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Summary 
Background Many individuals take long-term immunosuppressive medications. We evaluated whether these 
individuals have worse outcomes when hospitalised with COVID-19 compared with non-immunosuppressed 
individuals.

Methods We conducted a retrospective cohort study using data from the National COVID Cohort Collaborative 
(N3C), the largest longitudinal electronic health record repository of patients in hospital with confirmed or suspected 
COVID-19 in the USA, between Jan 1, 2020, and June 11, 2021, within 42 health systems. We compared adults with 
immunosuppressive medications used before admission to adults without long-term immunosuppression. We 
considered immunosuppression overall, as well as by 15 classes of medication and three broad indications for 
immunosuppressive medicines. We used Fine and Gray’s proportional subdistribution hazards models to estimate 
the hazard ratio (HR) for the risk of invasive mechanical ventilation, with the competing risk of death. We used Cox 
proportional hazards models to estimate HRs for in-hospital death. Models were adjusted using doubly robust 
propensity score methodology.

Findings Among 231 830 potentially eligible adults in the N3C repository who were admitted to hospital with confirmed 
or suspected COVID-19 during the study period, 222 575 met the inclusion criteria (mean age 59 years [SD 19]; 
111 269 [50%] male). The most common comorbidities were diabetes (23%), pulmonary disease (17%), and renal 
disease (13%). 16 494 (7%) patients had long-term immunosuppression with medications for diverse conditions, 
including rheumatological disease (33%), solid organ transplant (26%), or cancer (22%). In the propensity score 
matched cohort (including 12 841 immunosuppressed patients and 29 386 non-immunosuppressed patients), 
immunosuppression was associated with a reduced risk of invasive ventilation (HR 0·89, 95% CI 0·83–0·96) and there 
was no overall association between long-term immunosuppression and the risk of in-hospital death. None of the 
15 medication classes examined were associated with an increased risk of invasive mechanical ventilation. Although 
there was no statistically significant association between most drugs and in-hospital death, increases were found with 
rituximab for rheumatological disease (1·72, 1·10–2·69) and for cancer (2·57, 1·86–3·56). Results were generally 
consistent across subgroup analyses that considered race and ethnicity or sex, as well as across sensitivity analyses that 
varied exposure, covariate, and outcome definitions.

Interpretation Among this cohort, with the exception of rituximab, there was no increased risk of mechanical ventilation 
or in-hospital death for the rheumatological, antineoplastic, or antimetabolite therapies examined.

Funding None.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Introduction 
As of Oct 1, 2021, SARS-CoV-2 has infected more than 
43 million people in the USA and caused more than 
698 000 deaths.1 Although increasing vaccination uptake 
and other public health measures have reduced the 
burden of the pandemic, substantial morbidity and 
mortality continue to accrue in the unvaccinated and 
non-immune population.

Evidence is mixed regarding the impact of immuno-
suppression and immunosuppressive medicines on 
COVID-19 outcomes. Immunosuppression increases the 

incidence and severity of many infectious diseases; case 
reports from China and Europe, as well as guidelines 
from WHO and the US Centers for Disease Control and 
Prevention indicate that conditions requiring pharma-
cological immunosuppression, such as solid organ 
transplant2 and cancer, are risk factors for SARS-CoV-2 
infection. However, previous studies have found that 
individuals with autoimmune diseases, such as 
rheumatoid arthritis or inflammatory bowel disease, have 
a greater incidence of COVID-19, but not of resultant 
invasive ventilation or death.3–5 Case series of patients with 
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solid organ transplant with SARS-CoV-2 infection have 
compared the risk of severe COVID-19 outcomes to that of 
the general population and found higher hospitali sation 
and case fatality rates in the initial months of the pandemic 
(March to June, 2020).6–8 Despite the insights from these 
early studies, some questions remain unanswered, such 
as whether time trends in COVID-19 management could 
explain these apparent increased risks.

As with many other clinical contexts, for any given im-
muno suppressive condition, many potential drug 
combinations can be used. Several single-centre evalua-
tions, including our own,9 have reported no increased 
risk of severe COVID-19 among those taking long-term 
immunosuppressive medicines,10–12 and the theoretical 
possibility that such medicines might dampen the 
cytokine storm associated with severe COVID-19 has not 
been substantiated in the literature. Much of the 
previous long-term immunosuppressive medication 
literature has used small samples of patients, precluding 
the evaluation of specific medicine classes.

To address these research gaps, we performed a 
retrospective cohort study using data from the National 
COVID Cohort Collaborative (N3C), the largest US 
electronic health record repository, which captures 
COVID-19 care delivered between January, 2020, and 
June, 2021. In addition to evaluating overall risk, we also 
evaluated whether the therapeutic class of immuno-
suppressive medications alters the risk of invasive 
mechanical ventilation or death.

Methods 
Study design and population 
The N3C is a national electronic health record repository 
supported by the National Institutes of Health (NIH) 
National Center for Advancing Translational Science.13,14 It 
contains detailed inpatient and outpatient records, as well 
as drug exposure information, for a racially, ethnically, and 
geographically diverse group of individuals. Data are 

reviewed for completeness and accuracy by a data quality 
team, and the data are harmonised using the Observational 
Medical Outcomes Partnership Common Data Model.13 As 
of June 17, 2021, the N3C had records for more than 
2 130 000 COVID-19-positive individuals, the majority of 
which were from outpatient encounters. We used indivi-
dual patient data to conduct our analyses. The N3C data 
transfer to the National Center for Advancing Translational 
Sciences (NCATS) is performed under a Johns Hopkins 
University Reliance Protocol (#IRB00249128) or individual 
site agreements with the NIH.

We defined COVID-19-positive individuals as those with 
confirmed SARS-CoV-2 infection (at least one positive 
SARS-CoV-2 test result, more than 99% of which were by 
RT-PCR) or suspected SARS-CoV-2 infection. Suspected 
infections required at least one strong positive diagnosis 
code, or two weak positive codes, as outlined in the 
GitHub repository.15 We defined a COVID-19-related 
hospitalisation as the first inpatient visit up to 21 days after 
the date of confirmed or suspected SARS-CoV-2 infection. 
To account for delays in test reporting while minimising 
the possibility of nosocomial infections,16 we also included 
hospitalised individuals designated as COVID-19-positive 
up to 5 days after admission. We limited our analyses to 
individuals with complete hospitalisation episodes, 
documented by either discharge or death.

We sequentially excluded individuals with missing data 
on age or sex, those younger than 18 years, those 
transferred to the N3C data partner already on a ventilator, 
and individuals with implausible information, such as a 
COVID-19 diagnosis in 2018 or a date of death predating 
their date of admission. In addition, we excluded 
six clinical sites from our analysis that did not meet N3C 
standards of data quality, leaving 42 sites for analysis.14

Exposure 
We defined two mutually exclusive exposure groups: im-
muno  suppressed individuals and non-immuno suppressed 

Research in context

Evidence before this study
The evidence regarding the impact of immunosuppression and 
immunosuppressive medicines on COVID-19 outcomes is mixed, 
with previous studies finding that these individuals might have 
an increased risk of infection but not resultant invasive 
ventilation or death. It is unclear whether associations vary by 
medication class.

Added value of this study
This retrospective cohort study evaluated the risk of severe 
COVID-19 outcomes for individuals using 15 pharmacological 
classes that alter immune function, using electronic health 
information from 42 health systems in the USA. In this 
cohort, with the exception of rituximab, there was no 
increased risk of mechanical ventilation or in-hospital death 

for the rheumatological, antineoplastic, or antimetabolite 
therapies examined. Our sample size was large enough to 
consider separately a variety of drug classes with distinct 
molecular mechanisms of action, including the targeting of 
B-cell versus T-cell mediated immunity.

Implications of all the available evidence
Our results add to a growing body of evidence on the overall 
safety of most long-term immunosuppressive medications 
against the backdrop of continued COVID-19-related 
morbidity and mortality. These findings are important 
because of how commonly these medicines are used, and due 
to ongoing questions regarding the degree to which they 
increase the risks of poor outcomes among individuals who 
are hospitalised with COVID-19.
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individuals up to and including at the time of admission. 
Individuals were considered immuno suppressed if they 
had exposure to at least one of the following: rheu-
matological drugs (inter leukin inhibi tors, Janus kinase 
inhibitors, tumour necrosis factor (TNF) inhibitors, or any 
other drug in the WHO Anatomical Therapeutic Chemical 
[ATC] L04: selective immuno suppressants), antimetabolite 
drugs (azathioprine, calcineurin inhibitors, or myco-
phenolic acid [ formulated either as myco phenolate 
sodium or mycophenolate mofetil]), cancer therapies 
(anthracyclines, checkpoint inhibitors, cyclophosphamide, 
protein kinase inhibitors, or any other drug in the WHO 
ATC class L01: antineoplastic agents), rituximab, targeted 
cancer therapies, and oral glucocorticoids (dexamethasone, 
prednisone, prednisolone, or methylprednisolone; 
appendix pp 2–4). We classified people as having long-
term immuno suppression at the time of admission if they 
used one or more of these medications; in addition, we 
used the electronic health record fields of prescription 
record start and stop dates, and we required 
immunosuppression to be started at least 14 days before 
the date of admission, and either continued during 
admission or actively stopped on or after the date of 
admission. We excluded 57 people whose only immuno-
suppressant was a glucocorticoid prescribed on or after 
the date of COVID-19 diagnosis but before admission. For 
oral glucocorticoids, we further required a diagnosis that 
was consistent with long-term use of steroids 
(appendix p 15). People without use of any of the immuno-
suppressive drugs on the date of admission were 
considered non-immunosuppressed.

Outcomes 
Our primary outcome was the time from admission to 
invasive mechanical ventilation, using the standard N3C 
definition, which uses concept codes for condition 
occurrence, procedures, and observations.14 Our 
secondary outcome was time from admission to 
in-hospital death. To reduce their effect in the models, we 
winsorised the upper 1% of times to event.17 For people 
whose first ventilation code could not precisely define the 
date of ventilation, such as “Respiratory support, 
24–96 hours” or “Respiratory support, greater than 
96 hours”, we used the shortest date of the interval range 
as the time to event. 

We selected covariates a priori for use in a propensity 
score model based on the availability of data and 
information from the peer-reviewed literature,18,19 govern-
ment and international agency recommendations, and 
our own clinical, biostatistical, and epidemiological 
expertise. We used the following covariates: the week of 
admission, contributing data site, age, sex as recorded in 
the electronic health record, self-reported race and 
ethnicity, smoking history, body-mass index, days 
between COVID-19 diagnosis and hospital admission, 
medication use for chronic conditions, and relevant 
comorbidities (appendix pp 5–8).

Statistical analysis 
We characterised our study cohort using means with SDs 
for continuous variables and frequency with percentages 
for count variables. We then constructed propensity 
scores,20 using a logistic regression model including each 
of the aforementioned covariates to predict the probability 
of being on immunosuppressive medications at the time 
of admission. For the propensity score estimation, we 
created missing data indicators for each variable, because 
this effectively creates a match on both observed and 
missing data patterns.

We used propensity score matching, given substantial 
areas of non-overlap for the exposed and unexposed 
groups, with a 4:1 nearest neighbour matching algorithm 
without replacement and a calliper of 0·2 pooled SDs of 
the estimated propensity score.21 We evaluated the 
absolute value of the standardised mean difference 
(SMD) in the unmatched and the propensity score 
matched sample, using the R cobalt package, to assess 
covariate balance in a sample-size independent manner. 
We implemented doubly robust adjustment, in which 
covariates that remained unbalanced (SMD >10%) after 
matching were included in the regression models 
described in the following paragraph.22

We assessed for elevated risk of outcomes 
comparing immunosuppressed individuals and non-
im muno suppressed individuals with all 15 immuno-
suppressive drug classes combined, as well as separately 
by class of medication and broad indication for use. We 
used cluster-robust SEs that accounted for the matched 
nature of the data to calculate unadjusted and adjusted 
hazard ratios (HRs) and 95% CIs. We used Fine and 
Gray’s proportional subdistribution hazards models to 
estimate the risk of mechanical ventilation, accounting 
for the competing risk of death.23 We used Cox 
proportional hazards models to estimate the risk of 
death.24 We calculated the E-value to quantify the amount 
of independent unmeasured confounding that would 
have to be present in order to qualitatively change the 
interpretation of results.25

We generated new propensity scores and repeated the 
propensity score matching process in each subgroup 
and sensitivity analysis, as well as the set of doubly 
robust adjustment variables. We stratified models by 
race and ethnicity groups, which were generally 
reported by the patient or family member at the time of 
hospital registration in the local electronic health 
record.26 We grouped race and ethnicity as done in the 
US Census and evaluated whether or not the 
associations of interest differed by patient race and 
ethnicity. We also disaggregated data by sex, in 
accordance with Sex and Gender Equity in Research 
guidelines for reporting of sex information; gender 
identity was not available.

We did a sensitivity analysis to assess whether the 
absence of glucocorticoid dose information could create 
exposure misclassification by excluding individuals who 

See Online for appendix
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had a record of glucocorticoid use without any dose 
information. In a second sensitivity analysis, we 
restricted the cohort to individuals with at least 
one previous health system encounter before COVID-19 
diagnosis, to assess whether the lack of lookback data 
could have affected covariate ascertainment. Third, we 
included only people who were hospitalised for at least 
2 days, because individuals discharged the same or next 
day might be clinically distinct from those with longer 
stays. Fourth, we added vital signs and laboratory values 
at the time of admission to the model. Given that these 
variables might be strongly associated with the outcome, 
we did not include them in our primary analyses but 
instead considered them in sensitivity analyses. Lastly, 
for the people whose ventilation procedure code 
indicated a date range rather than a single date, we 
varied the choice of date to consider the latest day in the 
period.

Data extraction and management were performed 
using Spark SQL (version 3.0.2) and Python, and analyses 
used SparkR, in the N3C Enclave.

Role of the funding source 
There was no funding source for this study.

Results 
Of 231 830 potentially eligible adults in the N3C Enclave 
who were hospitalised for COVID-19 between Jan 1, 2020, 
and June 11, 2021, we identified 222 575 people who met 
the inclusion criteria (appendix p 17). The mean age of 
patients was 59 years (SD 19) and 111 269 (50%) were male. 
The most common comorbidities were diabetes 
(50 656 [23%] patients), pulmonary disease (36 760 [17%]), 
and renal disease (29 772 [13%]; appendix p 10). The mean 
length of hospital stay was 8·5 days (SD 13·9). Trends in 
hospital admissions coincided with national trends in 
infection waves, with peaks in March to April, July, and 
November to December, 2020 (appendix p 18). 
Immunosuppressed adults were older, more often female, 
and less frequently Hispanic or Latinx than non-
immunosuppressed adults (table 1). Among hospitalised 
adults, 16 494 (7%) had active medication records for 
immunosuppressive medications at the time of admission 
(appendix p 9), including medications commonly used for 
a rheuma tological condition (5366 [33%] patients), 
antimetabolite drugs (4288 [26%]), or for cancer treatment 
(3569 [22%]). Comorbidities were more prevalent in the 
immuno suppressed population (appendix p 10). Vital 
signs on the first day of admission were similar 
(appendix p 11); abnormal creatinine and troponin 
concentrations and abnormal white blood cell counts were 
more prevalent in the immunosuppressed group.

We included 12 841 immunosuppressed and 
29 386 non-immunosuppressed individuals in the propen-
sity score matched analyses. In this cohort, some but not 
all SMDs indicated remaining imbalance between groups 
(appendix p 19). The overlap of the propensity scores 
between groups before and after propensity score matching 
is shown in the appendix (p 20).

In the entire cohort, 14 740 (7%) of 222 575 people 
received invasive mechanical ventilation (appendix p 21) 
and 21 801 (10%) people died (appendix p 22). Invasive 
mechanical ventilation was an indicator of poor 
prognosis, because 6878 (47%) of people who required 
ventilation later died in hospital. In unadjusted analyses, 
individuals who were immunosuppressed were at greater 
risk of invasive mechanical ventilation (9% vs 6%; 
HR 1·36, 95% CI 1·29–1·43) and in-hospital death 
(14% vs 9%; 1·05, 1·01–1·10; table 2). However, in the 
propensity score matched cohort, immuno suppression 
was associated with a reduced risk of invasive ventilation 
(8% vs 9%; 0·89, 0·83–0·96) and there was no overall 
association between long-term immunosuppression and 
the risk of in-hospital death (14% vs 12%; 0·97, 
0·91–1·02). These analyses had an E-value of 1·50 for 

Immunosuppressed 
(n=16 494)

Non-
immunosuppressed
(n=206 081)

Age, years 61 (16) 59 (19)

Sex

Female 9231 (56%) 102 075 (50%)

Male 7263 (44%) 104 006 (50%)

Race and ethnicity

Asian 335 (2%) 6612 (3%)

Hispanic or Latinx 1672 (10%) 30 759 (15%)

Non-Hispanic Black 3820 (23%) 38 461 (19%)

Non-Hispanic White 7989 (48%) 92 629 (45%)

Another race 113 (1%) 1030 (<1%)

Missing or unknown 2565 (16%) 36 590 (18%)

Current or former smoker 4814 (29%) 36 544 (18%)

Body-mass index, kg/m²

Underweight (<18·5) 329 (2%) 1850 (1%)

Not overweight or 
obese (18·5–24·9)

2893 (18%) 18 899 (9%)

Overweight (25·0–29·9) 3299 (20%) 26 494 (13%)

Obese (≥30·0) 5789 (35%) 40 757 (20%)

Missing 4184 (25%) 118 081 (57%)

Days between COVID-19 
diagnosis and hospital 
admission

1·6 (4·0) 1·3 (3·7)

Solid organ transplant 
recipient

3423 (21%) 2338 (1%)

Cardiovascular disease 5922 (36%) 34 116 (17%)

Chronic hypertension 12 397 (75%) 94 658 (46%)

Continuous variables are represented as mean (SD), and categorical variables as 
count (%).

Table 1: Characteristics of individuals on date of hospitalisation with 
confirmed or suspected COVID-19, by immunosuppressed status before 
COVID-19

For Spark SQL software see 
https://spark.apache.org/sql

https://spark.apache.org/sql
https://spark.apache.org/sql
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invasive mechanical ventilation and 1·21 for death 
(appendix p 12). The direction of the results when people 
were grouped by treatment indications (rheumatological, 
antimetabolite, or cancer therapies) were similar to 
overall results (figures 1, 2); immunosuppression was 
associated with a significantly reduced risk of invasive 
mechanical ventilation (HRs of 0·69–0·79; appendix p 13), 
and no significant effects were seen on in-hospital death 
(appendix p 14).

Results from sensitivity analyses varying the exposure 
definition for glucocorticoids, ascertaining covariates 
from previous health system experience, applying a 
minimum length of stay of 2 days, and adding laboratory 
and vital sign measures from the day of admission 
yielded similar findings to the main analyses 
(appendix p 15). For individuals with a range of dates 
rather than a single date of invasive mechanical 
ventilation placement, using the longest date in the 
range, rather than the shortest, did not change the 
interpretation of results.

For invasive mechanical ventilation, each of the drug 
classes was associated with reduced or null effects; no 
drug class was associated with an increase in invasive 
mechanical ventilation (figure 1, appendix p 13). For in-
hospital death, we found a significant reduction with 
JAK inhibitors (HR 0·42, 95% CI 0·24–0·73; 
figure 2, appendix p 14). Rituximab in rheumatological 
conditions (1·72, 1·10–2·69) and as a cancer therapy 
(2·57, 1·86–3·56) was associated with an increased risk 
of in-hospital death. All other drugs evaluated did not 
have statistically significant associations with in-hospital 
death. Although not statistically significant, the effect 
size suggests a potentially elevated risk of death for 
people with anthracycline prescriptions (1·51, 
0·99–2·31).

We evaluated potential effect measure modification by 
racial and ethnic identity. Immunosuppressive drug use 
was protective against mechanical ventilation for 
non-Hispanic Black (HR 0·82, 95% CI 0·70–0·95) and for 
people with missing or unknown racial and ethnic identity 
(0·68, 0·55–0·84); this finding was consistent albeit not 
significant in non-Hispanic White individuals (0·90, 
0·82–1·00). However, among Asian and Hispanic or 
Latinx people and individuals of another race, immuno-
suppression had no significant effect (appendix p 16). 
Consistent with the overall effect estimate, the risk of 
in-hospital death in each racial and ethnic group was not 
significantly different between immunosuppressed and 
non-immunosuppressed individuals.

In analyses stratified by sex as recorded in the electronic 
health record, none of the drug classes were associated 
with an increased risk of invasive mechanical ventilation. 
Most of the classes had protective effects in male patients 
(appendix p 23) and non-significant effects in female 
patients (appendix p 24). For in-hospital death, rituximab 
was associated with an increased risk of death in female 
patients with cancer, but not in female patients with a 

rheumatological condition or male patients for either 
indication (appendix pp 25–26). The risk of in-hospital 
death with checkpoint inhibitors was increased for male 
patients, but not female patients.

Discussion 
Although cases, hospitalisations, and deaths were 
decreasing in the USA in mid-2021, the COVID-19 
pandemic is ongoing worldwide and important questions 
remain. In this analysis of more than 220 000 adults 
hospitalised with COVID-19, there was no discernible 
increased risk of invasive mechanical ventilation or 
in-hospital death with most of the therapies we examined. 
These findings are important because of how commonly 
these therapies are used, and because of ongoing 
questions regarding the degree to which they increase 
the risks of poor outcomes among individuals who are 
hospitalised with COVID-19.

Our findings regarding immunosuppressive therapies 
extend the results of our earlier work and that of others 
examining the association between use of these 
medication classes and COVID-19 outcomes. In contrast 
to some studies that have suggested that people with 
immunosuppressive conditions are at increased risk of 
infection,3–5 our finding of no increased risk of severe 
disease could be attributable to a combination of factors, 
including our focus on immunosuppressive medications 
rather than diagnoses, restriction to hospitalised patients 
with COVID-19, and analyses with statistical power and 
methods to address confounding and effect modification. 

Invasive mechanical 
ventilation

In-hospital death 

Immunosuppressed group, n (%)

Entire cohort (n=16 494) 1520 (9%) 2334 (14%)

Matched cohort (n=12 841) 1089 (8%) 1743 (14%)

Non-immunosuppressed group, n (%)

Entire cohort (n=206 081) 13 220 (6%) 19 467 (9%)

Matched cohort (n=29 386) 2730 (9%) 3564 (12%)

Comparison of immunosuppressed vs non-immunosuppressed adults

Unadjusted regression in entire cohort, 
HR (95% CI)

1·36 (1·29–1·43) 1·05 (1·01–1·10)

Unadjusted regression in matched cohort, 
HR (95% CI)

0·88 (0·82–0·94) 1·01 (0·96–1·07)

Propensity score matching with doubly robust 
adjustment, HR (95% CI)

0·89 (0·83–0·96) 0·97 (0·91–1·02)

E-value 1·50 1·21

Propensity score matching with doubly robust 
adjustment among male patients (n=18 798), 
HR (95% CI)

0·86 (0·78–0·95) 0·97 (0·90–1·05)

Propensity score matching with doubly robust 
adjustment among female patients (n=23 199), 
HR (95% CI)

0·89 (0·81–0·99) 0·95 (0·88–1·04)

HR=hazard ratio.

Table 2: Association between long-term immunosuppression and clinical outcomes in COVID-19
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By using a larger and more diverse cohort, our results 
add to a growing body of evidence suggesting the overall 
safety of several products in the context of continued 
COVID-19-related morbidity and mortality. Our sample 
size also allowed us to examine specific subclasses of 
therapies that vary considerably in their mechanisms of 
action, and we found similar safety of these various 
classes with respect to the outcomes examined among 
this cohort.

Although in our main analyses, and in the subgroup 
analyses by rheumatological and antimetabolite drugs, 
we found that immunosuppression reduced the risk of 
invasive mechanical ventilation, we did not find this with 
rituximab. Rituximab is a chimeric monoclonal antibody 
that binds to the cell surface protein CD20 and induces 
B-cell apoptosis. This mechanism of action powerfully 
interferes with antibody response to infection, and it can 
lead to prolonged viral replication. Therefore, the null 
effect for ventilation and an increased risk of death are 
plausible, given the impaired antiviral humoral 
response.27,28

Of note, we found a decreased risk of death with 
chronic JAK inhibitor use. Baricitinib and tofacitinib 
have each shown to be efficacious in clinical trials as 
COVID-19 therapies among individuals not using them 
before SARS-CoV-2 infection.29,30 An international 

registry of patients with rheumatoid arthritis and 
COVID-19 reported an increased odds of death for people 
on JAK inhibitors, as compared with TNF inhibitors. 
These results might differ from ours given that their 
population was not restricted to hospitalised patients.31

Our results generate important scientific and clinical 
questions for further exploration. For example, studies are 
needed to assess whether long-term immunosuppressive 
use, especially with products such as glucocorticoids, could 
attenuate the mortality benefit attributable to 
dexamethasone for patients with COVID-19 requiring 
supplemental oxygen.32 Also, our study was not designed 
to inform questions regarding whether long-term 
immunosuppressive medicines, present at hospital 
admission, should be continued during hospitalisation for 
COVID-19, and if so, under what treatment protocols. Of 
course, such protocols, as well as current clinical practice, 
might vary for different subpopulations of individuals, 
such as those with rheumatological diseases as compared 
with those with a history of solid organ transplant. It is also 
unclear whether the associations we describe could be in 
part due to differential treatment across our study groups 
once hospitalised. Immunosuppressed patients could 
have been hospitalised at earlier stages in disease and 
treated more aggressively because of the perception of 
higher risk, both of which could account for the decreased 
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Figure 1: Association between long-term immunosuppression and invasive mechanical ventilation, by medication class
Analyses were done in the propensity score matched cohort, with doubly robust adjustment for any remaining covariate imbalances after matching.
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risk of ventilation and absence of an increase in mortality. 
Of note, we found no significant differences in the 
proportions of immunosuppressed and non-immuno-
suppressed people who received remdesivir, in-hospital 
dexamethasone, or pre-admission monoclonal antibodies 
for SARS-CoV-2 management. Future studies could 
account for the time-varying nature of in-patient treatment, 
as well as treatment indicators, such as laboratory 
measures of inflammation or ability to mount an 
inflammatory response.

Our analyses have several limitations. First, the N3C 
does not contain information on advanced directives, 
which might lead to misclassification of risk of ventilation 
and death. Second, the N3C does not contain information 
on supplemental oxygen. Given that the RECOVERY trial 
found that dexamethasone reduced the risk of death in 
people with oxygen requirements,32 but increased the risk 
of death if they did not require supplemental oxygen, it is 
possible that the null effect we report is an average of 
increased and decreased risk by an unmeasured 
confounder. Third, we used WHO ATC classes for a 
standardised definition for immunosuppressive 
medications, which does not include therapies that some 
might consider to be immunosuppressive, such as 
hydroxychloroquine, medications for HIV care, or multiple 

sclerosis, or other immunocompromising conditions. 
Instead, in this analysis, these people were considered to 
be non-immunosuppressed. Fourth, individuals who 
stopped their immunosuppressive medication in the short 
term before admission, such as at the time of COVID-19 
diagnosis, due to concern of immunosuppression leading 
to worse outcomes, and did not report current 
immunosuppression at the time of admission would be 
misclassified as non-immunosuppressed in this analysis. 
Fifth, care delivered in the N3C might not represent 
settings outside of academic medical centres or in hospitals 
outside of the USA. Finally, our analysis was strongly 
dependent on valid risk adjustment, but we recognise that 
the Charlson-Deyo instrument might not fully capture the 
risks associated with underlying comorbidities and 
indication for immunosuppressive therapy. Residual and 
unmeasured confounding due to indication, particularly 
among the subset of cancer patients, could be a source of 
bias.

The limitations notwithstanding, our analyses also 
have several strengths. We used a national, diverse cohort 
of more than 220 000 adults in the USA hospitalised with 
COVID-19. Our analyses include patients with confirmed 
SARS-CoV-2 infection, as well as patients with suspected 
COVID-19. Given that the average sensitivity of 

Figure 2: Association between long-term immunosuppression and in-hospital death, by medication class
Analyses were done in the propensity score matched cohort, with doubly robust adjustment for any remaining covariate imbalances after matching.
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SARS-CoV-2 tests is around 80%, restricting analyses to 
individuals who tested positive could have excluded truly 
positive individuals. By using a hospitalised cohort, we 
believe that there should be few, if any, false positives 
within the suspected COVID-19 designation. In addition, 
we used doubly robust propensity score methods, and 
considered the competing risk of death for analyses 
examining ventilation. Finally, our sample size was large 
enough to consider separately a variety of drug classes 
with distinct molecular mechanisms of action, including 
the targeting of B-cell versus T-cell mediated immunity.

In conclusion, in this cohort, with the exception of 
rituximab, there was no increased risk of ventilation or 
death for the rheumatological, antineoplastic or 
antimetabolite therapies examined. This information 
could be useful not only to guide future research, but 
also to clinicians and patients navigating treatment 
decisions together.
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