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Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated

cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus

receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also

recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112

for proteasome-mediated degradation by 48 h post-infection, thus removing both activating

ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface

expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV

genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic

reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress

expression of CD112.

Human cytomegalovirus (HCMV), the prototype species of
the subfamily Betaherpesvirinae, has a high prevalence in
populations worldwide. Although HCMV is recognized to
be an important human pathogen, particularly in immu-
nocompromised individuals or following congenital infec-
tion, the vast majority of primary infections are subclinical
and accompanied by asymptomatic lifelong carriage.
HCMV encodes highly effective systems to provide for
latency, persistent reactivation and transmission; as part of
this process the virus acquired an impressive array of genes
that act both to evade and redirect the host immune
response (Wilkinson et al., 2008). The fact that individuals
with genetic defects in their natural killer (NK) cell response
are particularly susceptible to severe HCMV disease (Biron
et al., 1989; Gazit et al., 2004) provided a rationale to focus
attention on this arm of the immune response.

NK cells are composed of heterogeneous populations
expressing a ‘mosaic’ of different activating and inhibitory
receptors, the function of each cell being regulated by
integration of signals received from ligands presented on
potential target cells (Lanier, 2008). Inhibitory signals
received mainly from autologous MHC class-I molecules
normally dominate, to maintain NK cells in a resting state.
However, HCMV not only efficiently downregulates MHC-
I (Ahn et al., 1997; Furman et al., 2002; Jones et al., 1996;

Trgovcich et al., 2006; Wiertz et al., 1996a, b), but also
stimulates the expression of recognized NK cell activating
ligands, e.g. MHC-I-related chains (MIC) A and B, UL16-
binding proteins (ULBP) 1–3, retinoic acid early tran-
scripts (RAET)1E/ULBP4, RAET1G/ULBP5, RAET1L/
ULBP6 and CD155 (Bacon et al., 2004; Bahram et al.,
1994; Bauer et al., 1999; Chalupny et al., 2003; Cosman
et al., 2001; Eagle et al., 2009; Groh et al., 2001; Tomasec
et al., 2005). Despite this, HCMV-infected cells actually
prove to be highly resistant to NK cells in functional assays
(Cerboni et al., 2000; Tomasec et al., 2005). This resilience
can be attributed to a substantial proportion of HCMV
genome being directed towards evading the NK cell response.

Although HCMV downregulates endogenous MHC-I, the
virus also encodes its own MHC-I homologue (gpUL18)
that binds the inhibitory receptor LIR-1 (ILT-2) with high
affinity (Beck & Barrell, 1988; Chapman et al., 1999;
Prod’homme et al., 2007) and a peptide in the UL40 leader
sequence that acts to promote cell surface expression of the
non-classical MHC-I molecule HLA-E, the ligand for the
inhibitory receptor CD94/NKG2A (Tomasec et al., 2000;
Ulbrecht et al., 2000; Wang et al., 2002). The activating
receptor NKG2D is remarkable in recognizing eight
ligands. To combat their activation UL16 retains MICB,
ULBP1 and ULBP2 in the endoplasmic reticulum (ER);
miR-UL112 targets the MICB transcript, while UL142
downregulates MICA (Chalupny et al., 2006; Cosman et al.,3These authors contributed equally to this work.
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2001; Stern-Ginossar et al., 2007; Wills et al., 2005). The NK
cell activating receptor DNAM-1 (CD226) recognizes both
CD155 and CD112 (Bottino et al., 2003; Fuchs et al., 2004).
We previously demonstrated that UL141 elicits efficient
protection against NK cell-mediated cytolysis by seques-
tering CD155 in the ER yet, in isolation, had no effect on
CD112 (Tomasec et al., 2005).

CD155 is the poliovirus receptor (PVR) or nectin-like
molecule-5 (necl-5), while CD112 is also referred to as
nectin-2, herpesvirus entry mediator B (HVEB) or
poliovirus receptor-related protein 2 (PRR2). CD112 and
CD155 are both structurally and functionally related.
Nectins and necls are immunoglobulin-like molecules
involved in cell adhesion, movement, proliferation, differ-
entiation, polarization, virus entry and immune recog-
nition (Takai et al., 2008). In view of its important role as
an activating ligand for DNAM-1, we sought to analyse
CD112 expression in the context of HCMV infection.
Initial flow cytometry studies revealed that CD112 was
downregulated by the low passage HCMV strain Merlin,
but not high passage strain AD169 (not shown). Strain
AD169 has a 15 kb deletion encompassing UL132–UL150
that includes the NK cell evasion genes UL141 and UL142.
Merlin was derived from a bacterial artificial chromosome
(BAC) containing the entire strain Merlin genome (R. J.
Stanton, unpublished data). MerlinDUL141 was generated
using technologies developed previously to facilitate
manipulation of the adenovirus genome (Stanton et al.,
2008). Briefly, a selectable cassette comprising ampicillin

resistance, lacZ and SacB was PCR amplified and
recombineered into the Merlin BAC in place of nt
184597–185412 (relative to published Merlin sequence
GenBank accession no. NC_006273) using primers SacBF-
UL141 (59-caggtagcataggaaacatacggtgaaaatactccaaaatcccaa-
aaatgccgcgattccccgagtggcccagggagacctgtgacggaagatcacttcg-39,
homology to pAL1111 underlined) and SacBR-UL141 (59-
ccgacgtttgagcggccgacacacggagcaggaacaggcgggcagcgtctctgcga-
aaaagggaagaaaagaatcatcctgaggttcttatggctcttg-39, homology to
pAL1111 underlined). In a second recombineering step, the
selectable cassette was removed using oligo delUL141 (59-at-
actccaaaatcccaaaaatgccgcgattccccgagtggcccagggagagatgattctt-
ttcttccctttttcgcagagacgctgcccgcctgttcctg-39), leaving behind a
seamless deletion of the first 816 bp of the UL141 ORF.

In human fetal foreskin fibroblasts (HFFF) infected with
Merlin, cell surface levels of CD155, CD112 and MHC-I
were progressively downregulated over the course of
infection (Fig. 1), with the change in CD112 being more
pronounced at 48 h post-infection (p.i.) (Fig. 1b). In
accord with previous observations (Tomasec et al., 2005),
cells infected with MerlinDUL141 had elevated cell surface
levels of CD155, while CD112 levels were comparable with
the mock-infected HFFF (Fig. 1). Deletion of UL141
therefore ablated downregulation of both CD155 and
CD112. This restoration of CD112 expression was
unexpected, since UL141 had no overt effect on CD112
when expressed in isolation (Tomasec et al., 2005).
Interestingly, a small reproducible decrease in CD112
persisted when MerlinDUL141-infected and mock-infected

Fig. 1. HFFF were infected (m.o.i.525) for (a)
24 h (b) 48 h (c) 72 h or (d) 96 h with HCMV
strain Merlin, MerlinDUL141 or mock-infected
and cell surface expression of CD112 (Santa
Cruz, sc-65333) was analysed by flow cyto-
metry. For reference, expression levels of
CD155 (Abcam, ab-3142) and MHC class-I
(W632; ATCC) were also monitored, along-
side control Ig (cIg).
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cells were compared at 96 h p.i. (Fig. 1d). Replicate
samples from the flow cytometry study were analysed by
immunoblot, in order to further assess the fate of the CD112
protein within the cell. Briefly, cells were extracted with
Triton X-114 (Bordier, 1981), proteins were separated on
NuPAGE gels (Invitrogen) and blots were analysed with two
independent polyclonal anti-CD112 antibodies. In Merlin-
infected cells, the loss of CD155 from the cell surface (Fig. 1)
correlated with the emergence of elevated levels of an
immature (endoglycosidase H-sensitive) form of CD155
complexed with gpUL141 in the ER (Cochrane, 2009;
Tomasec et al., 2005) (Fig. 2a). In contrast to CD155, the
CD112 signal gradually decreased in Merlin-infected cells
and was not detected by 72 h p.i. (Fig. 2a).

Quantitative real time-PCR showed CD112 mRNA levels
to be marginally increased throughout the infection (not
shown), consistent with CD112 expression being regulated
post-transcriptionally. To determine whether CD112 was
targeted for proteolytic degradation, Merlin-infected
cells were incubated in the presence of proteasome
inhibitors. Treatment with either MG132 or Epoxomycin
(Calbiochem) was able to restore CD112 expression,
indicating that HCMV targeted CD112 for proteasome-
mediated degradation (Fig. 2b).

UL141 was required for efficient downregulation of both
CD112 and CD155 from the cell surface in HCMV-infected
cells (Figs 1 and 3a), yet had no effect on CD112 in cells
infected with recombinant adenovirus vector encoding
UL141 [RAdUL141 (Tomasec et al., 2005); Fig. 3b]. We
reasoned that UL141 acted in partnership with an
additional HCMV-encoded function(s) to downregulate
CD112. Indeed, the residual level of CD112 suppression
mediated by the MerlinDUL141 (Figs 1d, 2a and 3a) could
potentially be mediated by this function operating sub-
optimally. In cells co-infected with MerlinDUL141 and
RAdUL141, the HCMV deletion mutant was comple-
mented; downregulation of both CD112 and CD155 was
restored (Fig. 3c). Similarly, co-infection of strain AD169
with RAdUL141 also resulted in the downregulation of
both CD112 and CD155 (Fig. 3d). These data are con-
sistent with UL141 co-operating with additional HCMV-
expressed function(s) to efficiently downregulate CD112,
and that function also being intact within AD169 strain
(thus excluding UL133–150). Through downregulation
of CD112, HCMV eliminates from the cell surface an
activating ligand for DNAM-1, which presumably con-
tributes to the enhanced killing of HCMV-infected cells
observed when UL141 is deleted from the virus (Fig. 3e, f),
but not to the protection elicited when UL141 is expressed
in isolation (Tomasec et al., 2005). HCMV thus targets
both ligands for the NK cell activating receptor DNAM-1.
GpUL141 alone is sufficient to sequester CD155 in the ER,
while this study predicts that gpUL141 acts in concert with
an additional viral function to induce proteasome-
mediated degradation of CD112. This additional viral
function could either directly co-operate with UL141, or
act upon a cellular intermediate.

DNAM-1 is remarkable in being expressed on all NK cells
and plays a major role in regulating their function. HCMV
suppression of CD112 and CD155 may have ramifications
that extend beyond the regulation of NK cell function.
DNAM-1 is also expressed on activated T, NKT, myeloid
and mast cells, megakaryocytes, platelets and a subset of B
lymphocytes thereby impacting on a wide range of
immunological responses and regulating platelet activation
(Bachelet et al., 2006; Bottino et al., 2003; Burns et al.,
1985; Kojima et al., 2003; Pende et al., 2006; Reymond
et al., 2004; Scott et al., 1989; Shibuya et al., 1996, 1999,
2003; Xu & Jin, 2010). For example, the interaction
between DNAM-1 and CD112/CD155 has been associated

Fig. 2. HFFF were infected (m.o.i.525) for 24, 48, 72 or 96 h p.i.
with HCMV strain Merlin (Mer), MerlinDUL141 (D141) or mock-
infected (Mock) and cell extracts were analysed by immunoblot
using antibodies to: CD112 (R&D, AF2229; Santa Cruz, sc-
14799), CD155 [5D1 (Aoki et al., 1994)], UL141 [M550
(Tomasec et al., 2005)] and actin (A-2066; Sigma). (b) HFFF
were infected (m.o.i.525) for 48 h with HCMV strain Merlin (Mer)
or mock-infected, then treated for 12 h with proteasome inhibitors
MG132 or Epoxomycin as indicated and analysed by immunoblot
as in (a).
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with T-cell differentiation, proliferation, cytotoxicity and
cytokine secretion (Tahara-Hanaoka et al., 2004).
Furthermore, nectins and necls regulate fundamental
processes in cell biology including cell adhesion, move-
ment, proliferation, differentiation, survival, polarization
and signalling (Takai et al., 2008). HCMV infection is

recognized to disrupt focal adhesions and intercellular
connections, while inducing cell motility and transen-
dothelial migration (Chan et al., 2009; Stanton et al., 2007).
It will be important to determine how the modulation of
CD112 and CD115 influences these processes.
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