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Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism.
Genetic diseases of vitamin B12 utilisation constitute an important fraction of
inherited newborn disease. Functionally, B12 is the cofactor for methionine
synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must
be metabolised through a complex pathway that modifies its structure and
takes it through subcellular compartments of the cell. Through the study of
inherited disorders of vitamin B12 utilisation, the genes for eight
complementation groups have been identified, leading to the determination of
the general structure of vitamin B12 processing and providing methods for
carrier testing, prenatal diagnosis and approaches to treatment.

Vitamin B12, also known as cobalamin (Cbl), is a
micronutrient that is synthesised only by
microorganisms, yet is essential to human
health. Cobalamin was first isolated by Smith
(Ref. 1) and Rickes (Ref. 2), after Minot and
Murphy (Ref. 3) showed that pernicious
anaemia could be treated with oral liver extract.
Later, vitamin B12 deficiency as a result of
genetic disease was described despite adequate
vitamin intake (Ref. 4). Some patients responded
successfully to very high doses of vitamin B12,
suggesting blocks in vitamin processing. These
patients had homocystinuria and/or methylmalonic
aciduria, implicating dysfunctional methionine
synthase (MS) and/or methylmalonyl-CoA mutase
(MUT or MCM). We now know that blocks in

the intracellular processing of cobalamin into
cofactor forms, methylcobalamin (MeCbl) for
MS and adenosylcobalamin (AdoCbl) for MCM,
or in the functional activity of MS or MCM
result in inborn errors. These genetic blocks may
be devastating in newborns or in early
childhood. Understanding the genes, gene
products and subcellular transport of vitamin
B12 is important for minimising the disease
burden from these disorders. This review
outlines the present knowledge of cobalamin
metabolism, with a focus on steps related to the
intracellular human pathway and the initial
cataloguing of cobalamin-utilisation disorders
into complementation groups and biochemically
distinct classes. Key to these discoveries have
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been the hundreds of patients who have been the
source of cell cultures andDNA samples that have
given us our current understanding of vitamin B12

utilisation in humans.

Vitamin B12 structure
The structure of cobalamin was first solved by
Hodgkin (Ref. 5) using x-ray crystallography. It
is a large organometallic molecule,
∼1300–1500 Da in size, and is the most
chemically complex vitamin known. The focal
point of vitamin B12 is the central cobalt atom,
which has up to six ligands bound to it. Four of
the ligands are the nitrogen atoms of the planar
corrin ring that surround the cobalt atom
(Fig. 1). The α-axial ligand, extending below
the corrin ring, is a nitrogen of the 5,6-
dimethylbenzimidazole (DMB) phosphoribosyl
moiety that also attaches back to the corrin ring
through one of its propionamide side chains.
The upper or β-axial ligand varies, depending
on the modification state of cobalamin (R-group
in Fig. 1a). Functional β-axial ligands are methyl
(MeCbl) or 5′-deoxyadenosyl (AdoCbl) groups.
Additionally, a hydroxyl group (OHCbl) or a
cyano group (CNCbl) can be bound as
physiologically relevant β-axial ligands.
There are three important, inter-related factors

that contribute to cobalamin reactivity and
function: the oxidation state of cobalt; whether
the DMB is coordinated to cobalt in the lower
axial position; and the identity of the R-group
bound in the upper axial position. The cobalt
atom of cobalamin may exist in the +3
[cob(III)alamin], +2 [cob(II)alamin] or +1
[cob(I)alamin] oxidation state. AdoCbl, MeCbl,
CNCbl and OHCbl, all of which are
cob(III)alamins, prefer to adopt a configuration
where the DMB nitrogen base is coordinated to
the cobalt in the lower axial position (referred to
as ‘base-on’) (Fig. 1). Some enzymes, however,
are able to shift these cob(III)alamins to the
‘base-off’ configuration. Interestingly, MS and
MCM, which use MeCbl and AdoCbl as
cofactors, respectively, bind the cobalamin so
that the DMB nitrogen is displaced from the
cobalt and replaced by a histidine of the enzyme
(Fig. 1b). This type of binding is considered
‘base-off/His-on’ and is important for the
catalytic activity of the enzymes. Cob(II)alamin
generally has no R-group bound, binding only
DMB as the lower axial ligand to make its
preferred five-coordinate state. However, in the

presence of ATP, MMAB, the human
adenosyltransferase (ATR) enzyme, is able to
bind cob(II)alamin in a novel four-coordinate
state, where neither axial position is occupied
(Ref. 51). Cob(I)alamin usually has no axial
ligand. It is a highly reactive nucleophile that
very easily oxidises to cob(II)alamin (Ref. 52).
The challenge to the cell is how to productively
produce cob(I)alamin, as in the reaction cycle of
MS, without exposing the local environment to
nucleophillic attack and risk of free-radical
damage. The nature of the axial ligands also
affects the ease with which the central cobalt is
reduced. Strongly coordinating ligands stabilise
cobalt against reduction, whereas weakly
coordinating ligands allow cobalt to be reduced
more easily (Ref. 53). Base-on cobalamin falls
into the former category, protecting the cobalt
from reduction because DMB has greater
electron-donating character than the H2O
molecule that binds in its absence (Ref. 54).

Vitamin B12 origins
Vitamin B12 is an extremely old molecule in
evolution. It has even been suggested that B12

was synthesised prebiotically (Ref. 55).
Accordingly, vitamin B12 utilisation is dispersed
throughout evolution, occurring in both
Eukaryota and Prokaryota, perhaps having been
passed on from the ‘breakthrough organism’ –
the last organism to use RNA as the sole
genetically encoded catalyst (Ref. 56).
Interestingly, although cobalamin utilisation is
distributed widely among phyla, cobalamin
synthesis seems limited to only a select few
Archaea and Eubacteria. Perhaps this is because
the synthesis of cobalamin is so complex –
involving in excess of 25 steps, which can
proceed either aerobically (cob genes) or
anaerobically (cbi genes) (Ref. 57). Therefore,
although mammals and other higher organisms
require vitamin B12 for life, they ostensibly
acquire it from their prokaryotic counterparts.
Another interesting facet of the evolution of
cobalamin is that vitamin B12 users seem more
scattered than logically spread out through
evolution, with whole phyla sometimes gaining
or losing vitamin B12 dependency (Ref. 58).
Additionally, although mammals and other
higher eukaryotes are restricted to two
cobalamin-dependent enzymes, MS and MCM,
prokaryotes use a plethora of enzymes requiring
this cofactor. These enzymes include three
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classes of AdoCbl-dependent mutases, the
isomerases (e.g. MCM, ribonucleotide reductase,
glutamate mutase), the eliminases (e.g. diol
dehydratase) and the aminomutases (e.g. D-
lysine-5,6-aminomutase), as well as the
MeCbl-dependent methyltransferases (e.g. MS)
and the vitamin B12-dependent reductive
dehalogenases (e.g. 3–6 chloro-4-hydroxybenzoate
dehalogenase) (Refs 59, 60). Therefore, because
higher eukaryotes share common vitamin B12
ancestry with prokaryotes, but have apparently
limited use of the vitamin and no biosynthesis,
prokaryotes in general and a few specific bacteria
and Archaea in particular have proved to be very

useful models to understand vitamin B12

metabolism.

Human vitamin B12 ingestion and
absorption

Because vitamin B12 is made by only a few
microorganisms, it is acquired through dietary
uptake in animals. Human dietary sources
include milk, eggs, fish and meat in quantities in
excess of a few micrograms a day (Ref. 61). In
humans, the absorption, transport and cellular
uptake of cobalamin is complex. Food-bound
cobalamin is released in the stomach with the
help of peptic activity, where it is subsequently

a

b

Structure of vitamin B12 (cobalamin)
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

Figure 1. Structure of vitamin B12 (cobalamin). (a) The ‘R group’ corresponds to substitutions at the upper or
β-axial ligand (5′-deoxyadenosyl-, methyl-, hydroxo-, cyano-). The dimethylbenzimidazole constituent (DMB)
is shown coordinated to the cobalt in the lower α-axial position (‘base-on’ structure). DMB is linked to the corrin
ring through a phosphoribosyl attached to a propionamide side chain. (b) Structure of methylcobalamin
(MeCbl) with DMB displaced from the cobalt by a histidine residue in methionine synthase (MS; the ‘base-
off/His-on’ structure). A similar configuration is observed for adenosylcobalamin (AdoCbl) bound to
methylmalonyl-CoA mutase. Structures are from http://www.genome.jp using the ‘SIMCOMP Search’ utility
(query C00576, vitamin B12; C06410, MeCbl-MS).
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bound by haptocorrin (HC) (Ref. 62). In the small
intestine, cobalamin is released from HC by
pancreatic protease digestion and bound by
intrinsic factor (IF) to form an IF–Cbl complex.
IF is very specific for cobalamin (i.e. for forms
that have the lower DMB intact) and
presumably acts as an early screening
mechanism to prevent degraded cobalamins
from intracellular access (Ref. 63). The IF–Cbl
complex passes through the small intestine,
where it is bound on the apical surface of ileal
epithelial cells by a receptor composed of a
heterodimer of amnionless and cubilin, called
cubam, which aids in the endocytosis of IF–Cbl
(Refs 64, 65). Once inside the cell, IF is degraded
in the lysosomes and cobalamin is released into
the cytosol (Ref. 66), where it is transported
across the ileal receptor cell and released into
the bloodstream, possibly by the recently
identified (with respect to vitamin B12 transport)
multidrug resistance protein MRP1 (Ref. 67). In
the bloodstream, cobalamin binds to either HC
or transcobalamin (TC) (Ref. 68). Although HC
binds the bulk of plasma cobalamin (75–90%), it
is not involved in cellular cobalamin uptake
apart from uptake in hepatocytes (Ref. 68).
Therefore, individuals who have deficient or
absent HC have serum cobalamin values in the
deficient range, but show no sign of cobalamin
deficiency (Ref. 61). Although TC binds only a
minor fraction of circulating cobalamins
(10–25%), it is the protein responsible for
facilitating the uptake of cobalamin by cells
(Refs 69, 70). Mutations in the gene encoding TC
(TCN1) result in severe tissue cobalamin
insufficiency, megaloblastic anaemia, failure to
thrive and often neurological complications,
despite normal plasma cobalamin concentrations
(Refs 71, 72). Additionally, TC acts as a final
screening mechanism because, like IF, TC is very
specific for cobalamin forms that have the lower
DMB intact (Refs 73, 74). Treatment of TC
deficiency requires very high serum cobalamin
levels, ranging from 1000 to 10 000 pg/ml,
achieved by oral or intramuscular delivery of
0.5–1.0 mg of CNCbl or HOCbl once or twice
weekly (Refs 60, 75). There is some evidence
that at sufficiently high concentrations, at least
some tissues are capable of taking up unbound
cobalamin (Ref. 61). From the bloodstream,
cobalamin is taken up into cells through
receptor-mediated endocytosis as a complex of
Cbl–TC bound to the TC receptor (TCblR)

(Refs 76, 77, 78). A mutation in the gene
encoding TCblR (CD320) was recently identified
in asymptomatic newborns whose fibroblasts
showed decreased Cbl uptake, where restoration
of the missing codon by site-directed
mutagenesis (c.262–264) resulted in normal
TCblR function (Ref. 79). In the lysosome, the
Cbl–TC complex is digested to create free
cobalamin, which is subsequently transported
into the cytosol probably as a mixture of
cob(III)alamin and cob(II)alamin. Once in the
cytosol, cobalamin is processed by many
proteins, some known, others perhaps still
unknown, to produce the cofactors MeCbl and
AdoCbl. Failure to produce the cobalamin
cofactors results in a lack of functional enzymes
and causes the constellation of biochemical,
developmental and neurological manifestations
associated with intracellular pathway defects.

Complementation analysis for cataloguing
the intracellular pathway of vitamin B12

disorders
The considerable range of clinical and biochemical
heterogeneity observed in patients with vitamin
B12 pathway disorders led to a need to sort
them into genetically defined groups. The
question of whether severe and mild disease or
B12-responsive and -unresponsive forms could
be explained by mutations in different genes
was addressed early on by complementation
analysis. This is a powerful technique that
permits the identification of specific genes
through their expression in fibroblast
heterokaryons, multinucleate cells produced by
the fusion of fibroblast strains from different
patients, which could then be tested for
restoration of function. To examine
complementation, the incorporation of
[14C]propionate or [14C]methyltetrahydrofolate
[or [14C]formate to methionine and serine
(Ref. 22)] into trichloroacetic acid (TCA)-
precipitable material was monitored by
autoradiography of cells in situ or by direct
scintillation counting of the TCA precipitate
(Refs 80, 81). Initially, four distinct
complementation groups were identified,
cblA–cblC and mut. However, over the years, the
method came to be used diagnostically with
hundreds of cell lines being analysed, mainly in
the McGill University laboratory of David
Rosenblatt, which became a dominant
diagnostic centre using these techniques. So far,
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eight complementation groups, cblA–cblG and
mut, have been described that have blocks in the
production or utilisation of MeCbl, AdoCbl or
both cofactors. Although all the genes
corresponding to these disorders have now been
described, many of their functions remain
unclear. Figure 2 illustrates the known or
predicted functional location of the protein
products of these genes. Three complementation

groups – cblF, cblC and cblD – correspond to
blocks in steps that are common to the synthesis
of both cofactors with resulting deficiency of MS
and MCM activities. Patients from these groups
have combined homocystinuria and
methylmalonic aciduria. Three groups, cblD
variant 1, cblE and cblG, have blocks in the
cytosolic pathway leading to MeCbl synthesis or
apo-MS and result in deficient MS activity and

Methylmalonic aciduria

Methylmalonyl-CoA mutase–AdoCbl

Methionine synthase–MeCbl

AdoCbl

MeCbl

Cob(II)Cbl-RTC-Cbl-R

Lysosome

Cytosol

Mitochondrion

cblA::mut

cblE::cblG

cblB

cblD
cblD-1

cblC

Methylmalonyl-CoA Succinyl-CoA

Methionine

Homocystinuria

CH3-THF+
Homocysteine

Intracellular processing of vitamin B12 showing sites of defects in 
complementation groups
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

cblD-2 (cblH )cblF

Figure 2. Intracellular processing of vitamin B12 showing sites of defects in complementation groups.
Complementation groups are in blue and are positioned at sites of metabolic blocks (shown in red).
Cobalamin intermediates are in red. Excreted metabolites due to genetic defects are in shaded boxes.
Pathway details are described in the text. In the lysosome, cobalamin is released from transcobalamin (TC)
through its degradation (arrow pointing to dots). In the cytosol, R groups are released by the cblC protein
with the cob(II)alamin [Cob(II)] product remaining bound (dotted line emanating from the cblC protein
denotes complex with cobalamin forms). The three versions of the cblD protein (cblD, cblD-1, cblD-2)
illustrate the role of the protein in directing cobalamin to the mitochondrial or cytosolic pathway. In the
mitochondrion, the cblB protein adds the 5′-deoxyadenosyl group, generating the active cofactor
[adenosylcobalamin (AdoCbl)], which is transferred to the mut [methylmalonyl-CoA mutase (MCM)] protein.
The cblA protein is proposed to act as a gatekeeper to ensure that the cofactor form that is accepted and
retained by MCM is AdoCbl. In the cytosolic pathway, cob(II)alamin is bound to the cblG [methionine
synthase (MS)] protein. The cblE [methionine synthase reductase (MSR)] protein catalyses generation of the
active cofactor, methylcobalamin (MeCbl), or its regeneration if oxidised to cob(II)alamin during reaction cycles.
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homocystinuria. The final groups, cblD variant 2,
cblA, cblB and mut, affect steps occurring in the
mitochondrion leading to AdoCbl synthesis or
apo-MCM and result in deficient MCM activity
and methylmalonic aciduria.

Complementation groups affecting both
methionine synthase and methylmalonyl-

CoA mutase
cblF
cblF was initially assigned to describe an infant
with developmental delay and mild
methylmalonic aciduria who was vitamin B12

responsive (Ref. 82). Her fibroblasts were found
to accumulate free cobalamin, failing to attach to
MS or MCM. By electron microscopy and
subcellular fractionation, it was shown that most
of the cobalamin was trapped in the lysosome,
with only a small portion reaching the cytosol or
mitochondria (Ref. 83). Complementation
studies confirmed the genetically distinct
disorder (Ref. 84). It was proposed that cblF
represents a defect in the export of cobalamin
out of the lysosome into the cytosol (Ref. 82).
The gene responsible for cblF was very recently
cloned by homozygosity mapping and
microcell-mediated chromosome transfer and
was found to correspond to LMBRD1, which
encodes the lysosomal membrane protein
LMBD1 (Ref. 27). LMBD1 shares homology with
a family of membrane proteins that internalise
lipocalins, which are carriers of small
hydrophobic molecules such as steroids and
lipids, leading to the suggestion that a lipocalin-
like molecule may bind vitamin B12 in the
lysosome on its release following TC
degradation (Ref. 27). Transfection of cblF
fibroblasts with intact cDNA corrected
intracellular cobalamin processing and restored
functional MS and MCM. The nature of the
protein, with nine predicted transmembrane
domains, and localisation of the protein to the
lysosomal membrane, is consistent with a role in
the export of cobalamin from the lysosome.
Only 13 patients have been described with cblF
(Refs 27, 28). Six mutations have been identified,
and, interestingly, all of them have been chain-
terminating frameshift mutations, with one,
1056delG, accounting for 18 of 26 analysed
alleles (Fig. 3). Clinically, it is a highly variable
disorder. Most patients show failure to thrive in
infancy and mild to severe developmental delay,
but respond to vitamin B12 therapy. Although

most patients presented with homocystinuria
and methylmalonic aciduria, the index case,
mentioned above, showed no evidence of
megaloblastic anaemia or homocystinuria. This
individual was reportedly asymptomatic on B12

therapy in adulthood, despite being homoallelic
for the 1056delG mutation (Ref. 27).

cblC
The cblC complementation group originally
corresponded to the first set of patients who
failed to produce either AdoCbl or MeCbl
(Ref. 85). Since then, approximately 400 patients
have been described with cblC, making it the
most common disorder of intracellular vitamin
B12 metabolism (Ref. 14). The gene responsible
for the cblC group, called MMACHC, was
identified by homozygosity mapping in 2006
(Ref. 15). More than 50 different disease-causing
mutations have been identified and are
summarised in Ref. 14 (Fig. 3). The most
common is the c.271dupA mutation, which
causes a frameshift truncation, accounting for
42% of pathogenic alleles (Ref. 14). Additionally,
the c.394C> T (R132X) and c.331C> T (R111X)
mutations are found commonly, at 20% and 5%
of alleles, respectively. Although all cblC patients
have combined homocystinuria and
methylmalonic aciduria and often have
haemotological, neurological and ophthalmic
abnormalities to some degree, they tend to fall
into either of two distinct phenotypes
correlating with age of onset (Ref. 86). Early-
onset patients present in the first year of life
with severe disease and rarely respond clinically
to treatment, whereas late-onset patients present
in childhood to adulthood, are more likely to
have less severe symptoms, and usually respond
better to treatment (Ref. 86). A strong
genotype–phenotype correlation can be found
with some mutations: the c.271dupA and
c.331C> T (R111X) mutations usually cause the
much more prevalent early-onset disease,
whereas some missense mutations [e.g. c.482G>
A (R161Q)] and, bewilderingly, the c.394C> T
(R132X) nonsense mutation usually result in
late-onset disease (Refs 14, 15). The cblC protein
(MMACHC) was predicted to have a vitamin
B12 binding site and a TonB-like domain; the
latter is a protein associated with bacterial
cobalamin uptake (Ref. 15). Although initial
studies suggested that MMACHC had base-on
CNCbl binding (Ref. 87), it was later
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Mutations in the genes underlying the defects of the eight complementation 
groups
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

Figure 3. Mutations in the genes underlying the defects of the eight complementation groups. (See next
page for legend.)
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demonstrated to bind CNCbl in the base-off
conformation (Ref. 88) and to reductively cleave
the CN group to form MMACHC-bound
cob(II)alamin (Ref. 87). It has also been shown
to catalyse glutathione-dependent dealkylation
of cobalamins containing C2–C6 alkanes, Ado-,
or Me- as the upper axial ligand (Ref. 89). These
results suggest that MMACHC might be
involved in intracellular cobalamin transport
and reductive dealkylation or decyanation,
perhaps interacting with the cblF protein for
export of cobalamin out of the lysosome and
beginning the initial processing of cobalamin,
yielding cob(II)alamin, before passing it along
for distribution to the rest of the pathway
(Refs 14, 62) (Fig. 2).
Late-onset cblC patients are cobalamin

responsive but, as observed initially in
fibroblasts and later in patients, they respond
poorly to CNCbl compared with OHCbl, a
phenomenon that is unique among the vitamin
B12 disorders (Refs 86, 90, 91, 92). Investigations
of cobalamin binding by wild-type and mutant
protein, the latter containing the R161Q
mutation commonly associated with OHCbl
responsiveness in cblC patients, revealed
reduced binding of CNCbl but not OHCbl by
the mutant protein compared with the wild type
(Ref. 93). Further, thermolability studies showed
that MMACHC protein is strongly stabilised by
cobalamin binding, whereas mutant protein was
much less stabilised and only minimally or not
at all with CNCbl (Ref. 87). These results
suggest that OHCbl responsiveness in patients
with the R161Q mutation is due to a
combination of better affinity for OHCbl than
CNCbl and a much better stabilisation of the
mutant protein by OHCbl. It may well be that
the high-dose OHCbl treatment generally used
with cblC patients protects the protein from
degradation in vivo. An interesting outcome of
these studies was the finding that the cobalamin
cofactors, AdoCbl and MeCbl, were far more

protective of the mutant protein than OHCbl.
Although treatment with AdoCbl or MeCbl has
been tried before, it was found that they are not
incorporated directly as cofactors of their
cognate enzymes but are dealkylated and
processed anew, results that have been
confirmed in vitro with MMACHC (Refs 89, 94).
However, the increased stabilisation of mutant
protein afforded by the cofactors suggests that
their use should be re-examined in some cases.

cblD
The cblD complementation group was first
described in two siblings with combined
homocystinuria and methylmalonic aciduria and
deficiency of MCM and MS activities (Ref. 95),
although the designation ‘cblD’ was not given
until many years later (Ref. 81). For over 25
years, they remained the only cblD patients
described, and biochemical analysis revealed
that only this complementation group seemed to
behave in a manner similar to cblC, but with less
severe defects (Ref. 91). However, in 2004,
Suormala et al. (Ref. 96) described three new
cases of cblD: two had only MS deficiency
(called cblD variant 1) and one had only MCM
deficiency (cblD variant 2). These results
suggested that the cblD protein might be
responsible for branching of the cobalamin
metabolism pathways to the cytosolic or
mitochondrial compartments (Fig. 2). The same
group cloned the cblD gene 4 years later
(Ref. 20), naming it MMADHC. With an
additional four patients they showed a clear
genotype–phenotype relationship, whereby
truncation mutations in the 5′ region resulted in
only methylmalonic aciduria (MCM deficiency),
truncation mutations in the middle and 3′

regions resulted in combined methylmalonic
aciduria and homocystinuria (MCM and MS
deficiency), and missense mutations in the 3′

region resulted in only homocystinuria (MS
deficiency) (Fig. 3). Transfection experiments

Figure 3. Mutations in the genes underlying the defects of the eight complementation groups. (See
previous page for figure.) For each complementation group, the gene name is given in brackets. Mutations
are shown as cDNA position with corresponding amino-acid change in brackets. The numbering for each is
based on the cDNA sequence: +1 corresponds to the A of the ATG translation initiation codon. Nonsense
and frameshift (fs) mutations are displayed above the gene whereas missense and possible splice site or
cryptic splice site (ss) mutations are displayed below. Mutations are based on cblA (Refs 6, 7, 8, 9, 10),
cblB (Refs 11, 12, 13), cblC (Refs 14, 15, 16, 17, 18, 19), cblD (Refs 20, 21), cblE (Refs 22, 23, 24, 25, 26),
cblF (Refs 27, 28), cblG (Refs 29, 30, 31, 32) and mut (Refs 9, 13, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50).
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demonstrated correction of the defect in mutant
fibroblasts. In particular, a cDNA constructed
with a 5′-truncation mutation could correct the
synthesis of MeCbl, suggesting that an internal
translation initiation site is probably functional.
Additionally, they demonstrated that the cblH
complementation group, which had been
previously described for one patient with
unidentified methylmalonic aciduria (Ref. 97),
was actually an example of cblD variant 2
(Fig. 2). MMADHC has a predicted
mitochondrial leader sequence and a putative
vitamin B12 binding sequence and shows limited
homology to a bacterial ABC transporter
(Ref. 20). Although no functional or biochemical
data are yet available for MMADHC, it is
currently speculated to interact with MMACHC
as part of a chaperone role to present cobalamin
to the cytosolic or mitochondrial pathways
(Refs 20, 62).

Complementation groups affecting only
methionine synthase

In 1984, Schuh and colleagues (Ref. 98) described
an infant with homocystinuria, megaloblastic
anaemia and developmental delay who,
although treatable with cobalamin, showed no
evidence of methylmalonic aciduria, a novel
outcome at the time. This suggested that the
infant had a unique block in MS or the synthesis
of MeCbl. Subsequently, two other patients were
described with the same symptoms (Refs 99,
100). Broken cell extracts from the original
patient revealed that with added reducing
agents, MS worked perfectly. However, this was
not the case for MS from the next two patients.
Their cell extracts were defective regardless of
additions. Ultimately, Watkins and Rosenblatt
(Ref. 101) used complementation analysis to
show that the original patient, designated as
cblE, had a block in a separate genetic locus to
the other two patients, which they designated as
cblG (Fig. 2).

cblG
The gene responsible for cblG was cloned by
three separate groups based on the
identification of human sequences homologous
to the E. coli vitamin-B12-dependent MS,
encoded by the metH gene, and other bacterial
and Caenorhabditis elegans sequences (Refs 29,
102, 103). The human gene is designated
MTR, for methyltransferase, as it was

named when initially mapped to human
chromosome 1 (Ref. 91), or more formally
as 5-methyltetrahydrofolate:homocysteine
methyltransferase. Twenty different mutations
have been identified in MTR (Fig. 3). The most
common is c.3518C> T (P1173L), which is
present in 16 of 24 cblG cell lines surveyed
(Ref. 30). The clinical disease is highly
variable, with onset ranging from neonatal to
adulthood, although most patients present
with homocystinuria, hypomethioninaemia,
megaloblastic anaemia and developmental delay
(Refs 101, 104, 105, 106). In addition to its
importance in protein synthesis, MS is a key
enzyme of the methionine cycle, which maintains
the cellular level of the methionine derivative, S-
adenosylmethionine, the methyl donor in a wide
array of cellular processes including DNA, RNA
and protein methylation. It is also uniquely
involved in the folate cycle, because it is the only
mammalian enzyme to use 5-
methyltetrahydrofolate as a methyl donor
(Ref. 30). MS catalyses the methylation of
homocysteine to form methionine in a reaction
that requires the presence of enzyme-bound
MeCbl for activity (Refs 107, 108). The reaction
proceeds by methyl transfer from 5-
methyltetrahydrofolate to MS-bound
cob(I)alamin to form MeCbl, followed by transfer
of the methyl group to homocysteine to form
methionine and regeneration of cob(I)alamin
(Refs 109, 110). Mammalian MS and Escherichia
coli MetH are 55% identical (Ref. 103). The
sequence homology extends to the domain
structure of MetH in which linearly arrayed
domains of the enzyme contain binding sites for
the various substrates and cofactors (Refs 111,
112, 113). These domains seem to be faithfully
maintained in mammalian MS.

cblE
Because the reaction catalysed by MS regenerates
cob(I)alamin in every reaction cycle, the cofactor
risks occasional oxidation to cob(II)alamin with
consequent inactivation of the enzyme
(Ref. 114). In E. coli, the restoration of a
functional cofactor is dependent on two
flavoproteins, flavodoxin and flavodoxin
reductase, containing flavin mononucleotide
(FMN) and flavin adenine dinucleotide (FAD)
prosthetic groups, respectively (Refs 115, 116).
The corresponding human reducing system
proved to be encoded by a single gene, MTRR,
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which is mutated in cblE patients (Fig. 3); it
encodes a single protein containing FMN- and
FAD/NADPH-binding sites (Ref. 117). This
enzyme, named methionine synthase reductase
(MSR), is a linear array of ‘flavodoxin’ at the N-
terminus, an intervening linker sequence in the
middle and ‘flavodoxin reductase’ at the C-
terminus. It restores MS activity by catalysing
the reductive methylation of cob(II)alamin on
the inactivated MS in which S-
adenosylmethionine is the source of the methyl
group (Refs 118, 119). Additionally, MSR has
been shown to catalyse the reduction of free B12

[as aquocob(III)alamin] to cob(II)alamin
(Ref. 120), making it an aquocobalamin
reductase and possibly functioning as such in
the cytosolic pathway. MSR has also been
suggested to function as a cob(II)alamin
reductase in the mitochondrial pathway. This
hypothesis was based on a potential
mitochondrial leader sequence found by
alternative splicing in the MTRR gene, as well as
in vitro results demonstrating the production of
cob(I)alamin through physical interaction with
the mitochondrial MMAB protein (Refs 117,
121). However, evidence demonstrating MSR
expression only in the cytosol (Ref. 122) and
separate evidence suggesting that MMAB does
not require a distinct cobalamin reductase
(Ref. 123) have strongly countered this
argument. The clinical presentation of cblE
patients is similar to that of cblG patients. It is
usually impossible to separate the two
disorders, except for one patient who
unexpectedly also had methylmalonic aciduria
(Ref. 105), which remains unexplained.

Complementation groups affecting only
methylmalonyl-CoA mutase

Patients with methylmalonic aciduria without
elevated homocysteine or abnormalities of
circulating vitamin B12 have defects in the
mitochondrial pathway of AdoCbl synthesis and
functional MCM. Clinically, patients have the
following common features: failure to thrive,
lethargy, vomiting of protein feeds, dehydration,
respiratory distress and hypotonia (Ref. 124).
Early on, three genes were implicated in the
mitochondrial pathway, corresponding to
complementation groups cblA, cblB and mut
(Refs 80, 85) (Fig. 2). A detailed understanding
of the mitochondrial processing of vitamin B12

is only now beginning to emerge, based

largely on studies completed on bacterial model
systems.

cblA
cblA was initially the designation for patient
fibroblasts that failed to accumulate AdoCbl in
intact cells, but showed restored AdoCbl
synthesis in a broken-cell assay with OHCbl,
ATP and a reducing system (Ref. 85). This
block was hypothesised to correspond to a
defect in mitochondrial cob(II)alamin
reductase because of the ability of an external
reducing system to alleviate the block (Ref. 85).
The human gene, named MMAA, was identified
in a search for genes clustered in proximity to
MCM (mut) in microbial genomes and while
searching for orthologous sequences in the
human genome (Ref. 6). Examination of the
sequence of MMAA, however, revealed that it
did not encode a reductase, but rather a protein
that belonged to the G3E family of P-loop
GTPases, a group of proteins that participate in
the assembly or function of the metal centres in
metalloenzymes (Ref. 6). More than 30 cblA
patient mutations have been described in the
MMAA gene, with most of them corresponding
to nonsense or frameshift mutations (Fig. 3).
Although most cblA patients present in infancy
or childhood with methylmalonic aciduria
and potentially life-threatening acidotic crises
(Ref. 104), they often respond to vitamin B12

therapy despite the severity of mutations
(Refs 104, 124, 125). Reasons for this are
becoming clearer because of our increased
understanding of the role of MMAA. Studies
have focused on the bacterial orthologues of
MMAA, including key research by Banerjee and
colleagues working with MeaB, the MMAA
orthologue from Methylobacterium extorquens.
Initial bacterial studies showed that MMAA
orthologues form a complex with MCM and
that GTP binding and hydrolysis contribute to
cobalamin processing (Refs 126, 127, 128).
Further, it was shown that MeaB protects MCM
from inactivation and that the state of MeaB
(apo, GDP or GTP bound) alters the affinity of
MCM for AdoCbl (Ref. 129). Finally, recent
studies suggest that MeaB acts as a regulator of
MCM cofactor binding and ejection, where the
binding and hydrolysis of GTP by MeaB are
important in the discrimination of MCM
binding to AdoCbl versus cob(II)alamin, and
promotes ejection of the latter, inactive cofactor
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from MCM (Ref. 130). These studies are
summarised below in the proposed model for
cobalamin processing.

cblB
Patients in the cblB group are also deficient in
AdoCbl synthesis and are metabolically similar
to cblA (Ref. 86). However, cblB patients tend to
present earlier, respond more poorly to vitamin
B12 and, consequently, may produce a more
severe clinical course with more profound
neurological and metabolic complications
(Refs 124, 125). The cblB disorder was separated
biochemically from cblA by the failure to
synthesise AdoCbl in broken cell extracts
containing a reducing system (Ref. 85). On the
basis of this early work, cblB had long been
expected to correspond to a defect in the
ATP:cob(I)alamin ATR. Like MMAA, the gene
was identified in the survey of MCM-containing
gene clusters in microbial genomes (see the
previous section) and was named MMAB
(Ref. 11). It was shown to correspond to an ATR
based on sequence and functional similarity
with a class of bacterial ATRs called PduO
(Refs 11, 131). The MMAB protein catalyses the
transfer of the 5′-deoxyadenosyl group of ATP
to cob(I)alamin to form AdoCbl. To assess
function, cob(II)alamin is the usual cobalamin
added in vitro, with a reducing system, often
MSR and NADPH, added to facilitate the
reaction. Unexpectedly, in the presence of ATP,
MMAB binds cob(II)alamin in an unusual base-
off, four-coordinate state (Ref. 51). This unusual
binding elevates the redox potential of
cob(II)alamin to the physiological range of
possible reduction by reduced flavin, perhaps
in the form of an electron transfer protein, thus
obviating the need for a specific cobalamin
reductase to generate the reactive cob(I)alamin
intermediate (Ref. 123). Most of the mutations
identified in cblB disease were found to cluster
in exon 7, which encodes the active site of the
enzyme (Refs 12, 132) (Fig. 3). Several
mutations have been modelled in human and
microbial ATRs, identifying defects in substrate
or cofactor binding, active site functions or
protein dynamics (Refs 132, 133, 134, 135, 136).
Interestingly, two of the mutations (R186W,
E193K) resulted in absent protein in western
blots of patient cell extracts, suggesting
protein instability as a major contributor to
disease phenotype (Ref. 137). Human MMAB

has been crystallised in the presence of ATP
(Ref. 132). It was found to exist as a trimer with
three active sites, only two of which contained
ATP. Crystallisation in the presence of both ATP
and cob(II)alamin has been accomplished for the
Lactobacillus reuteri ATR (LrPduO) (Ref. 135). The
two enzymes are highly similar and,
interestingly, AdoCbl was detected in LrPduO
crystals, underscoring the capacity of reduced
flavin, generated in the incubation mix, to drive
the four-coordinate cob(II)alamin intermediate to
cob(I)alamin and the formation of AdoCbl.

mut
The mut complementation group is representative
of mutations in the MUT (MCM) gene. MCM is
important for the metabolism of branched-chain
amino acids, odd-chain fatty acids and
cholesterol (Ref. 104). It catalyses the reversible
isomerisation of L-methylmalonyl-CoA to L-
succinyl-CoA (Fig. 2), which is important for the
breakdown of propionate and for replenishing
the tricarboxylic acid cycle. The MUT gene was
the earliest of the human B12 pathway genes to
be cloned, accomplished by antibody screening
of a human liver λgt11 expression library
(Ref. 138). Nearly 200 disease-causing mutations
have been identified in MUT (Ref. 33) (Fig. 3).
Two distinct classes of mutations have been
described: mut− (‘mut-minus’), when there is
residual enzyme activity or detectable [14C]
propionate incorporation by mutant fibroblasts;
and mut0 (‘mut-zero’), when protein or enzyme
activity is not detected, as found, for example, in
frameshift or chain-terminating mutations and
some amino-acid substitutions (Refs 139, 140).
Unsurprisingly, these two groups separate
patients clinically. mut0 patients have a
higher occurrence of morbidity, mortality and
neurological complications than mut−, and mut−

patients are more responsive to B12 therapy
(Ref. 124). MCM from Proprionibacterium shermanii
has been crystallised in the presence of AdoCbl
and substrate (PDB accession number 4REQ)
(Refs 141, 142, 143). The human enzyme (PDB
accession number 3BIC) is structurally similar to
the P. shermanii enzyme, with which it shares 60%
identity in the α-subunit (Ref. 144). Human MCM
exists as a homodimer in the mitochondrial
matrix with 1 mol of AdoCbl bound per subunit
(Refs 145, 146). Studies of the Methylobacterium
extorquens enzyme, as described above, suggest
that human MCM does not exist alone but
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functions as a complexwith other proteins, notably
MMAA and possibly MMAB.

Model for the intracellular processing of
vitamin B12

The genes and proteins corresponding to all eight
complementation groups defined in patients have
providedmost of the elements required todescribe
the intracellular processing of vitamin B12 (Fig. 2).
Cobalamin, generallyasOHCbl orCNCbl, is taken
into the lysosome as a Cbl–TC complex, where
digestion of the transcobalamin releases free
cobalamin. The cobalamin is transported into
the cytosol through the LMBD1 protein,
possibly drawn through the lysosomal
transporter by interaction of the cytosol face of
LMBD1 with the MMACHC protein. It appears
that cobalamins are bound to MMACHC in the
base-off state, poised for cleavage of the upper
axial ligand if one is present. MMACHC may
act as an intracellular cobalamin carrier for
delivery of the cofactor to the MMADHC
protein for targeting to the cytosolic (MS) or
mitochondrial (MCM) pathways. Evidence of
interaction of MMACHC with either LMBD1 or
MMADHC has yet to be demonstrated. In the
cytosolic compartment, cob(II)alamin is expected
to be bound to MS, where it is reductively
methylated by MSR, using NADPH as an
electron donor, to generate the MeCbl active
cofactor of MS. MMADHC also participates in
the targeting of cobalamin to the mitochondrial
pathway, although the specific transporter has
yet to be identified. Cob(II)alamin, on entry into
the mitochondrial matrix, is bound by MMAB
for the generation of AdoCbl, with the reducing
equivalents probably coming from an electron
transfer protein rather than a cobalamin
reductase, as had been previously anticipated.
The subsequent transfer of AdoCbl to MCM is
predicted to be an exquisitely complicated
process involving a complex of MMAA and
MCM and possibly MMAB.
First, the complex of MCM:MMAA–GTP

prevents the binding of cob(II)alamin, which
would otherwise inactivate MCM. Second,
AdoCbl is transferred directly from MMAB to
the MCM–MeaB–GTP complex in a process
requiring ATP binding to MMAB and GTP
hydrolysis by MMAA. Third, in reaction cycles
in which the radical 5′deoxyadenosyl
intermediate is lost, leaving MCM with an
inactive cob(II)alamin cofactor, the GTP-bound

MMAA causes displacement of the cofactor,
making the enzyme available for renewed
AdoCbl binding. The proposed role for MMAA
derives principally from studies of MeaB by
Padovani and Banerjee (Refs 127, 129, 130). The
crystal structure of MeaB has been determined
and carries the expected nucleotide-binding
domains and domains predicted to be involved
in MCM binding at the N-terminus and a
dimerisation domain at the C-terminus (PDB
accession number 4REQ) (Ref. 147). The recently
crystallised human MMAA (PDB accession
number 2WWW), although it has a similar
overall structure, seems to adopt a slightly
different mode of assembly, which may have
implications for the three-way interaction with
MMAB and MCM.

Research in progress and outstanding
research questions

Although all eight genes predicted through
complementation analysis have been identified,
additional genes are anticipated. Most notably,
the mechanism of the mitochondrial transport of
B12 remains unknown. The involvement of cblD
defects in both the cytosolic and mitochondrial
pathways suggests that the MMADHC protein
is an accessory to the mitochondrial uptake of
vitamin B12. The lysosomal delivery of vitamin
B12 to the cytosol might also involve additional
genes. The similarity of LMBD1 to the lipocalin
family of membrane receptors predicts the
involvement of a lipocalin-like molecule that
might act as a vitamin B12 carrier after digestion
of the Cbl–TC complex in the lysosome.
Although a mitochondrial cobalamin reductase
cannot be fully ruled out, studies on PduO-type
ATRs argue against such a protein in human
cells. Finally, if confirmed in human cells, the
MMAA–MCM or MMAA–MCM–MMAB
complex predicted by studies on MeaB proteins
might account for the gene set required for
mitochondrial cobalamin processing and
utilisation. All these suggestions recognise the
absence of additional disease states among
human vitamin B12 processing disorders. The
general view is that unidentified genes would
probably not tolerate mutation (and therefore be
lethal embryonically), might be associated with
shared functions (and therefore might not reveal
a vitamin B12 disease phenotype) or might be
redundant with genes encoding proteins of
similar function (allowing a bypass of a genetic
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defect). Therefore, completion of the human
pathway requires either finding new genes or
demonstrating that the pathway is fully
functional without them. One approach might be
to investigate the pathway in a model eukaryotic
organism carrying orthologues of most (or all)
the human genes, as suggested in studies of
the methylmalonate pathway in C. elegans, an
organism with knockout mutants of several
vitamin B12 pathway genes (Refs 148, 149, 150).
Although we have gained much insight into the

pathwayof vitaminB12metabolism, the goal of the
medical geneticist has been to gain insight into
managing the vitamin B12 disorders, providing
access to carrier testing and prenatal diagnosis,
and, in the best of outcomes, preventing or
successfully treating symptomatic disease. The
remarkable feature of vitamin B12 utilisation
disorders has been their potential for treatment.
The discovery that high-dose vitamin B12 can
overcome pathway deficits in some patients has
given new life to individuals with an otherwise
potentially severe or fatal disease. The early
discovery that OHCbl is effective in the
treatment of cblC disorder while CNCbl is not is
a powerful illustration of the complexity of
vitamin B12 biochemistry. The more recent
finding that AdoCbl or MeCbl may have a
significant stabilising effect on MMACHC
protein, despite ultimately being hydrolysed to
cob(II)alamin, reminds us that there is still much
to be learned on behalf of the patient. Strikingly,
the most recent success with gene therapy to treat
mice with knockout of the Mut gene (Ref. 151)
has opened up a new avenue for treatment
that might ultimately benefit patients with
metabolically ‘unresponsive’ disorders. The
application of widespread newborn screening for
homocysteine and methylmalonate underscores
the opportunity to identify and treat these patients
before the onset of potentially irreversible disease.
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Further reading, resources and contacts

Reviews
There are many excellent reviews that address different aspects of vitamin B12 metabolism, the proteins

involved and clinical correlates:

Banerjee, R., Gherasim, C. and Padovani, D. (2009) The tinker, tailor, soldier in intracellular B12 trafficking.
Current Opinion in Chemical Biology 13, 484-491

Li, F., Watkins, D. and Rosenblatt, D.S. (2009) Vitamin B(12) and birth defects. Molecular Genetics and
Metabolism 98, 166-172

Fowler, B., Leonard, J.V. and Baumgartner, M.R. (2008) Causes of and diagnostic approach to methylmalonic
acidurias. Journal of Inherited Metabolic Disease 31, 350-360

(continued on next page)

expert reviews
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Further reading, resources and contacts (continued)

Dali-Youcef, N. and Andres, E. (2009) An update on cobalamin deficiency in adults. Quarterly Journal of
Medicine 102, 17-28

Websites
The Organic Acidemia Association. A volunteer organisation for the provision of support and information on

organic acidurias, including the methylmalonic acidurias:

http://www.oaanews.org/

National Institutes of Health: Office of Rare Diseases Research. A highly informative site covering basic
information, patient advocacy, research and clinical trials, and research resources for the public and
scientific community:

http://rarediseases.info.nih.gov/

National Center for Biotechnology Information: Online Mendelian Inheritance in Man. Compilation of gene and
phenotype information on all known Mendelian genetic disorders searchable by disease or gene name:

http://www.ncbi.nlm.nih.gov/omim

Features associated with this article

Figures
Figure 1. Structure of vitamin B12 (cobalamin).
Figure 2. Intracellular processing of vitamin B12 showing sites of defects in complementation groups.
Figure 3. Mutations in the genes underlying the defects of the eight complementation groups.
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