impact the expression
of genes critical for synapse formation in invertebrate and mammalian systems [86,90],
suggesting that BPA interferes with synaptogenesis at least in part through its dysregulation
of neurodevelopmental gene expression.

4. Synaptic Plasticity Is Impaired by BPA

Synaptic plasticity—the ability of neurons to modify the strength of their connections
in an activity-dependent manner—is the foundation of learning and memory, adaptive so-
cial, and emotional behavior and is thought to be a common feature of many NDDs [93–97].
Synaptic plasticity can be measured at the cellular level by assessing dendritic spines, small
protrusions along the dendritic membrane where synapses form. The density of dendritic
spines changes in response to neural activity; long-term potentiation (LTP) increases spine
density [98], whereas long-term depression (LTD) reduces spine density [99].

Chemical exposures can disrupt synaptic plasticity by altering the expression or
activity of proteins important for either structural changes in dendritic spines or neuronal
signaling pathways that contribute to LTP and LTD. Maternal exposure to BPA has been
found to affect the synaptic plasticity of offspring in various brain regions by reducing
dendritic spine density [100–102], altering LTP and LTD [103,104], and dysregulating the
expression of molecular regulators of plasticity (Table 3) [88,101–106].

The impact of BPA on synaptic plasticity in the hippocampus has been extensively
investigated because of the key role hippocampal plasticity plays in learning and mem-
ory [96]. Reductions in spine density have been observed in the hippocampus of non-human
primates [107], rats [100,101,105,106], and mice [88,108] following prenatal or perinatal
exposure to BPA at levels ranging from a very low dose (30 µg/kg/day) up to a high dose
(50 mg/kg/day). Analysis of potential molecular causes of reduced hippocampal spine
density suggests BPA can downregulate critical synaptic proteins, including presynaptic
synapsin I [88,104], postsynaptic density protein 95 (PSD-95) [88,105,106,109], N-methyl-
D-aspartate (NMDA) receptor subunits [88,105,106,110], α-amino-3-hydroxy-5-methyl-
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4-isoxazole propionic acid (AMPA) receptor subunits [105,106], and activity-regulated
cytoskeleton-associated protein (Arc), as well as reduced PKC/ERK/CREB signaling [105].
While most of these studies exclusively used male animals, two studies that included both
sexes reported different impacts in females and males (males were found to have a more
robust decrease in spines) [100,105], one study found BPA-associated effects on plastic-
ity were mediated by ER-a [105], while another study suggested plasticity phenotypes
were sex-independent because BPA-associated impacts were indistinguishable in male
and female brains [101]. Although there remains some debate about estrogen signaling
being involved in BPA-mediated consequences in the central nervous system, all of the
referenced studies found that exposure to BPA during development reduced plasticity in
the hippocampus, therein, supporting the notion that maternal BPA exposure can cause
learning and memory deficits in offspring.

BPA-associated changes in synaptic plasticity have also been identified in the primary
visual cortex [102], basal ganglia [104], and basolateral amygdala (BLA) [103] of rats. In the
primary visual cortex, reductions in spine density were observed in response to low BPA
exposure levels (1 mg/kg/day) [102]. In this case, the reduced spine density was connected
to diminished expression of the proinflammatory cytokine, interleukin 1β (IL-1β) [102],
which plays a role in LTP [111]. In the basal ganglia, low dose BPA (20 µg/kg/day) caused
deficits in the development of LTP and LTD at the dorsolateral striatum via enhancement of
dopamine receptor (D1R) activity, a disruption suggested by the authors to diminish control
of motor behaviors [104]; though, it is worth noting the basal ganglia is also critical for
non-motor functions, such as emotion and executive function [112]. In the BLA, low dose
BPA exposure also caused increased dopaminergic signaling, which triggered elevated LTP
in the cortical-BLA pathway [103], neuronal excitability thought to underpin hyperactivity
and attention deficits.

Although this review does not focus on adult exposure, numerous studies have found
postnatal BPA treatment also has deleterious impacts on synaptic plasticity—typically in the
form of reduced dendritic spine density—in the prefrontal cortex and hippocampus of non-
human primates [113,114], rats [115–119], and mice [120]. The ability of BPA to consistently
impair synaptic plasticity in a variety of brain structures critical for cognition and behavior
in mammalian models, including non-human primates, rats, and mice, provides compelling
evidence that BPA is a risk factor for NDDs in humans, given that aberrant neuroplasticity
is a hallmark of these disorders.

Table 3. Summary of studies that have investigated the impact of BPA on synaptic plasticity.

Brain Region Organism Phenotype Exposure Reference

Hippocampus

Mus musculus
(males only)

Downregulated expression of
PSD95 and synaptophysin;
upregulated gephyrin
(inhibitory); reduced excitatory
to inhibitory protein ratio

50 µg/kg/day
(perinatal)

Kumar and Thakur,
2017 [109]

Mus musculus
(males only) Reduced spine density 40 or 400 µg/kg/day

(prenatal)
Kimura et al.,

2016 [108]

Mus musculus
(males only)

Reduced synapsin I, PSD-95,
NMDA receptor subunit NR1,
AMPA receptor subunit GluR1

0.04, 0.4, or
4.0 mg/kg/day

(perinatal)
Xu et al., 2013 [88]

Mus musculus
(males only)

Downregulated NMDA
receptor subunits NR1, NR2A,
and 2B

50, 5, 0.5, or
0.05 mg/kg/day

(perinatal)
Xu et al., 2010 [110]
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Table 3. Cont.

Brain Region Organism Phenotype Exposure Reference

Rattus norvegicus

Reduced spine density in
males; increased spine density
in females at estrus, but
reduced spine density at
proestrus

30 ug/kg/day
(perinatal)

Kawato et al.,
2021 [100]

Rattus norvegicus

Downregulated expression of
p-NR2B, NR2B, p-GluA1,
GluA1, PSD-95, synapsin I,
PKC, p-ERK and p-CREB in
males and females (greater
reduction in males)

1 and 10 µg/mL,
equivalent to 0.14 or

1.4 mg/kg/day
(perinatal)

Wu et al., 2020 [105]

Rattus norvegicus

Reduced spine density;
increased mIPSC amplitude;
reduced Arc
(activity-regulated
cytoskeleton-associated
protein) expression

0.15–7.5 mg/kg/day
(prenatal and postnatal,

through PND 87)
Liu et al., 2016 [101]

Rattus norvegicus
(males only)

Reduced expressions of
synaptophysin, PSD-95,
spinophilin, GluR1 and
NMDAR1

0.05, 0.5, 5, or
50 mg/kg/day

(perinatal)
Wang et al., 2014 [106]

Macaca mulatta
(females only)

Reduced spine synapses in
CA1, but not PFC

125 mg delivered
subcutaneously to

pregnant females or
50 days (resulted in
mean serum level of
0.91 ± 0.13 ng/mL)

Elsworth et al.,
2013 [107]

Primary visual
cortex (V1)

Rattus norvegicus
(males only)

Reduced spine density and
maturity; decreased
interleukin 1β (IL-1β)
expression; reduced P38
phosphorylation

1 mg/kg/day
(perinatal and

neonatal)
Hu et al., 2020 [102]

Basal ganglia
(dorsal striatum)

Rattus norvegicus
(males only)

Caused deficits in
development of LTP and LTD
at dorsolateral striatum;
dysregulated dopaminergic
signaling (D1R and D2R)

20 µg/kg/day
(perinatal and

neonatal)
Zhou et al., 2009 [104]

Basolateral
amygdala

(BLA)

Rattus norvegicus
(males only)

Increased neuronal excitability
and facilitation of LTP
induction in cortical-BLA
pathway; GABAergic
disinhibition; dopaminergic
enhancement

2 µg/kg/day
(perinatal) Zhou et al., 2011 [103]

5. Behavior Is Impacted by BPA

Disruptions in neural development can have lasting effects on animal behavior. Con-
sistent with the extensive impacts BPA elicits on the developing brain of laboratory animals,
a variety of behavioral aberrations have been attributed to BPA exposure. Notably, many
of the predominant BPA-associated behavioral outcomes are common endophenotypes
of neurodevelopmental disorders, such as ADHD, ASD, and ID, including increased loco-
motor activity (hyperactivity), deficits in learning and memory, and increased anxiety-like
behavior (Table 4). There are also studies indicating BPA causes contrasting phenotypes for
each behavior; as with any toxicology study, these disparities may be due to differences
in exposure regimen (dose, mode, and duration of exposure), genetic composition of the
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organism (even subtle genetic differences can alter an organism’s response to environ-
mental toxicants [121]), or experimental design, including differences in the age at which
behavioral analysis occurred.

Despite differences in animal model and experimental design, studies examining loco-
motor activity have largely found developmental exposure to BPA gives rise to hyperactive
progeny. At least eight separate studies using fruit flies [41,122,123], zebrafish [67,124,125],
mice [126], and rats [103], found that when developing organisms were exposed to BPA,
they exhibited increased locomotor activity as larvae/juveniles and/or as adults. In
one study, BPA-associated hyperactivity was sex-specific and only observed in female
mice [126], yet another study that solely examined locomotor activity in male rats detected
hyperactive behavior [101]. Of the investigations attempting to delineate the cellular or
molecular underpinnings of locomotor changes, studies using Drosophila and zebrafish
attributed hyperactivity to BPA-mediated transcriptional changes in neurodevelopmen-
tal [85,101] and metabolic pathways [101]. Another group attributed the BPA-associated
hyperactivity in rats to increased neuronal excitability in the cortical-basolateral amygdala
(BLA) pathway [103]. Studies of human brains found individuals with ADHD have altered
connectivity between the amygdala and prefrontal cortex, in addition to smaller amyg-
dalae [127]. Thus, the finding that BPA impacts the cortical-BLA pathway in rats points
to a potential pathophysiological mechanism underlying the association between BPA
exposure and ADHD in humans [51]. In contrast to the studies reporting BPA-associated
hyperactivity, three studies using C. elegans (in a head thrashing test) [128], zebrafish (in
swimming activity tests) [84], and rats (in an open-field test) [106] found BPA exposure
caused hypoactivity.

Learning and memory involves the acquisition of information in response to en-
vironmental stimuli, which is encoded and stored in the brain for future retrieval. At
least 14 studies have found early BPA exposure causes learning and memory deficits in
offspring, in agreement with the many reports on BPA-associated diminishment of synap-
togenesis and synaptic plasticity in the mammalian hippocampus described in preceding
sections of this review. Avoidance learning and memory were found to be affected in
female mice (only females were tested) [129], male mice (only males were tested) [110],
and in male rats (both sexes were tested) [105]. Spatial learning and memory were dis-
rupted by BPA in organisms ranging from zebrafish [125], mice [110], deer mice [130],
and rats [101,105,106,131–136]; some studies reported sex-specific differences [130,131,135],
some only tested one sex [84,132], while others found no difference on the impact in male
and female rodents [101,105,125,126,133]. Object recognition learning and memory in
rodents was also impaired by BPA [135,136]. In contrast, contextual fear memory was
enhanced in female mice exposed to BPA [137]. In Drosophila, learning was found to be
disrupted in males (only males were tested) in an associative learning paradigm called
conditioned courtship suppression [85]; while flies do not have a hippocampus, this finding
is consistent with BPA-mediated axon guidance defects of the mushroom body [41].

Some of the proposed underlying molecular mechanisms of BPA-mediated learning and
memory impairments in rodents include modulation of PKC/ERK and BDNF/CREB signal-
ing cascades [105,129,135], and altered expression of NMDA receptor subunits [105,106,110],
AMPA receptor subunits [106], and critical pre/post-synaptic proteins [105,106], all of
which can interfere with normal synaptic function. Finally, while the reasons for the dispar-
ities are unclear, some investigations found BPA had no impact on learning and memory in
rodents, including two studies that reported no observed effects on spatial learning and
memory [138,139], and another that found avoidance learning was intact [140].

Studies aimed at determining whether BPA causes anxiety have predominantly found
developmental exposure leads to increased anxiety-like behaviors in offspring, often in
a sex-specific manner. Three investigations using rodents of both sexes identified an
increase in anxiety-like behaviors in males but not females [131,140,141]. Another study
exclusively used male rodents and found similar BPA-mediated increases in anxiety-like
behavior [109]. Only one study noted anxiety was increased in female rodents exposed to
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BPA but not males [133], and one investigation found that BPA led to a reduction in anxiety
in both sexes [134]. These two studies used a Y-maze test, while all of the aforementioned
studies used the open field test and/or elevated plus maze test to measure anxiety-like
behavior; thus, the discrepancy may relate to the experimental modality and suggests using
multiple paradigms within each study is warranted. Of the groups that identified BPA-
associated anxiety-like behavior, Kumar et al. found perinatal exposure to BPA alters the
ratio of excitatory to inhibitory synaptic densities [109]. Imbalances in neural excitation and
inhibition have been reported in the pathophysiology of many neuropsychiatric disorders,
including ASD, ADHD, schizophrenia, and epilepsy [142–144]. Thus, if BPA can indeed
disrupt the excitation/inhibition balance, developmental exposure poses risk for numerous
mental disorders.

Several recent reviews have also discussed neurobehavioral ramifications of BPA
exposure in animal models [145–149]. Although not reviewed here, many other behav-
iors have been associated with early BPA exposure, including visual perception [85,102],
depression-like behavior [140,150], and social and reproductive behaviors [141,146,151].

Table 4. Summary of studies that have investigated the impact of BPA on animal behavior.

Behavior Organism Phenotype Exposure Reference

Locomotor
Behavior

Caenorhabditis
elegans Reduced activity 0.01–10 mM

(developmental) Zhou et al., 2016 [128]

Drosophila
melanogaster Increased activity 0.1–1 mM

(developmental)
Musachio et al.,

2021 [122]

Drosophila
melanogaster Increased activity 0.1–1 mM

(developmental) Nguyen et al., 2021 [41]

Drosophila
melanogaster Increased activity 0.1–1 mM

(developmental) Kaur et al., 2015 [123]

Danio rerio
Increased activity

(specifically in
response to 0.001 µM BPA)

0.1 nM to 30 µM
(developmental) Olsvik et al., 2019 [124]

Danio rerio Increased activity 0.01, 0.1, or 1 µM
(developmental) Saili et al., 2012 [125]

Danio rerio Increased activity 0.1 or 1 µM BPA
(developmental) Kinch et al., 2015 [67]

Danio rerio Reduced activity 1, 5, or 15 µM
(developmental) Wang et al., 2013 [84]

Mus musculus
Increased activity

in females
(not affected in males)

50 ng, 50 µg, or 50 mg
BPA/kg/day (perinatal)

Anderson et al.,
2013 [126]

Rattus norvegicus
(males only) Increased activity 2 µg/kg/day

(perinatal) Zhou et al., 2011 [103]

Rattus norvegicus
(males only) Reduced activity

0.05, 0.5, 5, or
50 mg/kg/day

(perinatal)
Wang et al., 2014 [106]

Learning &
Memory

Drosophila
melanogaster
(males only)

Impaired associative
learning

1 mM
(developmental) Welch et al., 2022 [85]

Danio rerio Impaired learning 0.01, 0.1, or 1 µM
(developmental) Saili et al., 2012 [125]

Mus musculus
Enhanced fear memory in

females; no observed effect in
males

250 ng/kg/day
(perinatal)

Matsuda et al.,
2013 [137]
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Table 4. Cont.

Behavior Organism Phenotype Exposure Reference

Mus musculus
(females only) Impaired memory retention 0.1–10 mg/kg/day

(prenatal) Jang et al., 2012 [129]

Mus musculus No observed effect on spatial
learning and memory

20 µg/kg/day
(perinatal)

Nakamura et al.,
2012 [138]

Mus musculus
(males only)

Impaired spatial and
avoidance memory

0.05–50 mg/kg/day
(perinatal) Xu et al., 2010 [110]

Peromyscus
maniculatus
(deer mice)

Impaired spatial learning in
males at 5 and 50 mg/kg,

no observed
effect in females

One or three doses of
BPA at 50 µg, 5 mg, and
50 mg/kg feed weight

Jašarević et al.,
2012 [130]

Rattus norvegicus

Impaired spatial and
recognition memory
in males and females;

Impaired passive
avoidance memory in males

1 and 10 µg/mL,
equivalent to 0.14 or

1.4 mg/kg/day
(perinatal)

Wu et al., 2020 [105]

Rattus norvegicus
(males only)

Impaired object
recognition memory

0.05, 0.5, 5, or
50 mg/kg/day

(prenatal)
Wang et al., 2016 [135]

Rattus norvegicus Impaired spatial memory in
both males and females

0.15–7.5 mg/kg/day
(prenatal and postnatal,

through
PND 87)

Liu et al., 2016 [101]

Rattus norvegicus
Impaired spatial recognition

learning and memory in
females at 2500 µg/kg/day

2.5 µg, 25 µg, and
2500 µg/kg/day

(perinatal)

Johnson et al.,
2016 [131]

Rattus norvegicus

Altered spatial learning of
females at 25 µg/kg/day

(masculinization of
female brain)

0, 25 µg, 250 µg, 5 mg, or
50 mg/kg/day

(perinatal)
Hass et al., 2016 [136]

Rattus norvegicus
(males only)

Impaired working and
reference memory

0.05, 0.5, 5, or
50 mg/kg/day

(perinatal)
Wang et al., 2014 [106]

Rattus norvegicus
(males only) Impaired spatial memory 2.5 mg/kg/day

(perinatal) Xu et al., 2014 [132]

Rattus norvegicus Impaired spatial memory in
both males and females

40 ug/kg/day
(perinatal)

Poimenova et al.,
2010 [133]

Rattus norvegicus No effect on avoidance
learning

15 µg/kg/day
(prenatal)

Fujimoto et al.,
2006 [140]

Rattus norvegicus
Impaired working
memory and object
recognition memory

100 or 500 µg/kg/day
(perinatal) Tian et al., 2010 [134]

Anxiety-Like
Behavior

Mus musculus
(males only) Increased 50 µg/kg/day

(perinatal)
Kumar and Thakur,

2017 [109]

Mus musculus
Increased in males,

no effect in
females

50 mg/kg/day
(prenatal) Cox et al., 2010 [141]

Peromyscus
maniculatus
(deer mice)

Increased in males at
5 and 50 mg/kg,

no observed effect
in females

One or three doses of
BPA at 50 µg, 5 mg, and
50 mg/kg feed weight

Jašarević et al.,
2012 [130]
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Table 4. Cont.

Behavior Organism Phenotype Exposure Reference

Rattus norvegicus Increased in females,
no effect in males

40 ug/kg/day
(perinatal)

Poimenova et al.,
2010 [133]

Rattus norvegicus No observed effect 0.15, 1.5, 75, 750, and
2250 ppm (perinatal) Stump et al., 2010 [139]

Rattus norvegicus Reduced anxiety 100 or 500 µg/kg/day
(perinatal) Tian et al., 2010 [134]

Rattus norvegicus Increased in males,
no effect in females

15 µg/kg/day
(prenatal)

Fujimoto et al.,
2006 [140]

6. Conclusions

This review described the neurodevelopmental impacts—molecular, cellular, and
behavioral—resulting from early exposure to BPA in organisms spanning the animal
kingdom, from invertebrates to mammals. While the laboratory animals used in these
studies largely served as models for understanding human impacts of BPA exposure, it
should be emphasized that BPA clearly impaired the neurodevelopment of organisms
throughout our environment, suggesting broad implications for the ecosystem.

Behavioral changes caused by BPA in animal models are largely consistent with human
behaviors associated with BPA exposure, including hyperactivity, learning deficits, and
anxiety-like behavior. In animal models, the neurodevelopmental impacts associated with
both low and high dose exposure to BPA during development are vast, beginning with
interruptions in NSC development and extending to axon growth and guidance defects,
impaired dendritogenesis, and altered synaptic plasticity. The findings presented in this
review collectively indicate that developmental exposure to BPA should be regarded as a
risk factor for NDDs in humans.
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