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Background: Sepsis is the leading cause of death in critically ill patients. Although it is 
well known that the immune system plays a key role in sepsis, exactly how it works remains 
unknown.
Methods: In our study, we used weighted gene co-expression network analysis (WGCNA) 
to screen out the immune-related genes that may play a critical role in the process of sepsis.
Results: A total of three sepsis-related hub genes were screened for further verification. 
Subsequent analysis of immune subtypes suggested their potential predictive effect in the 
clinic.
Conclusion: Our study shows that three immune-related genes CHMP1A, MED15 and 
MGAT1 are important biomarkers of sepsis. The screened genes may help to distinguish 
normal individuals from patients with different degrees of sepsis.
Keywords: sepsis, gene co-expression network, biomarker, immune cell

Background
Sepsis is the leading cause of death in critically ill patients, accounting for 30–50% 
of hospital mortality in the United States.1–3 From the perspective of pathophysiol-
ogy, sepsis occurs with complex pro-inflammatory and anti-inflammatory process 
disorders, further leading to systemic inflammatory response syndrome (SIRS) and 
multiple organ dysfunction syndrome (MODS).4–7 Although a variety of interven-
tions are currently available for the treatment of sepsis, the lack of targeted drugs 
leads to limited overall clinical efficacy.8–10 In addition, the complexity and varia-
bility of sepsis make it hard to grasp its severity, so early prediction of sepsis 
progression will be particularly important in guiding treatment.11,12

Biomarkers are increasingly being used to predict the pathophysiological charac-
teristics of diseases, including sepsis.13–15 However, the predictive function of most 
sepsis-related biomarkers is limited, and it is urgently needed to explore high-efficiency 
biomarkers in clinical practice. To the best of our knowledge, sepsis is a heterogeneous, 
life-threatening syndrome that coexists with multiple diseases.7 The innate immune 
system is the first line of defense against infection when sepsis occurs, and it often 
collaborates with adaptive immune responses to protect the host. Genetic differences 
among different individuals contribute to the diversity of immune responses to sepsis.16 

Correspondence: Weiqin Li  
Email liweiqindr@nju.edu.cn

International Journal of General Medicine 2021:14 6047–6057                                           6047
© 2021 Yu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of General Medicine                                             Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 12 July 2021
Accepted: 10 September 2021
Published: 24 September 2021

http://orcid.org/0000-0002-8483-6264
mailto:liweiqindr@nju.edu.cn
http://www.dovepress.com/permissions.php
https://www.dovepress.com


This is partly due to the fact that the quantitative character-
istics of pathogen-associated molecular patterns (PAMPs) 
and pattern recognition receptors (PRRs) interactions are 
not similar across all patients.17 The interaction between 
PAMPs and PRRs results in the production and subsequent 
release of pro-inflammatory and anti-inflammatory media-
tors, coordinating the clinical state of the host. And immune 
cells are direct participants in this response. Therefore, based 
on this premise, it is of potential value to search for immune- 
related markers in the process of sepsis for disease 
prediction.

With the rapid development and application of gene 
chip technology, weighted gene co-expression network 
analysis (WGCNA) is gradually used to analyze the mole-
cular mechanism and network relationships of disease.18,19 

Obviously, this revolutionary technological advance 
allows the search for biomarkers of sepsis at genetic 
level to guide clinical practice. In our study, we used 
WGCNA to screen out the immune-related genes that 
may play a critical role in the process of sepsis. We 
screened out promising immune-related candidate biomar-
kers of sepsis in which highly correlated genes clustered. 
From this perspective, the hub genes we screened also 
provide us with the possibility to better understand the 
mechanism and occurrence of sepsis.

Materials and Methods
Data Collection
We downloaded the GEO database to analyze the gene 
expression profiles of sepsis. Inclusion criteria: (1) the 
whole-genome expression profiling of whole blood of sepsis 
patients or healthy control samples were available in the 
datasets; (2) no less than 15sepsis samples and/or 15 healthy 
control samples were included in each dataset. Exclusion 
criteria: (1) a history of treatment prior to sample collection; 
(2) a clear risk of systemic disease in the control group. In 
our study, we downloaded the gene expression profiles of 
sepsis GSE54514 and GSE63042 for further analysis. 
GSE54514 and GSE63042 contained 53 (normal: 18; sepsis: 
35) and 129 (normal: 23; sepsis: 106) samples, respectively.

Co-Expression Network Construction
We used “WGCNA” package in R to establish the co- 
expression network based on the profile of differentially 
expressed genes (DEGs).20 Furthermore, we performed sam-
ple clustering to plot the sample tree and detect outliers.

Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) Pathway Enrichment Analysis
We used STRING (search tool for the retrieval of inter-
acting genes/proteins) database for GO Enrichment and 
KEGG pathway analysis. P < 0.05 was considered as the 
cut-off value of enriched GO terms and KEGG pathway.

Identification and Validation of Hub Gene
Pearson’s correlation of module membership >0.2 and P < 
0.05 was used to evaluate the connectivity of hub modules. 
Furthermore, hub module genes were carried out to establish 
a protein-protein interaction (PPI) network. Finally, we 
obtained the real hub genes in the overlapping part of this 
PPI network.

Evaluation of Immune Cell Subtype 
Distribution
CIBERSORT is a deconvolution algorithm that converts 
normalized gene expression matrix into components of 
infiltrating immune cells. During CIBERSORT calcula-
tions, we quantified the abundance of specific cell types 
in whole blood and verified CIBERSORT results by fluor-
escent-activated cell sorting (FACS). P value <0.05 of 
CIBERSORT output was defined as more accurate predic-
tion of immune cell composition. Then, the samples satis-
fying the constraints were further analyzed.

Identification of Differentially Expressed 
Immune-Related Gene
GSE63042 data set was used for WGCNA analysis, and 
key modules and their genes were selected. The 
GSE54514 data set was classified, and immune infiltration 
analysis was conducted to explore the differences in the 
proportion of immune cells in individuals with three dif-
ferent states. Finally, the correlation between the biomar-
kers and immune cells was calculated and the credibility 
of the correlation was verified by significance analysis. We 
examined the expression of real hub genes in these sam-
ples. P value <0.05 was considered statistically significant.

Statistical Analysis
Heat-maps were conducted by using the R software. 
Statistical analyses were conducted with the R package. 
P value <0.05 was considered statistically significant.
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Results
WGCNA Analysis
Establishment of Co-Expression Matrix
The gene was divided into dozens of modules, and the co- 
expression matrix was established. The minimum number 
of genes in each gene module was set to 50, and a total of 
32 modules were aggregated (Figure 1A). Grey defaults 
were genes that could not be classified into any modules, 
further merging the previous 32 modules into 13 
(Figure 1B).

Correlation Analysis
Correlation analysis was conducted between gene modules 
and clinical features, and the selected clinical features 

were the severity of the disease. During the analysis, 
phenotypic traits were transformed into quantitative traits 
(0 represents normal samples; the disease ranges from 1 to 
4, with a higher value indicating a more severe disease). 
Among the 13 co-expression modules, MEdarkturquoise 
had the maximal relevance to sepsis (Figure 1C).

Hub Module Enrichment
The R software cluster Profiler package was used for enrich-
ment analysis to find the common functions and related 
pathways in differentially expressed gene set. Through 
enrichment analysis of the 901 hub module genes obtained 
above, the bubble chart of top 10 term related to biological 
processes (BP) was obtained (Figure 2).

Figure 1 Modular clustering and its analysis correlation with clinical characteristics. (A) Module cluster tree diagram. (B) Cluster dendrogram. (C) Module–trait 
relationships.
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PPI Network Construction
We analyzed the protein network interaction relationship 
of 901 module genes (confidence = 0.7) and obtained 410 
hub genes. We selected the top 10 proteins and used 
Cytoscape software to beautify the protein network, and 
screened out the proteins with the top 10 proteins and 
extended to the outer layer (Figure 3).

Screening of Biomarkers
We selected a total of four gene sets: 410 PPI hub genes, 
68 key genes of hub module and the set of two DEGs. The 
intersection of these four gene sets was used to obtain the 
biomarkers of this study. Finally, three biomarkers were 
selected from the intersection part, namely CHMP1A, 
MED15 and MGAT1 (Figure 4).

Correlation Between Biomarkers and 
Survival
In order to explore whether these three genes have an impact 
on survival and death of patients, we collated the data of 
these two datasets into different groups and visualized their 
significance through box plots. The disease samples were 

divided into survival and non-survival samples (normal sam-
ples were not used). MED15 gene had a significant effect on 
survival and death in GSE54514 dataset (Figure 5A). 
CHMP1A and MGAT1 gene had a significant effect on 
survival and death in GSE63042 dataset (Figure 5B).

Single-Gene Analysis of Biomarkers
CHMP1A Gene
We calculated the correlation coefficient between the 
expression of all genes and CHMP1A gene, and performed 
gene set enrichment analysis (GSEA) according to the 
sequence of correlation coefficient, which was not 
enriched in the pathway but enriched to 9 GO terms 
(Figure 6A). One of the immune-related GO was visua-
lized separately (Figure 6B).

MED15 Gene
We calculated the correlation coefficient between the 
expression of all genes and MED15 gene, and performed 
GSEA according to the sequence of correlation coefficient, 
which was not enriched in the pathway but enriched to 7 
GO terms (Figure 6C).

Figure 2 The bubble diagram of BP-related TOP10 term obtained by GO enrichment of HUB module gene.
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Figure 3 The protein interaction network of key genes.

Figure 4 Screening of biomarkers.
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MGAT1 Gene
We calculated the correlation coefficient between the 
expression of all genes and MGAT1 gene, and performed 
GSEA according to the sequence of correlation coefficient, 
which was not enriched in the pathway but enriched to 46 
GO terms (Figure 6D). One of the immune-related GO 
was visualized separately (Figure 6E).

Immune Cell Infiltration in Different 
Individuals
In our study, 21 immune cells in the samples were 
screened out by using CIBERSORT algorithm and LM22 
gene marker. Among these immune cells, T cells CD4 
memory activated, T cells regulatory (Tregs), NK cells, 
macrophages (M0), mast cells and neutrophils had most 
significant differences in the proportion of normal/survi-
val/non-survival individuals (Figure 7).

Correlation Analysis Between 
Biomarkers and Immune Cells
The above three biomarkers were used for correlation 
analysis of each immune cell. CHMP1A gene was posi-
tively correlated with T cells CD4 naive and macrophages 
(M2) but negatively correlated with macrophages (M0) 
and T cells CD8 (Figure 8A). MED15 gene was positively 

correlated with mast cells activated and T cells CD4 naive 
but negatively correlated with macrophages (M0) and neu-
trophils (Figure 8B). MGAT1 gene was positively corre-
lated with T cells CD4 naïve and monocytes but negatively 
correlated with neutrophils and T cells CD8 (Figure 8C).

Discussion
Early prediction of sepsis biomarkers is important for effec-
tive clinical intervention.21 In our study, WGCNA was used 
to explore the pathological process and marker genes in 
whole blood samples of sepsis. After data preprocessing 
and weighted gene network construction, the modules were 
associated with feature and function enrichment analysis. 
According to the module recognition heat-map and scatter 
diagram, the module related to sepsis onset was turquoise 
module (p < 0.05). Finally, we selected three sepsis-related 
biomarkers: CHMP1A, MED15 and MGAT1.

Chromatin modifying protein 1A (CHMP1A) is 
a member of the endosomal sorting complex required for 
transport (ESCRT-III) family found in both cytoplasmic and 
nuclear matrix fractions, which identified as roles of chro-
matin modification, fundamental proteins required for multi-
vesicular sorting in eukaryotes and regulation of cell-cycle 
progression.22,23 To the best of our knowledge, CHMP1A is 
encoded by PRSM1 gene and found in mitotic chromosome 
scaffold and nuclear matrix.24–26 Over-expression of 

Figure 5 Analysis of the relationship between biomarkers and survival. (A) The significance of biomarkers on survival in the GSE54514 dataset. (B) Significant effect of 
biomarkers on survival in the GSE63042 dataset.

https://doi.org/10.2147/IJGM.S328076                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2021:14 6052

Yu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


CHMP1A interferes with nuclear structure and DNA replica-
tion, etc.23 Recent studies showed that CHMP1A acts as 
a tumor suppressor through the p53 signaling pathway in 
human embryonic kidney and ductal pancreatic tumor 
cells.27,28 Subsequently, some scholars further discovered 
that CHMP1A plays a role of regulating the proliferation 
and differentiation of retinal progenitor cells.22 For the first 
time, our analysis suggested that CHMP1A is associated with 
sepsis and is positively associated with T cells CD4 naïve and 
macrophages (M2), but a strong negative correlation with 
macrophages (M0) and T cells CD8.

The mediator complex is a four module transcriptional 
co-activator among eukaryotes, in which the tail module 
primarily recruits multiple transcriptional regulators to the 
transcription unit.29,30 As one of the tail subunits, MED15 
acts as a linker between regulatory proteins and RNA 
polymerase II.31–33 Abnormal expression of MED15 is 
associated with a variety of human malignant tumors. 
The expression of MED15 was up-regulated to varying 

degrees in different parts of head and neck squamous cell 
carcinoma tissue.34,35 In addition, compared with andro-
gen-sensitive prostate cancer (PCA) and benign tissue, 
MED15 was over-expressed in approximately 70% of 
locally recurrent and distantly metastatic castrated resistant 
PCA.36 Some scholars indicated that the degree of malig-
nancy of renal cell carcinoma was significantly reduced by 
knocking down MED15.29 For the first time, our study 
proved that MED15 is significantly involved in the 
immune regulation process of sepsis. MED15 has 
a strong positive correlation with mast cells activated and 
T cells CD4 naive, but a strong negative correlation with 
macrophages (M0) and neutrophils.

MGAT1 is a microsomal enzyme that catalyzes the synth-
esis of diacylglycerol (DAG) and triacylglycerol (TAG).37,38 

Mammalian TAG synthesis occurs in two ways, with the 
MGAT mentioned directly catalyzing the synthesis of DAG 
by monoacylglycerol via an alternative pathway. Finally, the 
action of DGAT1 or DGAT2 converts DAG to TAG.39 In 

Figure 6 Single-gene GSEA enrichment analysis of biomarkers. (A) GO term bubble image: CHMP1A single gene GESA enrichment. (B) GO myeloid leukocyte mediated 
immunity (CHMP1A). (C) GO term bubble image: MED15 single gene GESA enrichment. (D) GO term bubble image: MGAT1 single gene GESA enrichment. (E) GO 
myeloid leukocyte mediated immunity (MGAT1).
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addition, MGAT1 is a novel transcriptional target of Wnt/β- 
Catenin signaling pathway. This signaling pathway plays 
a key role in controlling tumor progression.40–42 From this 
perspective, MGAT1 functions in promoting the synthesis of 
triglycerides and the development of tumors. Our study 
indicated that MGAT1 has a strong positive correlation 
with T cells CD4 naive and monocytes but a strong negative 
correlation with neutrophils and T cells CD8.

Many scholars have attempted to find a group of bio-
markers to better identify patients with sepsis at adverse 
risk. However, none of the biomarkers can fully reflect the 
potential deterioration of the disease in patients with sep-
sis. Currently, the three best predictors of sepsis are IL-1 
receptor antagonist (IL-1ra), protein C and neutrophil gela-
tinase associated lipocalin (NGAL).43 Each of them may 
serve as a potential biomarker for sepsis, either as an anti- 

inflammatory protein (IL-1ra), an important component of 
coagulation (protein C), or as a marker of organ damage 
(NGAL). However, it is difficult to predict whether these 
three biomarkers are superior to traditional biomarkers.

Genome-wide association studies (GWASs) have pro-
vided valuable insights by pinpointing associations to both 
innate and adaptive immune response loci, as well as novel 
unexpected risk factors for infection susceptibility.44,45 

Recently, some scholars used WGCNA to screen regula-
tory factors related to sepsis, and finally found that tran-
scription factors CEBPB and ETV6 were the main 
regulatory factors.46 Meanwhile, our study provided effec-
tive biomarkers for the prediction of sepsis progression, 
and we found that CHMP1A, MED15 and MGAT1 play an 
important role in the prediction and immune response state 
of sepsis.

Figure 7 Immune cell infiltration in normal/living/dead individuals.*P<0.05, **P<0.01,***P<0.001. 
Abbreviation: ns, not significant.
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We visualized the samples and screened out 21 types of 
immune cells. Among them, T cells CD4 memory activated, 
T cells regulatory (Tregs), NK cells, macrophages (M0), mast 
cells and neutrophils had most significant differences in the 
proportion of normal/survival/non-survival individuals. We 
speculated that the analyzed genes may distinguish between 
normal individuals and patients with varying degrees of 
sepsis. From another perspective, new therapeutic 
approaches of sepsis by rebalancing multiple immune cell 
subset homeostasis may become potential targeted therapies. 
The limitation of this study is that we did not conduct an 
experimental study. Therefore, a further study on immune 
cells can identify ideal immunotherapy targets and improve 
the autoimmune regulation ability of patients with sepsis.

Conclusion
In conclusion, our study is the first to discover the pre-
dictive role of CHMP1A, MED15 and MGAT1 in the 

immunologic process of sepsis through WGCNA. The 
screened genes may help to distinguish normal individuals 
from patients with different degrees of sepsis.
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