

⇒ H₂S

Thiol-Activated gem-Dithiols: A New Class of Controllable Hydrogen **Sulfide Donors**

<mark>S</mark>Ac

SAc <u>cysteine/GS</u>H

Yu Zhao, Jianming Kang, Chung-Min Park, Powell E. Bagdon, Bo Peng, and Ming Xian*

Department of Chemistry, Washington State University, Pullman, Washington 99164, United States

Supporting Information

ABSTRACT: A class of novel thiol-activated H₂S donors has been developed on the basis of the gem-dithiol template. These donors release H₂S in the presence of cysteine or GSH in Raqueous solutions as well as in cellular environments.

gem-dithiols ydrogen sulfide (H_2S) has been recently recognized as a new member of the family of gasotransmitters, along with nitric oxide (NO), carbon monoxide (CO), and dioxygen (O_2) .¹⁻⁵ Biosynthesis of H₂S has been attributed to at least three enzymes: cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE), and 3-mercaptopyruvate sulfur-transferase (MPST).^{6–8} These enzymes convert cysteine or cysteine derivatives to H₂S in different tissues and organs. It is believed that H₂S-induced biological actions, such as anti-inflammation, vasodilation, and cardioprotection, are related to some specific reactions of H_2S in living systems.^{9–12} For example, H_2S can interact with methemoglobin to form sulfhemoglobin, and this reaction might act as a metabolic sink for H₂S.¹³ H₂S has been reported to cause protein S-sulfhydration to form protein-S-SH,

while how this reaction occurs is still under debate.14-16 Nevertheless, this process is potentially significant as it provides a possible route by which H_2S can alter functions of a wide range of cellular proteins and enzymes.^{17,18} As a potential reducing agent, H_2S can rapidly scavenge reactive oxygen species, such as hydrogen peroxide, superoxide, and peroxynitrite. These reactions account for H_2S 's protective functions in cardiovascular systems.^{19–22} In addition, the reaction between H₂S and nitrosothiols could result in the formation of thionitrous acid (HSNO), the smallest S-nitrosothiol. HSNO possibly serves as a cell-permeable nitrosylating agent.²³ All of these findings suggest that regulation of endogenous H2S formation and exogenous H₂S administration may have therapeutic benefits.

In this field, H_2S releasing agents (also known as H_2S donors) are important tools.^{24,25} Currently, sulfide salts (i.e., sodium sulfide Na₂S and sodium hydrogen sulfide NaHS) are still the most often used H₂S donors in this field. Although these salts have the advantage of boosting H₂S concentration fast, the uncontrollable H₂S release makes them not ideal to mimic slow and controllable H₂S release in living systems. In addition, H2S can quickly escape from solution due to volatilization under laboratory conditions.²⁶ The effective residence time of sulfide salts in testing samples, therefore, is very short. It should also be noted that commercially available sulfide salts, especially NaHS, always contain a significant amount of impurities. Recent studies revealed that polysulfides

rapidly form in NaHS solution.²⁷ All of these problems may lead to disparate results when using sulfide salts as H2S precursors. Considering these drawbacks, researchers have started to use organic molecules as H₂S donors. Several types of synthetic H₂S donors have been developed and used in studies. Representative donors include GYY4137, dithiolethiones, Nmercapto-based molecules, perthiol-based molecules, geminaldithiol (gem-dithiol) species, and thioamino acids (Figure 1). These compounds release H₂S under different conditions, and their H₂S-related biological actions have been explored.^{28–35}

It should be noted that although a number of H₂S donors have been reported, donors with controllable H₂S release capability are still very limited and under high demand. The research in our group focuses on the development of controllable H₂S donors. We have reported two types of thiol-activated donors based on N-mercapto and perthiol templates (Figure 1).^{31,33} These molecules do not release H₂S without the interaction with thiols (i.e., cysteine and glutathione). Recently, we also reported a series of gem-dithiolbased H_2S donors (GDDs), which were activated by UV irradiation.³⁴ Based on these results, we envisioned that gemdithiols are valuable templates for the design of H₂S donors and decided to explore new donors using this structure. Herein, we reported a new class of thiol-activated gem-dithiol-based H₂S

Received: July 16, 2014 Published: August 20, 2014

Organic Letters

donors (TAGDDs). H_2S release from these TAGDDs can be triggered by cellular thiols.

It is known that *gem*-dithiols (1) are unstable species in aqueous environments and the decomposition of 1 should lead to H_2S release.^{36,37} In the development of TAGDDs, an acetyl group was selected to stabilize 1. More importantly, this protecting group would be selectively removed in the presence of thiols to retrieve 1, therefore achieving controllable H_2S release (Figure 2).

TAGDDs

Figure 2. Design of TAGDDs.

With this idea in mind, a series of TAGDDs were synthesized from the substituted benzaldehydes (Figure 3). Briefly,

Figure 3. Chemical synthesis of TAGDDs.

benzaldehyde derivatives 2 reacted with boron tribromide (BBr_3) to form the corresponding dibromide intermediates 3. Then compounds 3 were treated with potassium thioacetate to provide the desired TAGDDs. In this study, eight TAGDDs were synthesized in yields of 51–75%.

Unlike hydrolysis-based H₂S donors (i.e., GYY4137 and Na₂S/NaHS), TAGDDs were stable in aqueous solutions. They did not release H₂S upon hydrolysis. Cellular nucleophiles, such as lysine and serine, did not trigger H₂S release, either. However, a time-dependent H₂S generation was observed in the presence of cysteine, indicating thiols were essential to trigger H₂S release. In order to systematically compare H₂S generation capability of these donors we studied the effects of donor concentrations, cysteine concentrations, solvent systems, as well as reaction time/temperatures. H₂S release was monitored at room temperature for 2 h. The standard methylene blue (MB) method was used to measure H₂S generation. Eventually the optimized conditions were found to be 100 μ M donors in PBS buffer (pH 7.4, 50 mM) containing 10% THF. Varied cysteine concentrations caused different H₂S release profiles (Figure 4). Taking TAGDD-1 as the example, a maximum of 93 μ M of H₂S (peak H₂S concentration) at 25 min (peak time) was detected from 100 μ M of the donor in the presence of 1000 μ M cysteine. H₂S concentrations started to

Figure 4. H₂S release from TAGDD-1 in the presence of cysteine.

drop after peak time probably due to volatilization. In our following studies we decided to use 500 μ M cysteine to trigger H₂S release from TAGDDs.

In addition to cysteine, GSH's capability in promoting H_2S release from TAGDDs was also evaluated. As shown in Figure 5, GSH (500 μ M) successfully triggered H_2S release, but at a

Figure 5. H_2S release from **TAGDD-1** in the presence of cysteine and GSH.

relatively lower level. This is presumably due to increased steric hindrance of GSH, therefore leading to a slower reaction to liberate H_2S . Homocysteine showed similar effects as GSH (data shown in Figure S1, Supporting Information).

H₂S-releasing profiles of all 8 TAGDDs were determined under the optimized conditions. Briefly, a solution of donor $(100 \ \mu\text{M})$ and cysteine $(500 \ \mu\text{M})$ was prepared in a mixed PBS (pH 7.4, 50 mM)/THF (9:1, v:v) solvent. Reaction aliquots (1.0 mL) were taken to MB cocktail (0.5 mL) at different reaction times. After 15 min, UV absorbance at 670 nm was measured. H₂S concentrations were calculated by using a standard curve generated by Na₂S. Each donor was tested three times, and their average results are summarized in Table 1. The results showed that peak times of TAGDDs ranged from 29 to 38 min with peak H₂S concentrations of 25.3–94.3 μ M. The

Table 1. H₂S Release from TAGDDs^a

SAc					
B		SAc Cy	/sSH/GSH (5 ec	quiv)	ЦС
PBS (pH 7.4, 50 mM):THF (9:1) 100 μM					
		CysSH		GSH	
TAGDDs	R	$T_{ m peak} \ ({ m min})$	$\begin{matrix} [\mathrm{H_2S}]_{\mathrm{peak}} \\ (\mu\mathrm{M}) \end{matrix}$	$\begin{array}{c} T_{\mathrm{peak}} \\ (\mathrm{min}) \end{array}$	$\begin{matrix} [\mathrm{H_2S}]_{\mathrm{peak}} \\ (\mu M) \end{matrix}$
1	Н	30	69.5	40	34.6
2	4-CH ₃	37	94.0	43	24.6
3	4-Br	38	25.3	48	10.1
4	4-Cl	34	35.8	53	16.8
5	4-CF ₃	37	27.2	N/A	N/A
6	3-OH	34	94.3	49	52.2
7	3-CH ₃	29	70.6	39	24.8
8	3-NO ₂	35	36.1	47	17.6
^{<i>a</i>} Data were reported as the average value of three measurements.					

profiles in the presence of GSH were also measured. In general, GSH led to slower and much decreased H_2S release from these donors. These results demonstrated that TAGDDs are potent H_2S donors and structure modifications could regulate H_2S release ability.

The mechanism of H_2S release is proposed as follows (Figure 6): the reaction is initiated by a reversible thiol exchange

Figure 6. Proposed mechanism for H_2S release from TAGDD-1.

between TAGDD-1 and cysteine to generate S-acetyl cysteine (4) and gem-dithiol (5). Compound 4 should undergo a fast Sto-N acyl transfer to form N-acetylcysteine (6) and drive the equilibrium.³¹ Meanwhile, 5 should release H₂S spontaneously in aqueous solution to yield benzaldehyde (7). To prove the mechanism, we analyzed the reaction between TAGDD-1 and cysteine (5 equiv) by HPLC equipped with a UV detector. Indeed, the formation of benzaldehyde 7 and 2-phenylthiazolidine-4-carboxylic acid, a product from benzaldehyde and cysteine, was observed in high yields by using authentic samples (see the Supporting Information). The mechanism, when activated by GSH, should be similar to the mechanism when activated by cysteine. However, GSH, compared with cysteine, is more bulky. In addition, there is no S-to-N acyl transfer in GSH-involved reactions. Therefore, the initial equilibrium might be slow. The consumption of the final product benzaldehyde by cysteine is also expected to be faster than GSH due to the formation of 2-phenylthiazolidine-4carboxylic acid. Because of these reasons, it is expectable the reactions between TAGDDs and GSH are slower and less effective. The GSH experiments proved our hypothesis.

Considering significant amounts of free cysteine and GSH in living systems,^{38–41} we envisioned that TAGDDs could achieve

intracellular H_2S release. Before conducting experiments to test this hypothesis, we evaluated cytotoxicity of a representative donor, **TAGDD-1**, in HeLa cells. A cell counter kit (CCK-8) assay was used to detect cell viability (Figure 7). The results

Figure 7. Effects of **TAGDD-1** on cell viability. HeLa cells were treated with different concentrations of **TAGDD-1** (5–25 μ M) for 1 h. The cell counter kit (CCK)-8 assay was performed to measure cell viability. Data were shown as the mean \pm SD (n = 4).

showed that 1 h exposure of HeLa cells to **TAGDD-1** at varied concentrations $(5-25 \ \mu\text{M})$ did not decrease cell viability, indicating that TAGDDs do not induce cytotoxicity to HeLa cells at doses used (cytotoxicity data of other TAGDDs are shown in Figure S3, Supporting Information).

Experiments were then conducted to test whether TAGDDs could release H_2S in cells. As shown in Figure 8, HeLa cells

Figure 8. H₂S production from **TAGDD-1** in HeLa cells. Cells were incubated with vehicle (left) and **TAGDD-1** (25 μ M) (right) for 30 min. After removal of excess **TAGDD-1**, a H₂S fluorescent probe (WSP-4) was added. Images were taken after 30 min.

were incubated with TAGDD-1 (25 μ M) for 30 min. Then cells were washed by PBS twice to remove extracellular TAGDD-1. A selective H₂S fluorescent probe, WSP-4,⁴² was then applied to detect H₂S generation. As expected, donor-treated cells exhibited significantly enhanced fluorescent signals compared to vehicle-treated group, demonstrating that TAGDDs can release H₂S in cells.

In conclusion, a series of thiol-activated H_2S donors have been developed on the basis of *gem*-dithiol structures. These donors are stable in aqueous solutions. However, a timedependent H_2S generation was observed in the presence of thiols. In addition, H_2S release of TAGDDs in cells was also proved. Further development of these donors and evaluation of their H_2S -related biological activities are currently ongoing in our laboratory.

Organic Letters

ASSOCIATED CONTENT

Supporting Information

Detailed synthetic procedures, characteristic data, and experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mxian@wsu.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by an American Chemical Society Teva USA Scholar Grant and the NIH (R01HL116571).

REFERENCES

(1) Li, L.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169.

(2) Fukuto, J. M.; Carrington, S. J.; Tantillo, D. J.; Harrison, J. G.; Ignarro, L. J.; Freeman, B. A.; Chen, A.; Wink, D. A. *Chem. Res. Toxicol.* **2012**, 25, 769.

- (3) Vandiver, M. S.; Snyder, S. H. J. Mol. Med. 2012, 90, 255.
- (4) Kolluru, G. K.; Shen, X.; Bir, S. C.; Kevil, C. G. Nitric Oxide 2013, 35, 5.
- (5) Wang, R. Physiol. Rev. 2012, 92, 791.

(6) Kabil, O.; Banerjee, R. J. Biol. Chem. 2010, 285, 21903.

- (7) Kabil, O.; Banerjee, R. Antioxid. Redox. Signal. 2014, 20, 770.
- (8) Kimura, H. Amino Acids 2011, 41, 113.

(9) Ariyaratnam, P.; Loubani, M.; Morice, A. H. *Microvasc. Res.* 2013, 90, 135.

(10) Wallace, L.; Vong, L.; Mcknight, W.; Dicay, M.; Martin, G. R. Gastroenterology **2009**, 137, 569.

(11) Predmore, B. L.; Lefer, D. J.; Gojon, G. Antioxid. Redox. Signal. 2012, 17, 119.

- (12) Lefer, D. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17907.
- (13) Haouzi, P.; Bell, H.; Philmon, M. Respir. Physiol. Neurobiol. 2011, 177, 273.
- (14) Paulsen, C. E.; Carroll, K. S. Chem. Rev. 2013, 113, 4633.
- (15) Pan, J.; Carroll, K. S. ACS Chem. Biol. 2013, 8, 1110.
- (16) Zhang, D.; Macinkovic, I.; Devarie-Baez, N. O.; Pan, J.; Park, C.

M.; Carroll, K. S.; Filipovic, M. R.; Xian, M. Angew. Chem., Int. Ed. 2014, 53, 575.

- (17) Paul, B. D.; Snyder, S. H. Nat. Rev. Mol. Cell Biol. 2012, 13, 499.
 (18) Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. Sci. Signaling
 2011. 4, ra86.
- (19) Filipovic, M. R.; Miljkovic, J.; Allgauer, A.; Chaurio, R.; Shubina,
- T.; Herrmann, M.; Ivanovic-Burmazovic, I. Biochem. J. 2012, 441, 609.
 (20) Jones, C. M.; Lawrence, A.; Wardman, P.; Burkitt, M. J. Free Radic. Biol. Med. 2002, 32, 982.

(21) Carballal, S.; Trujillo, M.; Cuevasanta, E.; Bartesaghi, S.; M?ller, M. N.; Folkes, L. K.; Garcia-Bereguian, M. A.; Gutierrez-Merino, C.; Wardmann, P.; Denicola, A.; Radi, R.; Alvarez, B. *Free Radic. Biol. Med.* **2011**, *50*, 196.

(22) Calvert, J. W.; Jha, S.; Gundewar, S.; Elrod, J. W.; Ramachandran, A.; Pattillo, C. B.; Kevil, C. G.; Lefer, D. J. *Circ. Res.* **2009**, *105*, 365.

(23) Filipovic, M. R.; Miljkovic, J. Lj.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Joppenol, W. H.; Lippard, S. J.; Ivanvic-Burmazovic, I. *J. Am. Chem. Soc.* **2012**, *134*, 12016.

(24) Caliendo, G.; Cirino, G.; Santagada, V.; Wallace, J. L. J. Med. Chem. 2010, 53, 6275.

(25) Zhao, Y.; Biggs, T. D.; Xian, M. Chem. Commum. 2014, DOI: 10.1039/c4cc00968a.

(26) DeLeon, E. R.; Stoy, G. F.; Olson, K. R. Anal. Biochem. 2012, 421, 203.

- (27) Greiner, R.; Palinkas, Z.; Basell, K.; Becher, D.; Antelmann, H.;
- Nagy, P.; Dick, T. P. Antioxid. Redox. Signal. 2013, 19, 1749.
- (28) Kashfi, K.; Olson, K. R. Biochem. Pharmacol. 2013, 85, 689.
 (29) Song, Z.; Ng, M.; Lee, Z.; Dai, W.; Hagen, T.; Moore, P. K.;
- Huang, D.; Deng, L.; Tan, C. MedChemComm **2014**, *5*, 557.
- (30) Li, L.; Whiteman, M.; Guan, Y. Y.; Neo, K. L.; Cheng, Y.; Lee, S. W.; Zhao, Y.; Baskar, R.; Tan, C. H.; Moore, P. K. *Circulation* **2008**, *117*, 2351.
- (31) Zhao, Y.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2011, 133, 15.
 (32) Foster, J. C.; Powell, C. R.; Radzinski, S. C.; Matson, J. B. Org. Lett. 2014, 16, 1558.
- (33) Zhao, Y.; Bhushan, S.; Yang, C.; Otsuka, H.; Stein, J. D.; Pacheco, A.; Peng, B.; Devarie-Baez, N. O.; Aguilar, H. C.; Lefer, D. J.; Xian, M. ACS Chem. Biol. **2013**, *8*, 1283.
- (34) Devarie-Baez, N. O.; Bagdon, P. W.; Peng, B.; Zhao, Y.; Park, C. M.; Xian, M. Org. Lett. **2013**, *15*, 2786.

(35) Zhou, Z.; von Wantoch Rekowski, M.; Coletta, C.; Szabo, C.; Bucci, M.; Cirino, G.; Topouzis, S.; Papapetropoulos, A.; Giannis, A. *Bioorg. Med. Chem.* **2012**, *20*, 2675.

- (36) Cairns, T. L.; Evans, G. L.; Larchar, A. W.; Mckusick, B. C. J. Am. Chem. Soc. 1952, 74, 3982.
- (37) Berchtold, G. A.; Edwards, B. E.; Campaigne, E.; Carmack, M. J. Am. Chem. Soc. **1959**, *81*, 3148.

(38) Wu, G.; Fang, Y.; Yang, S.; Lupton, J. R.; Turner, N. D. J. Nutr. 2004, 134, 489.

- (39) Lu, S. C. Curr. Top. Cell Regul. 2000, 36, 95.
- (40) Dominy, J. E., Jr.; Hirschberger, L. L.; Coloso, R. M.; Stipanuk, M. H. *Biochem. J.* **2006**, 394, 267.
- (41) Stipanuk, M. H.; Dominy, J. E., Jr.; Lee, J.; Coloso, R. M. J. Nutr. 2006, 136, 1652S.
- (42) Peng, B.; Chen, W.; Liu, C.; Rosser, E. W.; Pacheco, A.; Zhao, Y.; Aguilar, H. C.; Xian, M. *Chem.—Eur. J.* **2014**, *20*, 1010.