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Abstract

Bus services naturally tend to be unstable and are not always capable of adhering to sched-

ules without control strategies. Therefore, bus users and bus service providers face travel

time variation and irregularity. After a comprehensive review of the literature, a significant

gap was recognized in the field of public transportation reliability. According to literature,

there is no consistency in reliability definition and indicators. Companies have their own defi-

nition of bus service reliability, and they mostly neglect the passengers’ perspective of reli-

ability. Therefore, four reliability indicators were selected in this study to fill the gap in the

literature and cover both passengers’ and operators’ perceptions of reliability: waiting time

and on-board crowding level from passengers’ perspective, and headway regularity index at

stops (HRIS) and bus bunching/big gap percentage from operators’ perspective. The pri-

mary objective of this research is to improve the reliability of high frequency of bus service

and simulation tools currently being used by the public transportation companies. Therefore,

a simulation model of bus service was developed to study the strategies to alleviate it. Four

different types of strategies were selected and implemented according to Route U32 (Kuala

Lumpur) specifications. Model out-put showed that control strategies such as headway-

based dispatching could significantly improve headway regularity by almost 62% and the

waiting time by 51% on average. Both holding strategies at key stops (previous and Prefol

holding) have shown an almost similar impact on reliability indicators. Waiting time was

reduced by 44% and 43% after the previous and Prefol Headway strategies were adopted,

respectively. However, the implementation of the component of headway-based strategies

at the terminal and key stops showed the best impact on reliability, in terms of passenger

waiting time. Waiting time and excess waiting time were both significantly reduced by

52.86% and 81.44%, respectively. Nevertheless, the strategies did not show any significant

positive effect on the level of crowding during morning peak hours.
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Introduction

Urban public transport is an essential transportation mode because of the congestion on

urban streets that results from the growing numbers of cars in cities. The demands for public

transport in urban areas are growing, and technological efforts are being made to improve the

services offered by urban transport networks. However, some studies indicate that technologi-

cal methods are not capable of offering a reliable system since passengers’ behavior can consid-

erably affect service regularity [1,2].

It is very important to clearly understand the meaning of “bus service reliability” from dif-

ferent perspectives. Peek and van Hagen (2002) [3] developed a methodology to evaluate pas-

sengers’ satisfaction and priorities, according to Maslow’s pyramid. It is confirmed that

security and reliability are fundamental definition of satisfaction for passengers, therefore

must be provided [4–6]. The Transport Focus reported in March 2016 that bus industry in

England is facing severe challenges. In fact, the number of passenger journeys in outside Lon-

don continued to decrease [7]. Therefore, transport focus conducted a survey to evaluate pas-

sengers’ perspective of bus service reliability. The report confirmed the significance of

providing a frequent, punctual and reliable service that provides value for money.

It is demonstrated that study of service reliability is one of the most crucial part of urban

transport improvement. Therefore, valuable studies were conducted on reliability definition,

indicators and improvement strategies. For instance, Van Oort (2014) [8] conducted valuable

surveys to evaluate service reliability from bus companies’ perception. The results showed that

companies pay little attention to service reliability in the initial stage of planning. Although the

surveys provide useful information about how bus companies deal with service reliability, pas-

sengers’ perception of bus service reliability was not considered in the surveys. In addition,

Diab, Badami and El-Geneidy (2015) [9] conducted a review on bus service reliability from

both passengers and bus companies’ perspective. Moreover, strategies that bus companies

applied in order to improve service reliability are included on their study. However, they didn’t

review main causes of service unreliability and factors negatively affect service regularity.

This section presents an introduction and review of literature on 1) the definitions of bus

service reliability, 2) strategies to improve service reliability, and 3) simulation models as a tool

to analyze service reliability. In the first step, we need to understand the definitions and indica-

tors of bus service reliability clearly. Bus agencies also need reliable instruction to measure the

level of bus service reliability. Therefore, we tried to answer these two questions in the first

part of the introduction: 1) What is the most comprehensive definition of bus service reliabil-

ity, and 2) How we can measure the level of reliability, considering both passengers’ and com-

panies’ perspectives?

After understanding the definition of reliability, we need to study the methods and strate-

gies for improving the level of reliability. Therefore, the second part of the literature was con-

ducted pertaining to the most effective strategies to improve reliability. In order to evaluate the

effect of strategies on the reliability of bus services, we need a simulation model. The third part

of the literature review is focused on the existing simulation models. Section 2 presents the

data collection procedures and a conceptual framework of this study. Moreover, the simulation

model development and bus service reliability indicators will be discussed in this section.

Results of implementation of the strategies and output of the simulation model will be pre-

sented in Section 3.

Bus service reliability: Definitions and indicators

One of the most significant features of transit service quality is reliability. It is a major concern

for transit agencies and passengers [10]. [11] defined reliability as regular headway, schedule
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adherence and stability of travel times. [12,13] associated reliability primarily with keeping

schedules and minimizing schedule-related delays, i.e., maximizing on-time performance

(OTP) and minimizing run-time delays and variations and headway delays and variations.

This was in line with conclusions drawn by [14,15].

The Transit Capacity and Quality of Service Manual (TCQSM, 2010) provided an extensive

list of transit reliability measure instances. The manual gives particular attention to headway

adherence and on-time performance, which are the most common reliability measures used in

the transit industry [16]. The 2000 edition of the Highway Capacity Manual (HCM) intro-

duced various level-of-service (LOS) measures for auto, transit, bicycle, pedestrian modes of

transport [17]. Chapter 27 in HCM (2000) outlines the quality evaluation of the following four

main transportation modes in terms of: a) service frequency, b) hours of service, c) passenger

load, and d) service reliability. Chapter 17 of the same manual suggests that excessive waiting

times reflect diminished transit vehicle reliability.

The TCQSM (2010) introduced a novel approach to measuring the LOS of the transporta-

tion system that covered two important aspects of LOS (comfort and availability) at three levels

(stops, route segments, and the system as a whole). [18] analyzed this framework using AVL

data that were collected in Trieste, Italy. According to the authors, the main limitations of the

TCQSM method were that it considered the number of delayed trips but not the amount of

delay, that it did not assess the impact of early departures on passengers, and that it had a fixed

tolerance of the schedule in assessing the on-time performance (OTP).

Fu and Xin (2007) [19] proposed a transit service indicator (TSI) that evaluates the level of

service by considering the impact of supply on demand. The TSI utilizes different quality met-

rics at the same time, such as frequency and coverage. Van Oort et al. (2012) [20] proposed

how to increase reliability by adjusting schedule timetables through the usage of holding

points. The authors used punctuality, defined as on-time arrival, together with the probability

of on-time departure from the terminal, to measure reliability. Chen et al. (2009) [21] devel-

oped three parameters related to performance to evaluate the reliability of bus services: a punc-

tuality index based on routes (PIR), a deviation index based on stops (DIS), and an evenness

index based on stops (EIS). The authors showed that these parameters revealed low bus service

reliability in Beijing and presented correlations between service reliability and route length,

headway, and distance from the stop to the origin terminal, as well as the effect of providing

separate bus lanes.

According to currently available literature, passenger’s definition of reliability is more

focused on minimizing travel time, which includes off-board and on-board waiting times.

However, some researchers had concluded that the value passengers put on running time reg-

ularity is higher than the value that they put on travel time [22–24]. The passenger load is

another indicator that can significantly affect the users’ experience and service quality. It can

decrease the satisfaction level of users by negatively affecting their mental and physical health

[25–30].

On the other hand, agencies mainly considered schedule adherence or on-time perfor-

mance (OTP) as a reliability indicator. Constant headways and running time regularity were

additional factors of perennial concern to agencies. It should be mentioned that it was chal-

lenging for agencies to evaluate and quantify the passengers’ level of satisfaction. Most service

providers used surveys to measure passengers’ perspectives [9]. These surveys were developed

by experts to evaluate passengers’ satisfaction, identify causes of unreliability, and gain insights

into policies and strategies for improving the service quality. The key findings concerning reli-

ability indicators from two different perspectives (passengers and service providers) are illus-

trated in Fig 1. The main difference between these two points of view is related to the

definition of reliability.
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Strategies to improve bus service reliability

As mentioned before, bus services, in general, tend to be unstable. Bus services cannot adhere

to a schedule without control strategies and will exhibit bunching or big gaps eventually. There

are some conventional strategies that operators use to hold buses at specific control points.

These strategies reduce the likelihood of bus bunching but require considerable slack to slow

down the vehicles. These methods increase the in-vehicle passenger waiting times and opera-

tion costs [31]. Operation control methods seek to optimize system performance in cases of

interruption of service, depending on the current system status [32]. Turnquist and Blume

(1980) [11] argued that there is a difference between the planning of service and strategies to

control service in real-time. Strategies related to the planning of service focus on persistent

problems and achieve solutions by changing schedules and restructuring routes. In contrast,

control strategies employed in real-time need to provide instantaneous solutions to problems

that occur suddenly [33].

According to [34], priority, control, and operational methods are used to enhance the reli-

ability of the bus service. Priority methods, such as providing separate lanes for buses and pri-

oritizing traffic signals for bus movements, involve paying special attention to buses instead of

the general traffic. Operational methods involve long-term strategies, including education of

drivers, changes in schedule, and restructuring of bus routes. Control methods are short-term

Fig 1. Reliability definition from passengers’ and agencies’ point of view.

https://doi.org/10.1371/journal.pone.0232799.g001
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actions taken in real-time, including modification of speeds, suggestions to skip certain stops,

and short-turning and holding of certain buses. With respect to operation control, there is a

crucial distinction between preventive and corrective strategies. The difference stems from the

time of adoption of the strategy and its goal. Corrective strategies are typically employed to

prevent bunching when an interruption has occurred. Preventive strategies are applied before

an incident occurs. One such strategy would be to plan in advance to prevent significant devia-

tions in headway. To develop an efficient preventive strategy, a planner has to have effective

estimation skills and knowledge of the operating conditions [35].

In developing operation control strategies, high-frequency and low-frequency routes must

be considered independently. Logically, for low-frequency routes, strict adherence to the

schedule is of the utmost importance, as it is assumed that passengers arrive at the bus stops

based on a schedule [36,37]. However, if the headway is less than 10 min (high-frequency),

maintaining headway takes priority over strict adherence to the schedule, because it is assumed

that passengers arrive randomly at the stops of high-frequency routes.

An effective preventive strategy is provided by evaluating network designs at the initial

stages [38]. By using real-time data, it is possible to control headway deviation and enable the

adoption of preventive actions aimed at avoiding probable service irregularities. Holding is

one the most common corrective used strategies between service providers. Holding strategies

consist of holding a bus in one selected location (key stops) on propose, to decrease the waiting

time of passengers on the next stops. However, holding will increase the travel times for

onboard passengers. Therefore, terminal is one of the most desirable locations for implement-

ing holding strategy [31,39]. According to previous studies, holding strategy is the most effec-

tive strategy, and several methods have been proposed (from simple heuristics to sophisticated

model-based optimization) in order to evaluate the holding intervention. Previous research

has established that holding is generally the single most effective type of intervention. A num-

ber of methods to determine the holding policies have been proposed and evaluated, ranging

from simple heuristics to sophisticated model-based optimization [40,41]. Number of studies

present various headway-based strategies for stabilizing the irregularity in bus services

[10,31,42–44]. In addition, Berrebi et al. (2015) [45] suggested a real-time dispatching strategy

in order to minimize the waiting time. However, these studies had a weakness: they considered

buses as a separated system and did not take the impact of traffic and signal control into

account. Chow et al. (2017) presented a set of optimal control strategies in order to improve

bus service reliability by implementing adjustments on signal timings [46].

When two or more buses arrive at a bus stop at the same time or in a very short time inter-

val is called bus bunching. Various methods have been suggested to overcome this problem in

bus routes in order to improve service regularity [47–52]. Fonzone et al. (2015) stated that one

of the main reasons for bus bunching could be insufficient boarding rate when overall passen-

ger demand is considered [53]. Yu et al. (2016) developed a method to detect bus bunching

using smart card data archive [54]. A new strategy was developed by Cao and Ceder (2019) to

optimize the bus service timetable by using the stop-skip method, based on real-time passenger

demands [55]. In addition, some studies proposed speed adjustment policy to alleviate bus

bunching in dedicated bus lanes [56–58].

In this study, two different types of strategies are implemented at the terminal: Scheduled-

based departure and headway-based departure (as shown in Table 1). In scheduled-based

departure, buses are forced to depart from the terminal strictly on-time. This strategy would

be possible through effective supervision at the terminal. Four different types of strategies and

their component were implemented on Route U32, and the results were recorded by a simula-

tion model.
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Simulation model as a tool to analyzing bus service reliability

Public transportation is a very extensive and complex system. Thus, researchers will not be

able to develop theoretical methods for such a system without adapting simulation models.

Moreover, it is impossible to directly implement any experimental strategies on a route in the

real world, due to the high risk of waste of time and capital for both companies and passengers.

Therefore, simulation models and analysis tools are needed in order to evaluate public trans-

port systems and improvement strategies [59].

The behavior of passengers, the dynamics of road traffic, and particular bus network opera-

tions are the key and interactive elements of any bus network system. The interactions of the

elements mentioned above make the bus network system complex. Some studies have shown

that the multi-agent approach is the most appropriate for explaining a bus network system and

the interactions between its key elements [60–63]. The multi-agent approach is based on two

assumptions. The first is that the public transport network in any city can be defined as a com-

plex system consisting of interacting entities [64–66]. The second is that the behavior of a

global system consists of phenomena derived from the behavior of separate entities, as well as

from the interactions among the entities [67–69].

Andersson et al. (1979) [70] proposed an interactive simulation model to assess a city bus

route during a peak traffic jam. This model can serve as a tool and guide for route control

operators by helping them to understand how each individual act impacts the service. The sim-

ulation model developed by Abkowitz and Tozzi (1987) [71] can be used to evaluate how effec-

tive timed transfer is in a transit operation based on a schedule. This is accomplished through

a case study of the imagined routes that cross at a transit key stop. Chandrasekar et al. (2002)

[72] developed a microsimulation model that can be used to assess the efficiency of linked

strategies for holding and transit signal priority. Moses (2005) proposed a simulation model

for a CTA bus route. However, he failed to validate his model. According to Moses, validation

was not accomplished because of correlations between the parameters, such as the level of pas-

senger demands and specific actions of an operator, who may, for example, decide to speed up

[73].

Chen and Chen (2009) [74] conducted a study to identify a way to reduce the waiting time

at bus stops. The author used time headway adherence to analyze and measure the reliability

of bus services on high-frequency routes. According to this simulation model, more significant

variations in running time and in the arrival of passengers at the station results in greater head-

way variation and increase the average waiting time. Greater variations in running time also

increase cumulative headway variations and increase the unreliability of the service.

Altun and Furth (2009) [75] employed Monte Carlo and traffic microsimulation models to

examine the prioritization of transit signals. Using these models, the authors detected delays at

dispatch and traffic signals and assessed the impact of crowding on dwell time. They also

examined different strategies for operational control and signal priority. Delgado et al. (2009)

[76] assessed the efficiency of control actions performed in real-time, such as placing limits on

holding and boarding. The goal of their study was to determine how to enhance headway

Table 1. Description of strategies.

Strategies Description Location

Strategy 1 Schedule-based departure from terminal Terminal

Strategy 2 Headway-based departure from terminal Terminal

Strategy 3 Previous holding strategy Key stops

Strategy 4 Prefol holding strategy Key stops

https://doi.org/10.1371/journal.pone.0232799.t001
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regularity on a hypothetical bus line. The authors used both simulation and optimization to

identify a way to enhance bus service. Larrain et al. (2010) [77] developed an optimization

framework for the detection of the appropriate configuration of express services offered on a

bus route with restricted capacity. The authors simulated a hypothetical route to demonstrate

how the model worked and to identify the factors that are most responsible for high-quality

service.

Liao et al. (2011) [78] constructed a model for dwell time at certain points, taking into con-

sideration factors such as the time that a bus needs to move between two timing points. This

model also included a simulation tool to check the dwell and running times. Using this model,

a transport planner can calculate how modifications, including restricted service or consolida-

tion of stops, may impact a route.

According to [79], simulation models are equally applicable to transit operations and traffic

assignments. This finding is valid for microscopic models that are used for the simulation of

operations close to bus stops, such as those that are used to evaluate the design of stops. Cats

(2011) [79] also developed BusMezzo, which is an addition to Mezzo, a mesoscopic traffic sim-

ulator. BusMezzo is a simulation model that works at the level of a network. Its focus is on

modelling passengers’ demand and transit assignments. BusMezzo can be used to evaluate

holding strategies and provide information in real-time.

Sanchez-Martinez (2012) [80] proposed a simulation model related to one high-frequency

bus line in London, intending to evaluate the distribution of resources along the line. The

main contribution of the model was the assessment of the running time distribution using two

variables. Running times on different parts of the route were drawn from a distribution of ran-

domly detected bus running times. The detected bus running times were considered to depend

on two main factors: the time of day and the running time of a bus in the previous part of the

route.

Gaps in literature

1) According to the review of currently available literature, there is no consistency in reliability

definition and indicators. Companies have their own definition of bus service reliability, and

they mostly neglect the passengers’ perspective of reliability. It can be concluded that there are

three main differences between the companies and passengers’ perspectives of reliability:

i. Operational reliability is based on timetable adherence, whereas passenger reliability is

based on travel time variability.

ii. Operational reliability is usually measured at the route or line-level, whereas passenger reli-

ability is experienced at the origin-destination pair level.

iii. Passenger reliability is experienced for the entire journey, but operational measures cap-

ture only portions of the journey.

Accordingly, four different reliability indicators were selected in this study to cover both

passengers’ and operators’ perceptions of reliability: waiting time and on-board crowding level

from the passengers’ perspective, and headway regularity index (on-time performance) and

bus bunching/big gap percentage from operators’ perspective.

2) The findings of this review demonstrate that agencies and researchers need to pay partic-

ular attention to passengers’ perceptions before and after the implementation of the improve-

ment strategies to increase bus service reliability. For example, several studies have focused on

the impact of such strategies on waiting time, but it is rare to find evaluations of passengers’

perceptions before and after the implementation of such strategies. The simulation model is a
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useful tool that helps researchers to capture the effect of the strategies after implementation.

For instance, the simulation would calculate and report the waiting time and excess waiting

time after the implementation of the strategies.

3) Furthermore, a few studies have been conducted to investigate the impact of the compo-

nent of two or more strategies on service reliability. This knowledge is necessary because, in

the real world, most bus providers implement a component of strategies to maintain regular

and reliable service. Therefore, the combinations of the selected strategies were also imple-

mented on the route, and the results were captured and compared.

The primary objective of this research is to improve the reliability of high-frequency bus

service and simulation tools currently used in the public transportation companies. The col-

lected studies analyzed bus service reliability using different methodologies. However, to the

best of our knowledge, there is virtually no study that has considered all these three gaps com-

prehensively. Therefore, we proposed a bus service simulation model that covers three main

gaps 1) evaluating the bus service reliability from both passengers’ and agencies’ perspective,

2) considering passenger behavior before and after implementation of strategies and 3) being

able to implement and analyze the impact of the component of strategies.

Simulation model conceptual framework

A flexible methodology for developing public transport simulation model is presented in this

section. Although it has been developed using only a single route’s simulation, its results can

be reproduced for other transit routes like the rail systems as well. This bus route’s simulation

model will be utilized for the implementation of several strategies that are based on the frame-

work. This route includes a list of locations, which all have a specific location controller and a

set of distributions. For instance, these distributions can be utilized for modeling extra times &

segment running time towards the route’s termination. Bus services have two principal loca-

tions–bus stops and terminals. To run this simulation successfully, the location controllers

demand representation, vehicles, running time distributions, route specifications, and other

controller-based parameters must be specified properly. It needs to be followed by replication

runs that have an initialization & data collection phase. In the end, observations from all these

replications are to be compared together to obtain performance measures. This simulation

algorithm has been depicted in an activity diagram in Fig 2.

Data

RapidKL is a company owned by another government-owned company, Prasarana Berhad,

which was formed in 2004 with the objective of providing a solution for the public transport

services of Kuala Lumpur and the surrounding cities. In order to monitor and analyze the bus

service, RapidKL uses the automatic data collection systems such as Automatic Vehicle Loca-

tion (AVL), Automatic Passenger Counting (APC) and Automatic Fare Collection (AFC) sys-

tems. Primary data for conducting this study was the raw data extracted from these three

automatic data sets archive. All the data used in this study were collected for the period of July,

August and September 2019 (Only weekdays). Integrating and aggregating these data sets to

evaluate a smart transport system is one of the main challenges that transport researchers and

agencies currently face [81]. These data sets can be very useful information for other authors

and researcher to conduct further studies. Therefore, we decided to provide the cleaned data

as an appendix to this paper in both excel and R formats. Raw data is very rich “Big Data” set,

which could not be uploaded. However, raw data can be provided upon academic researchers’

request.
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Route U32 was selected in order to conduct this study. This route passes across the most

congested sections of the Kuala Lumpur City Centre (KLCC), providing a suitable environ-

ment for conducting a study on service regularity and reliability. Route U32 is a high-fre-

quency route with high passenger demand. This route has fifty-nine bus stops (almost 30 stops

in each direction) and nine buses are operating along this route in an operating day. Table 2

demonstrates Route U32 specifications as well as the list of key stops in each direction.

Fig 2. Simulation model activity diagram showing inputs, outputs, and high-level tasks.

https://doi.org/10.1371/journal.pone.0232799.g002
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Models specification

Passenger demand model. This section explains how passenger demand on a bus route

was calculated and modeled across time and by location. Passenger demand is an important

component in modeling bus service because it is a primary influence on the dwell time and is

necessary to evaluate the impact on the passengers of service variability. Passenger demand is

represented as a boarding rate for the entire route, which is then used to distribute boarding

and alighting across the key stops and segments of the route in each direction. The day to day

variations in passenger boarding were initially analyzed. Once these variations were under

control, the variations in passenger boarding was analyzed by time and location along the

route. Finally, passenger arrival behavior was analyzed. The result of this analysis formed the

model of the passenger demand by day, 15-minute time period, and key stop or segment.

The summary statistics presented in Table 3 represent the day to day variation in passenger

demand. There is a range of almost 2500 passengers between the maximum and minimum

passenger boarding. Only the passenger data during the weekdays is analyzed. Hence, the

overall trip patterns are similar, and the variation in demand is likely due to weather condition

(since Malaysia has precarious weather condition and rain can appear at any time of the day).

Fig 3 shows the systematic variation in passenger demand by the hour from the RapidKL

estimated weekday boarding data.

The histogram plots in Fig 4 show the passenger boarding of the total period of passenger

demand for each period of 15 minutes.

Analyzing the allocation of demand across the key stops and segments of the route is very

important in order to determine passenger load profile. Passenger profile is a key component

to studying bus running time variation and evaluating service reliability. The distribution of

passengers across the route is determined by calculating the aggregate share of passengers

served at each key stop and segment according to the direction from the AFC records. Tables 4

and 5 illustrate the summary statistics of passenger activity (boarding + alighting) of Route

U32. In order to conduct a useful simulation of a bus route, both key stops and segments

boardings (ons) and alightings (offs) are needed.

It is assumed that passengers have arrived key stops after last bus departed. Therefore, we

only consider trips which the preceding scheduled trip is recorded in order to analyze the

Table 2. Route U32 key stops.

Stop ID Key-Stop Name Order Zone Distance (meter)

WestBound

1000970 HUB TMN DAGANG 1 3 0

1000360 BLTN KG PANDAN 21 3 5347

1001846 MAJESTIC/LRT PUDU 24 3 7561

1000958 HSBC/7 ELEVEN 28 2 9375

EastBound

1000958 HSBC/7 ELEVEN 28 2 0

1001847 MAJESTIC/LRT PUDU 37 1 3894

1000359 BLTN KG PANDAN 41 1 5484

1000970 HUB TMN DAGANG 60 1 11190

https://doi.org/10.1371/journal.pone.0232799.t002

Table 3. Route U32 overall passenger demand.

Observation Min Max Mean Stdev

Passenger activity 60 5438 7850 6643 782

https://doi.org/10.1371/journal.pone.0232799.t003

PLOS ONE Bus service simulation model

PLOS ONE | https://doi.org/10.1371/journal.pone.0232799 May 7, 2020 10 / 26

https://doi.org/10.1371/journal.pone.0232799.t002
https://doi.org/10.1371/journal.pone.0232799.t003
https://doi.org/10.1371/journal.pone.0232799


arrival rate. This data collection method prevents underestimation of the passenger arrival rate

because of an unrecorded trip may in fact be a bus serving passengers. The summary statistics

of the passenger arrival rate per minute are shown in Tables 6 and 7.

Running time model. The main objective of the modeling the running time was to mea-

sure the running time variability and service irregularity at the macroscopic and microscopic

level of analysis. Moreover, the final model can be used in the simulation model as the running

time generator. The Running Time model developed by Moosavi and Yuen (2020) and Moo-

savi et al. 2017 was used for analyzing and generating running times [82] [83].

Woodhull (1987) [84] categorized the causes of the unreliable service as being external (exoge-

nous) or internal (endogenous) to the system. Endogenous causes include factors such as driver

conduct, poor scheduling, route arrangement, changeable ridership, and inter-bus impacts. Exog-

enous causes include factors such as traffic incidents and traffic jams, traffic signalization, and

intrusions related to on-street parking. Considering the effect of exogenous factors such as

weather and traffic jam on the running time variation can be very complicated, and most of the

researchers neglected these factors because of lack of enough data and evidence. Since a clear

record related to weather or traffic condition was not available for Route U32, the impact of exog-

enous factors can be tested using the proxy variable of the “running time of the previous bus”

(PRT) on the same segment. If there was a significant difference between the running time of the

previous bus and the average running time on the same segment, due to, for example, the weather

or traffic incidents, then the following trip might also be impacted, if the incident persists long

enough to affect both trips. Any effects that do not affect (at least) two successive trips are

assumed to be best represented by a random error term in the running time model.

To explore this effect, a subset of the data with a Previous Running Time (PRT) that is sig-

nificantly different from the average value of running times is examined for correlation

between the previously completed trip running time on a segment and the next trip’s running

time of the same segment. A significant difference in running time is defined as greater than

Fig 3. Route U32 average ridership by time of day.

https://doi.org/10.1371/journal.pone.0232799.g003
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the mean plus one standard deviation of the running time. Results of an ordinary least squares

regression are displayed in Table 8.

According to Table 8, there is no significant correlation with PRT was observed along the

segments. Even constant factor is not significant in all three segments, due to PRT factor.

Therefore, external factors such as weather and traffic situation do not appear to impact bus

running times consistency in this case. Maybe variations in drivers’ behavior control the corre-

lation of the travel time on successive trips. For more information on running time modeling

and factors effecting running time, please refer to [83].

Dwell time model. Bus service reliability can be impacted directly by dwell time. Dwell

time itself can be affected by various factors such as passenger activity, holding and operator

relief. To date, a number of researches were conducted by transit companies and researchers

to consider and evaluate other functions of the dwell time. A comprehensive descriptive

Fig 4. Mean of passenger boarding per 15-minute time interval, a) AM peak, out-bound; b) AM peak, in-bound.

https://doi.org/10.1371/journal.pone.0232799.g004

Table 4. Route U32 passenger activity statistics summary; AM peak, outbound.

Key stop Ons Key stop Offs Segment Ons Segment Offs

Observed Mean Max St.dev Mean Max St.dev Mean Max St.dev Mean Max St.dev

PANDAN 200 24.1 34 7.6 6 8 1.8 36 47 7.3 4 8 2.1

MAJESTIC 200 11.4 25 6.4 11.7 15 3.2 10.2 15 3.4 15.1 21 4.4

HSBC 200 6.7 9 2.1 22.2 31 5.1 3.5 6 2.1 23 33 6.7

https://doi.org/10.1371/journal.pone.0232799.t004
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analysis and regression model on the factors affecting dwell time, such as passenger activity lift

operation and crowding was previously conducted by Moosavi et al. (2017) [85]. In this study,

we used this study on dwell time model, in order to evaluate and generate dwell times in our

simulation model.

Model setup. Each vehicle has its own profile which indicates the time and location of

removal and insertion. With each step up, a new vehicle gets introduced, whereas each step-

down will result in removal. This removal takes place at the terminals where the first vehicle

arrives after the vehicle profile undergoes a decrement. Passenger arrivals and departures at

alighting, boarding, and stops are included in this model. The boarding rates and other data at

the stops are utilized for aggregating performance measures in order to weigh the higher rider-

ship stops more heavily. As shown in Fig 5, each replication consists of four phases: initializa-

tion, serving a key stop, serving segment and terminal recovery.

Verification and validation. The verification & validation steps are highly fundamental

during the modeling stage. It is clearly stated by North (2007):“Before verification and valida-
tion,models are toys; after verification and validation,models are tools” [86]. Various verifica-

tion tests that were conducted on the simulation algorithm and individual components did

not show any errors. When it comes to simulation modeling, it is verification that ensures that

the codes are working as intended [87]. The verification itself consists of three steps: 1- run-

ning the codes line by line to find any bug and invalid values. 2- the simulation’s log file con-

tains a detailed record of decisions and actions made during the program’s execution and 3-

animated playback depicts various vehicles and their daily movements at a highly accelerated

pace. Fig 6 illustrates a specific snapshot of this animated playback.

The morning peak hour period was selected for testing and validating the simulation

model, since this period has the highest passenger demand, and the impact of strategies on ser-

vice reliability would be most significant.

The simulation was validated by comparing the running time, headway, and dwell time,

which were calculated by plugging real AFC/AVL data into the simulation. Wilcoxon signed-

ranking test was used in order to compare real-world situation with the simulation models’

out-puts. According to the validation tests’ results, the estimated dwell times, headways and

running times are valid with relatively small errors, especially in terms of dwell times and run-

ning times. Estimated headways show a higher percentage of rejection compared to the dwell

and running times. Although the verification tests are successful and the code is extensively

revised where needed, it was likely that algorithm programming or design errors caused these

Table 5. Route U32 passenger activity statistics summary; AM peak, in-bound.

Key stop Ons Key stop Offs Segment Ons Segment Offs

Observed Mean Max St.dev Mean Max St.dev Mean Max St.dev Mean Max St.dev

MAJESTIC 200 5.3 12 3.6 5.3 10 3.1 21.6 29 4.1 6.8 11 3.8

PANDAN 200 3.1 7 2.6 5.7 14 4.2 6.4 10 2.1 9.3 15 3.2

HUB 200 0.0 0.0 0.0 3.2 6 2.3 7.2 9 2.1 10.3 16 4.4

https://doi.org/10.1371/journal.pone.0232799.t005

Table 6. Passenger arrival rate per minute for Route U32, AM peak, outbound.

Passengers per Minute

Observation Mean St.dev Max

HSBC 200 2.0 1.7 4.3

MAJESTIC 200 1.2 0.7 2.8

PANDAN 200 0.8 0.7 2.7

https://doi.org/10.1371/journal.pone.0232799.t006
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differences. However, the difference was not significant. Table 9 presents a summary of the

Wilcoxon-sign-ranked test after 1000 run for each key stop or segments.

Measuring bus service reliability

As mentioned earlier in the review of currently available literature, four indicators were

selected to evaluate bus service reliability: Headway Regularity Index at Key Stops (HRIS),

Waiting Time, Big-gap/bunching and onboard crowding level. Headway variability is probably

a more direct measurement of transit service reliability. This is followed by passengers’ level of

service, then travel time variability since the headways determines how long, on average, pas-

sengers wait for a bus.

Short headway and high passenger demand are the two most significant characteristics of

high-frequency service. In addition, passengers tend to arrive at stops more randomly instead

of rigidly following the timetable. In such situation, reliability can be measured by the service

providers’ ability to minimize headway variations and average waiting time for the passengers.

Accordingly, the headway regularity index at stops (HRIS) is designed to measure headway

reliability at one specific point. The equation below can be used to calculate HRIS. When

HRIS is equal to zero, there is no variation in the headways, and when the value is equal to 1.0,

it indicates that bus bunching or big gaps happen frequently.

HRIS ¼

X

i

Hi;j � H0i;j
Hi;j

�
�
�
�
�

�
�
�
�
�

n
ð1Þ

Where:

HRIS: headway regularity index based on stops.

Hi,j = Scheduled headway for bus i at stop j.

H’
i,j = Actual headway for bus i at stop j.

n = number of buses serve stop j.

Bus bunching and big gap were indicated as causes and consequences of bus service unreli-

ability. Both factors were introduced as the cause and the consequence of unreliability. Head-

ways of less than 60 would be considered as bunching and headways more than twice the

related scheduled headway would be considered as big gap.

The scheduled waiting time (expected waiting time) is an important indicator of on-time

performance for both agencies and passengers on high-frequency routes, where passengers

Table 7. Passenger arrival rate per minute for Route U32, AM peak, inbound.

Passengers per Minute

Observation Mean St.dev Max

PANDAN 200 3.1 1.1 5.2

MAJESTIC 200 1.8 0.9 3.2

HSBC 200 2.1 0.9 4

https://doi.org/10.1371/journal.pone.0232799.t007

Table 8. Route U32 previous running time correlations.

Segment Observed PRT t-stat constant t-stat AdjR2

Segment 1 72 0.65 1.68 103 0.68 0.45

Segment 2 43 0.88 5.1 331 3.45 0.21

Segment 3 51 0.48 1.79 239 1.53 0.41

https://doi.org/10.1371/journal.pone.0232799.t008
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arrive randomly at the stop without considering time table. Expected waiting time for a route

with perfectly regular headway (no headway deviation) is half of the scheduled headway. The

exact value of the expected waiting time in the presence of headway variations can be calcu-

lated by Eq 2.

EðwÞ ¼
EðhÞ

2
½1þ Cov2ðhÞ� ð2Þ

Where [h] is the average headway, and cov(h) is the coefficient of variation of headways.

Fig 5. Walk-through of events for a single vehicle.

https://doi.org/10.1371/journal.pone.0232799.g005
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Another measure of passenger wait time for high-frequency bus routes is the passenger

excess waiting time (EWT). Excess waiting time is simply the difference between the actual

waiting time and the scheduled waiting time. Therefore, excess waiting time is an appropriate

indicator which shows service headway unreliability in terms of the passengers’ waiting time.

An average Excess Wait Time is then calculated for each key stop and different headway pat-

tern using the equation below:

EWT ¼ AWT � SWT ð3Þ

Eq 4 shows an extended version of Eq 3. Excess Waiting Time is equal to Actual minus Sched-

ule Waiting Time. The Actual Waiting Time (AWT) and the Scheduled Waiting Time (SWT)

are both calculated using Eq 2 for the average waiting time [w]. The only difference is in the

headways. For calculating AWT, the actual headways which were recorded and extracted from

AVL data should be used. While in SWT, the scheduled headways (according to service pro-

viders’ timetable) should be used.

EWT ¼
1

2
E½hactual�ð1þ cov2ðhactualÞÞ �

1

2
E½hschedule�ð1þ cov2ðhscheduleÞÞ ð4Þ

Policy and strategy intervention by simulation model

In this section, the results obtained from the model are presented after different control strategies

have been tested. Improving transit service quality is not possible without proper control strategy

and policy. Transit companies control the quality of the services using automatic data collection

systems and continuous monitoring to provide the most reliable service. As explained before,

Fig 6. Snapshot of animated playback for verification propose.

https://doi.org/10.1371/journal.pone.0232799.g006

Table 9. Validation summary (Wilcoxon sign-ranked test).

Location Dwell time reject (%) Headway reject (%) Running time reject (%)

Key stop 1 0.3 14.7 –

Key stop 2 0.9 7.7 –

Key stop 3 0.2 7.8 –

Segment 1 – – 2.8

Segment 2 – – 2.8

Segment 3 – – 4.1

https://doi.org/10.1371/journal.pone.0232799.t009
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four different types of strategies are selected and implemented based on the specifications of

Route U32 (Kuala Lumpur) as shown in Table 1. In order to fulfill the gap in the literature and

cover both passenger and agencies’ perspective, the reliability of bus service is evaluated based on

headway regularity index (HRIS), bus bunching/big gap percentage, passenger waiting time

(excess wait time) and passenger crowding reliability metric. Strategies were implemented on the

route at the terminal and key stops to find the optimum impact on bus service reliability.

The peak morning hours of the operation days were simulated, from the beginning to the

end (from early hours to 9:00 AM). Therefore, there are no boundary conditions to be speci-

fied. It is possible to run a simulation of the operations with specific boundary conditions.

However, the best way to warm the model up is by using simulations from the day’s start to

the selected period.

Dispatching strategies at terminals

As for the management strategy, terminal recovery times (or time till the next departure) for

buses have been calculated as the greater of the scheduled headway minus the previous head-

way and zero. Previous headway refers to the time at which the previous bus departed from

the terminal. To put it simply, buses are instructed to depart their terminal at approximately

the time of their scheduled headway. Tables 4–6 present the impact of headway-based dis-

patching strategy on bus service reliability indicators.

According to the results of the terminal dispatching strategies (Tables 10–12), headway-based

departures showed considerably better results, especially in terms of headway regularity indexes.

As long as Route U32 is a high-frequency route, it was expected that headway-based strategies

should have more impact on reliability improvement, compared to schedule-based strategies.

Schedule-based departure improves both waiting time (WT) and bunching/big gaps signifi-

cantly, but no significant impact on headway regularity is observed. On the other hand, head-

way-based dispatch policies have a highly significant impact on headways, as presented in

Table 11. Negative percentage indicates the reduction in that specific indicator, after imple-

menting strategy. For example, according to Table 12, big gap is decreased by 90% after imple-

menting Headway-based dispatching strategy. Moreover, the average waiting time improved

significantly by implementing both headway-based and schedule-based dispatching strategies

by 51% and 33%, respectively. However, the average waiting times are still higher than the

planned waiting time (1 min and 57 seconds). Fig 7 illustrates a comparison between these two

terminal dispatching strategies.

Holding strategies at key stops

Key stops also can be suitable locations for implementing strategies. Bus operators usually use

bus stops with the highest boarding rates for adjusting service regularity. Passengers in high-

Table 10. Effect of terminal dispatch strategies on waiting time.

Strategy W.T (sec) E.W.T (sec) % of Sch. W.T (300 s) W.T change (%) E.W.T change (%)

Headway-based dispatch 417 117 139% -51.22 -78.91

Schedule-based dispatch 570 270 190% -33.18 -51.17

https://doi.org/10.1371/journal.pone.0232799.t010

Table 11. Effect of terminal dispatch strategies on headway regularity index.

Strategy HRIS 1 Change (%) HRIS 2 Change (%) HRIS 3 Change (%) HRIS 4 Change (%) HRIS 5 Change (%)

Headway-based dispatch 0.20 (-74%) 0.32 (-72%) 0.52 (-53%) 0.62 (-54%) 0.64 (-58%)

Schedule-based dispatch 0.71 (-7.8%) 1.144 (-1.3) 0.95 (-16%) 1.347 (-1.5%) 1.643 (-0.64%)

https://doi.org/10.1371/journal.pone.0232799.t011
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frequency bus routes do not pay attention to schedule and usually arrive at stops randomly.

Therefore, regular bus service is much more important than adherence to schedule in high-fre-

quency routes. Accordingly, only headway-based strategies were selected for implementation

at the key stops. Previous headway and Prefol Headway strategies were tested on Route U32,

and the results are presented through Tables 13–15.

Both strategies have shown a similar impact on the reliability indicators. Waiting time is

reduced by 44% and 43% after the previous, and Prefol Headway strategies are adopted,

respectively. Terminal dispatching strategies have better results in terms of waiting time

because by implementing holding strategies at key stops, on-board passengers could be held

until departure time. One of the added benefits of implementing the strategies at the terminal

is that no passenger would be affected by the extra time when the holding strategy is imple-

mented. Headway regularity indexes are improved at all the key stops by almost 50%. Although

it is not exactly the ideal regularity, 50% to 60% improvement is an acceptable value. There are

some factors affecting bus service regularity that are totally out of the operators’ controls such

as the weather, traffic flow, vehicle break downs and accidents along the route. These factors

can decrease regularity, even in routes under strict control. Fig 8 compares the impact of previ-

ous and Prefol Headway strategies at key stops on reliability indicators.

Combination of strategies

Four different types of strategies were tested on route U32 (two dispatching strategies at termi-

nals and two holding strategies at key stops). All the adopted strategies improved bus service

reliability significantly. It is also possible that operators adopt a set of strategies in order to

improve various aspects of reliability. But before taking any action, bus companies need a clear

understanding of which set of strategy have what effect on bus service reliability. This section

presents the results of adapting a combination of different strategies on Route U32.

Fig 7. Comparison of headway-based and schedule-based dispatching strategies.

https://doi.org/10.1371/journal.pone.0232799.g007

Table 12. Effect of terminal dispatch strategies on big gap and bunching.

Strategy Big gap (%) Bunching (%) Big gap change (%) Bunching change (%)

Headway-based dispatch 2.00 0.0 -90 -100

Schedule-based dispatch 3.5 0.0 -83.33 -100

https://doi.org/10.1371/journal.pone.0232799.t012

PLOS ONE Bus service simulation model

PLOS ONE | https://doi.org/10.1371/journal.pone.0232799 May 7, 2020 18 / 26

https://doi.org/10.1371/journal.pone.0232799.g007
https://doi.org/10.1371/journal.pone.0232799.t012
https://doi.org/10.1371/journal.pone.0232799


Table 13. Effect of holding strategies on waiting time.

Strategy W.T (sec) E.W.T (sec) % of Sch. W.T (300 s) W.T change (%) E.W.T change (%)

Previous headway 475 175 158% -44% -68%

Prefol headway 479 179 159% -43% -67%

W.T = waiting time; E.W.T = excess waiting time; Sch W.T = scheduled waiting time.

https://doi.org/10.1371/journal.pone.0232799.t013

Table 14. Effect of holding strategies on big gap and bunching.

Strategy Big gap (%) Bunching (%) Big gap change (%) Bunching change (%)

Previous headway 1 0.0 -95 -100

Prefol headway 1 0.0 -95 -100

https://doi.org/10.1371/journal.pone.0232799.t014

Table 15. Effect of holding strategies on headway regularity index.

Strategy HRIS 1 Change (%) HRIS 2 Change (%) HRIS 3 Change (%) HRIS 4 Change (%) HRIS 5 Change (%)

Previous headway 0.40 (-48%) 0.44 (-62%) 0.59 (-47%) 0.67 (-51%) 0.65 (-58%)

Prefol headway 0.40 (-48%) 0.44 (-62%) 0.60 (-46%) 0.69 (-49%) 0.68 (-56%)

https://doi.org/10.1371/journal.pone.0232799.t015

Fig 8. Comparison of previous and Prefol Headway holding strategies.

https://doi.org/10.1371/journal.pone.0232799.g008

Table 16. Effect of combination of strategies on waiting time.

Strategy W.T (sec) E.W.T (sec) % of Sch. W.T (300 s) W.T change (%) E.W.T change (%)

1 & 3 464 164 154% -45.73 -70.45

1 & 4 469 169 156% -45.14 -69.54

2 & 3 403 103 134% -52.86 -81.44

2 & 4 409 109 136% -52.16 -80.36

https://doi.org/10.1371/journal.pone.0232799.t016
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Table 16 shows the impact of a combination of strategies on waiting time. According to the

results, a combination of Strategies 2 and 3 (Headway-based Departure from terminal and pre-

vious Headway Holding at key stops) show the best impact on bus service reliability in terms

of passenger waiting time. Waiting time and excess waiting time are both significantly reduced

by 52.86% and 81.44%, respectively. In addition, by adapting a combination of strategies, no

bus bunching and big gap are observed after 1000 run of the simulation model (Table 17). The

results prove that strategies are way more effective when they are combined and implemented

together. Moreover, the combination of Strategies 2 and 3 also shows the highest impact on

headway regularity, according to Table 18. For instance, headway regularity improves by 74%

at Key stop 1, when Strategy 2 and 3 are implemented on the same route and at the same the

time. Headway regularity index equals to 0.2 which indicates that 80% of the buses have regu-

lar headways and arrive at the key stop on-time. Fig 9 presents a comparison on the results of

the combination of strategies.

According to Fig 9, a combination of strategies 2 and 3 (Headway-based Departure at termi-

nals and previous Headway Holding strategy) can be the most effective strategy for Route U32.

Conclusion

The main objective of this study was to develop a micro-simulation package in R studio for the

design and evaluation of automatic data collection systems application. The motivations for

such a tool include the growing need among transit companies to implement big data and new

technologies to improve service reliability, compete with the private transport sector, and the

ever-present gap between passengers’ satisfaction and the level of services offered by bus ser-

vice providers that have burrowed its way deep into the fabric of bus transit systems.

This study was designed to cover gaps which have been recognized in the literature. To the

best of our knowledge, currently, there is no bus service simulation package available to 1) Ana-

lyze and measure the level of bus service reliability considering both passengers’ and agencies’

points of view, 2) Implementing corrective strategies and combinations of strategies on bus

routes to find out the effect of different strategies, 3) Capturing and comparing the level of reli-

ability before and after implementing any changes for Route and 4) Analyzing “Headway Reg-

ularity” in terms of regularity index, big gap and bunching and excess waiting time.

Headway-based Departure strategy offered the best result compared to the other strategies

used. In addition, the combinations of the corrective strategies were implemented on the route

Table 17. Effect of combination of strategies on big gap and bunching.

Strategy Big gap (%) Bunching (%) Big gap change (%) Bunching change (%)

1 & 3 0.0 0.0 -100 -100

1 & 4 0.0 0.0 -100 -100

2 & 3 0.0 0.0 -100 -100

2 & 4 0.0 0.0 -100 -100

https://doi.org/10.1371/journal.pone.0232799.t017

Table 18. Effect of combination of strategies on headway regularity index.

Strategy HRIS 1 Change (%) HRIS 2 Change (%) HRIS 3 Change (%) HRIS 4 Change (%) HRIS 5 Change (%)

1 & 3 0.31 (-59%) 0.40 (-65%) 0.58 (-48%) 0.66 (-51%) 0.64 (-58%)

1 & 4 0.31 (-59%) 0.40 (-65%) 0.58 (-48%%) 0.67 (-51%) 0.68 (-56%)

2 & 3 0.20 (-74%) 0.32 (-72%) 0.51 (-54%) 0.58 (-57%) 0.57 (-63%)

2 & 4 0.20 (-74%) 0.32 (-72%) 0.51 (-54%) 0.60 (-56%) 0.60 (-61%)

https://doi.org/10.1371/journal.pone.0232799.t018
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using 1000 simulation runs. Figs 10 and 11 illustrate and compare the summary of the effects

of different strategies on the bus service reliability indicators.

According to Fig 10, adapting a combination of Strategy 2 and 3 indicates the best results in

terms of reduction in the waiting time. However, Strategy 2 (headway-based dispatching strat-

egy) can reduce the waiting time to almost the same degree as the combination of Strategies 2

and 3. Therefore, a headway-based terminal departure strategy can be the best option for

improving the problem of reliability in terms of waiting time.

The results of the strategies test proved that on-time terminal departure could play a critical

role in regular bus service. Moreover, the headway-based departure policy improved the level

of regularity significantly. Therefore, reducing the terminal departure deviations through a

coherent departure strategy would be the most applicable and significant method to reduce

Fig 10. Comparison of the impact of different strategies on waiting time.

https://doi.org/10.1371/journal.pone.0232799.g010

Fig 9. Comparison of combination of strategies.

https://doi.org/10.1371/journal.pone.0232799.g009
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service unreliability. As long as this strategy only needs to be implemented at the terminal, it

would be straightforward for operators and supervisors to adopt this strategy.

All the strategies have almost the same impact on bus bunching and big gaps. Therefore, the

comparison of bunching and big gap results will not be presented in the summary. In addition,

the effects of the strategies on passenger demands and on-board crowding were not presented

in this paper, since the strategies did not show any significant positive effects on the levels of

overcrowding. Morning peak hour is the most crowded period of an operational day. In other

words, overcrowding is the nature of a high-frequency route in morning peak hours. Accord-

ingly, implementing holding strategies will not decrease the level of crowding significantly.

Future works

The current version of the simulation model is more focused on analyzing one specific route.

Since all simulation codes and Rstudio files are published with this paper, this simulation

model can be expanded to evaluate and analyze more than one route at the same time or a net-

work of routes in a specific transport system. Moreover, four different types of control strate-

gies were developed and provided in the simulation model environment for further

investigations. However, there are other control strategies, such as short turning and express-

ing strategies, which can be developed in this simulation model.
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