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Abstract

We describe micro-western arrays, which enable quantitative, sensitive and high-throughput 

assessment of protein abundance and modifications following electrophoretic separation of micro-

arrayed cell lysates. This method allowed us to measure 91 phosphosites on 67 proteins at six time 

points following stimulation with five EGF concentrations in A431 human carcinoma cells. We 

inferred the connectivities among 15 phosphorylation sites across 10 receptor tyrosine kinases 

(RTK) and 2 sites from Src kinase using Bayesian network modeling and two mutual information-

based methods; the three inference methods yielded significant agreement on the network 

topology. These results imply multiple distinct RTK coactivation mechanisms and support the 

notion that small amounts of experimental data collected from phenotypically diverse network 

states may enable network inference.

Systems-level understanding of protein functions in biological processes remains a 

challenge. The western1 blot is a powerful protein analysis method because the 

electrophoretic separation step allows for reduction in sample complexity and the antibody 

detection step then results in signal amplitude proportional to the abundance of the 

immobilized antigen at a physical location on the detection membrane that can be related to 

molecular size standards. Because western blots require a relatively large amount of sample 

and a great deal of human labor, they have been of limited utility in large-scale protein 
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studies. Reverse phase lysate arrays (RPAs), performed by arraying lysates directly on 

nitrocellulose-coated slides and probing them with antibodies, are useful for quantifying 

large numbers of proteins from limited amounts of material such as in biomarker 

discovery2,3. In contrast to western blots, however, RPAs lack confirmatory data for signal 

veracity; in a side-by-side comparison of measurements from RPAs and western blots, only 

4 of 34 phospho-specific antibodies examined generated equivalent information with the two 

approaches4. Antibody cross-reactivity was concluded to contribute substantial noise to 

RPAs, confounding true protein measurements. Many antibodies have been validated for use 

with the Luminex xMAP bead-sorting system, although about 1,000-fold greater cell 

material is required per protein analysis than RPAs and the cost of detection reagents per 

protein about 30-fold higher. Flow cytometry permits a (relatively small) cohort of proteins 

to be examined simultaneously in individual cells; this multiplexing feature has been 

exploited with Bayesian network modeling to predict new signaling network causalities5.

In contrast to antibody-based methods, mass spectrometry (MS) can identify novel proteins. 

Using MS, thousands of peptides were assessed in lung cancers to identify commonly 

activated receptor tyrosine kinases and downstream signaling pathways6. Relative 

abundances can be examined quantitatively using isotopic labels across time points, cell 

types, or perturbations as in examination of phosphorylation dynamics of Hela7 and 

mammary epithelial cells8 following EGF or heregulin treatment. However, the large 

sample amount required by MS can limit the number of conditions that can be analyzed; 

~108 cells are typically required for an MS experiment5 versus ~105 cells for an 

immunoblot or ~103 cells for RPAs9.

Here we describe micro-western arrays (MWA), which combine the scalability of RPAs 

while retaining vital attributes of western blots for highly multiplexed proteomic 

measurements: reduction of sample complexity and signals that can be related to protein size 

standards. In combination with suitable pan- and modification-specific antibodies, dynamics 

of protein abundance and modification may be simultaneously monitored across many 

samples. We demonstrate that MWA in combination with computational modeling 

techniques can yield useful systems-level biological insights for EGF receptor signaling 

dynamics.

RESULTS

Fabrication of micro-western arrays

Our strategy allows us to compare protein abundances and differences in post-translational 

modifications for cells stimulated under different conditions (Fig. 1). To interface the 

microscopic western blots with micro-titer-based liquid handling methods, cell lysates are 

printed via a non-contact microarrayer on gels in a series of 96 identical blocks with 

dimensions of a 96-well plate10 (Fig. 1). Using these dimensions 6 different lysates may be 

examined with 96 different antibodies or 24 different lysates may be examined with 24 

different antibodies. An acetate running buffer is used to increase the migration rate of large 

proteins and slow the rate of smaller ones, obviating the need for a stacking gel. For each 

spot, 6 nl of sample was arrayed over the same gel position ten times, allowing for greater 

spotting density and signal than micro-depositing the entire 60 nl in a single dispense. One 
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spot of size standard and six spots of experimental sample were arrayed at one millimeter 

pitch at the top edge of each block. After printing, the samples are subject to semidry 

electrophoresis for 12 min and then transferred to a nitrocellulose membrane. The membrane 

is placed in a 96-well gasket to isolate each set of 6 separated lysates; each block is then 

incubated with a different antibody. Following incubation with dye-labeled secondary 

antibody, the blot is scanned with an infrared fluorescence scanner. This format allows 

interrogation of 192 antibodies against 6 samples when two antibodies from different hosts 

(e.g. rabbit and mouse) are utilized. A total of 1,152 antibody-sample readouts is therefore 

possible per MWA device. Each measurement requires ~1,000 cells (equivalent to 250 ng of 

protein) and 16 ng of detection antibody and allows for the analysis of ~4,000 protein 

abundances.

Validation of micro-western array method

We compared the resolution and linearity in signal of MWAs with macroscopic gels using a 

labeled molecular weight standard (LI-COR 928-40000) (Fig. 2a). For proteins of 150, 50, 

and 25 kDa, the intensity of each ladder spot was proportional to the fold dilution over a 

range of two orders of magnitude for both methods (Fig. 2b,c). The coefficient-of-variation 

from arraying, rehydration, and transfer of a single band of the LI-COR ladder across the 

area of the membrane was < 9%.

We then tested the linearity of signal response in quantifying proteins from A431 human 

carcinoma cell lysates using a two-stage fluorescent immuno-detection system (Fig. 2d,e). 

We used five phospho- and two pan-specific antibodies to analyze proteins from 15-175 kDa 

in EGF-stimulated A431 cells lysates. All MWAs showed a linear relationship between 

relative antigen concentration and signal intensity over their detectable range (from 100- to 

1,000-fold). Assuming an expression level of 1.2 × 106 receptors per A431 cell11 EGFR 

was detectable down to one cell equivalent (~2 attomoles; ~340 femtograms). We assumed 

linearity for all further analysis.

Comparison of macro-western blots and micro-western arrays

To compare performance of MWAs with macro-western blots for monitoring 

phosphorylation dynamics, we selected a representative test-set of 11 antibodies. Four were 

previously shown to generate equivalent quantitative data by RPAs and western blots4; 

another four were shown to result in substantial compression of dynamic range by RPAs due 

to antibody cross-reactivity4.

Measurements obtained by MWAs were similar to macro-western blots for all antibodies 

(Fig. 3) and did not display the dynamic range compression observed for RPAs. For many 

protein phosphosites, including EGFR, IRS1, and AKT, we observed bands at the predicted 

size as well as at additional sizes that could obscure quantitative measurements by RPAs. 

The precision in estimating sizes of proteins > 100 kDa by MWAs was ~10 kDa, and for 

smaller proteins ~5 kDa. While protein sizes could be determined with precision 

approaching that of a standard western blot, proteins were not completely resolved unless 

they differed by more than the following: 75 kDa for proteins greater than 200 kDa; 50 kDa 

for proteins between 100 and 200 kDa; 25kDa for proteins between 50 and 100 kDa; and 10 
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kDa for proteins less than 50 kDa (Fig. 2d, Fig. 3), corresponding to a migration distance of 

about 1.5 mm, double the diameter of spotted protein (Fig. 2d, Fig. 3). Resolution equal to a 

macro-western blot could be obtained by electrophoresing the samples for twice the distance 

(Fig. 2a).

Application of MWAs to analysis of EGFR signaling network

To examine EGF signaling dynamics using MWAs, we chose antibodies directed at a wide 

range of phosphosites to monitor many molecular biological processes (Supplementary 

Figure 1, Supplementary Table 1): 1) early positive growth factor response regulators; 2) 

negative signaling regulators; 3) downstream proliferation indicators; 4) nutrition sensing 

indicators; 5) adhesion and migration indicators; 6) phospho-lipid and calcium state 

indicators; 7) stress indicators; and 8) transcription and cell cycle indicators.

To observe signaling dynamics at doses approximating physiological levels12, we 

stimulated cells with 2, 50, 100, and 200 ng ml-1 EGF. A mock stimulation was performed 

to distinguish EGF-mediated signaling events from nutrition-related events. Figure 4 shows 

a MWA chip along with two magnified blocks demonstrating distinct temporal 

phosphorylation patterns of p-S6 Ribosomal Protein (Ser240,Ser244) and of p-EGFR 

(Tyr1068) (Supplementary Table 2). A mouse beta-actin antibody was used to probe all 

plate wells and demonstrates the reproducibility of the approach (Fig. 4, Supplementary 

Table 2). The coefficient-of-variation from arraying, rehydration, transfer, binding of 

primary antibody and secondary antibody was < 17%.

We quantified 91 phosphosites from 67 proteins and 18 pan-specific protein abundances for 

a total of 75 proteins in technical triplicate resulting in ~9,800 signaling observations with 

sufficient residual lysates for further analyses using different antibody panels. Intensity and 

inferred sizes from spots detected with each antibody were recorded along with signal-to-

background ratio (Supplementary Table 1, Supplementary Figures 2, 3). 17 of 91 

phosphosites quantified here were previously quantified in one recent MS report using pan-

phospho enrichment7 and 22 in another13 employing phosphotyrosine-specific enrichment 

(Supplementary Table 3). Many ubiquitous EGFR signaling proteins quantified by MWAs, 

including p-EGFR(Tyr845), p-SHP2(Tyr542), p-p70S6K(Ser371), p-Raf(c-)(Ser338), 

p90RSK(Ser380), and p-Stat3(Ser727), were not quantified in either MS study, suggesting 

that MS detects only a fraction of phosphorylation events elicited by EGF. 4 of 91 

phosphosites quantified here were quantified by RPA and demonstrated to generate 

equivalent information as a western blot3.

Comparison of signaling network at different EGF input levels

We next asked whether biological insights could be revealed using the MWA method. Five 

clusters of signaling profiles were organized based on time of maximal phosphorylation 

(Fig. 5). Phosphosites within clusters were rank ordered by fold-change. At the 2 ng ml-1 

input level, we observed several phosphosites from EGFR, ErbB2, PLC gamma, Gab1, Mek, 

p90RSK, p70S6K, and Crkl that were absent in mock treatment (Fig. 5, Supplementary 

Figure 4, 5).
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Conversely, many phosphosites related to phosphoinositide signaling displayed substantial 

fold-change in mock stimulation but not EGF treatment, including sites from PDK1 and its 

downstream targets AKT, PKC gamma, and PKC delta; downstream targets of AKT 

including mTOR, FOXO1; and mTor substrate p70S6K and its downstream target S6 

Ribosomal Protein. We speculate that activation of PLC gamma following EGF stimulation 

leads to the hydrolysis of phosphatidylinositol 4,5-bisphosphate, causing down-regulation of 

PDK1 and AKT. Reduced AKT activity could produce the observed A431 cell cycle 

inhibition14 through decreased phosphorylation of cyclin dependent kinase (CDK) 

inhibitors, including p21CIP1(Thr145) and p27Kip1(Thr157). Consistent with this notion, 

Insulin-like Growth Factor (IGF), a potent PI3K stimulator, is also a potent mitogen for 

A431 cells12.

We then asked how the dynamic range and timing of the EGF signaling network were 

influenced by EGF input level. The first wave of phosphorylation peaking at the 1 minute 

point included 33 tyrosines from EGFR and other RTKs and membrane-localized proteins 

(Fig 5, Supplementary Figures 3-5, Supplementary Table 1). At 5 minutes, we observed 

serine and threonine sites from downstream kinases and transcription factors including Raf, 

MEK, p70S6 kinase, mTor, and ATF2. At 15 minutes, we observed phosphosites from Erk, 

P38 MAPK, and cell cycle-related kinases and substrates. Sites peaking at 30 minutes 

included those of the Crkl adapter protein and MAPKAPK2, a substrate of P38 MAPK. 

Proteins with sites peaking at 60 minutes included the PDK1 substrates AKT and PKCD, 

and the AKT substrate 4EBP1, among others. The timing of most phosphorylation events 

was not affected by EGF concentrations.

Bayesian network modeling of receptor layer connectivity

In order to try to elucidate the directional influences among phosphosites, we applied 

Bayesian network modeling approaches to the receptor layer of the EGF signaling network. 

This permitted us to verify known influences while identifying new directional relationships 

underlying receptor-level crosstalk. Bayesian networks are graphical representations of 

conditional independencies in a probability distribution over a set of variables15, and can 

potentially be inferred from experimental data such as that generated by MWAs. The 

network analyzed here comprised seventeen phosphosites: two from the Src kinase and 

fifteen from the ten RTKs for which fold-change measurements were observed specifically 

in all four EGF treatment input levels and for which antibodies were predicted to result in no 

cross-reactivity with each other (Fig. 6, Supplementary Table 4). Each time-point was 

considered as an independent sample of the EGF-stimulated network state, giving 20 

samples for each phosphosite (4 conditions across 5 non-zero time points of one biological 

replicate). All data were normalized to the zero time point.

Given typically limited amounts of data, a variety of graph structures can be generated by 

Bayesian inference modeling that describe the data reasonably well, so a consensus model is 

often sought rather than aiming to find a unique best-scoring graph15. Accordingly, we 

illustrate here (Fig. 6) a consensus model containing only edges with a score > 0.3, derived 

from exact Bayesian network model averaging over all directed acyclic graph (DAG) 

structures having at most three parents per node16,17. By considering only those DAG 
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structures in the equivalence class of the consensus model with a directed edge from p-

SRC(Tyr416) to p-EGFR(Tyr845), directionality of the remaining compelled edges was 

determined18 (Supplementary Note 1). Signs of directional influences (i.e. positive vs. 

negative) could also be discerned. EGFR(Tyr845) is a known Src kinase substrate which is 

not phosphorylated by the EGFR kinase19. This prior knowledge was only used to 

distinguish edge directionality in the equivalence class; no prior structural knowledge was 

used to derive the consensus model.

The three linked root nodes from which most downstream influences in the graph structure 

were derived included p-SRC(Tyr416), p-EGFR(Tyr845), and p-PDGFRB(Tyr1009). The 

model suggests that the EGFR and PDGFRA,B influence one another, with p-

EGFR(Tyr1068), p-EGFR(Tyr1173), p-ERBB2(Tyr1221,Tyr1222), and p-KIT(C)(Tyr719) 

depicted directly downstream of both p-PDGFRB(Tyr1009) and p-EGFR(Tyr845). Notably, 

PDGFRB has previously been described to heterodimerize and transactivate the EGFR20 in 

response to PDGF, even in the presence of a PDGFR inhibitor. While others have previously 

suggested A431 cells lack PDGFR expression, we witnessed bands at the predicted 

molecular weights using several phospho- and pan-specific antibodies directed at the 

intracellular region of the receptor (Supplementary Figures 1, 6) as well as with RT-PCR 

using primers directed at the juxtamembrane region of PDGFR (data not shown).

Interestingly, p-PDGFRA(Tyr849),PDGFRB(Tyr857), the activation loop phosphosite of 

PDGFRA,B was depicted by the model to lie downstream of p-MET(Tyr1349), a root node, 

and p-EGFR(Tyr1173), which was downstream of the root nodes p-EGFR(Tyr845) and p-

PDGFRB(Tyr1009). p-EGFR(Tyr1173) began to display robust phosphorylation at the 100 

ng ml-1 EGF input level, the same level that the activation loop of PDGFRA,B began to 

display phosphorylation; at low EGF levels Src kinase may mediate the phosphorylation of a 

subset of PDGFR sites other than Tyr849,Tyr857, while at higher levels the PDGFR kinase 

itself becomes activated through a mechanism involving or concurrent with the 

phosphorylation of p-EGFR(Tyr1173).

p-EGFR(Tyr1068), modeled to be upstream of p-EGFR(Tyr1086), p-ERBB4(Tyr1284) and 

both p-FGFR1(Tyr653,Tyr654) activation loop isoforms, was distinct among EGFR sites in 

displaying maximal phosphorylation at 5 minutes and sustained phosphorylation amplitude 

for the duration of the time course. The edge directed from p-EGFR(Tyr1068) to p-

FGFR1(Tyr653,Tyr654)(145 kDa) displayed a relatively high edge score (.80; see 

Supplementary Figure 7 for all consensus Bayesian network edge weights), similar to that 

displayed between p-EGFR(Tyr1068) and p-EGFR(Tyr1086) (which displayed an edge 

score of .89), suggesting that EGFR is able to mediate the activation of FGFR1. We 

speculate that the 145 kDa and 100 kDa forms of FGFR1 represent hyper- and 

hypoglycosylated forms of the receptor, respectively. Hyper-glycosylation of FGFR1 has 

been shown to inhibit its interaction with both FGF2 and heparin-derived 

oligosaccharides21, which was predicted to decrease its activity. Only the short form 

phosphosite was modeled to have subsequent downstream targets. The only site negatively 

regulated in the model was p-PDGFRA(Tyr754), which is known to recruit the SHP2 

phosphatase22 resulting in dephosphorylation of RASGAP recruitment sites on PDGFRA 

and B and increased MAPK signaling. Therefore down-regulation of p-PDGFRA(Tyr754) 
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would be predicted to decrease MAPK signaling. Consistent with previous reports, the 

model suggests that p-SRC(Tyr527), a known inhibitory site of Src kinase, is disconnected 

from the EGF network23.

To corroborate the Bayesian network results, we also inferred network connectivities using 

‘Algorithm for the Reconstruction of Accurate Cellular Networks’ (ARACNe) and ‘Context 

Likelihood of Relatedness’ (CLR) algorithms24,25. 22 of 24 edges in the Bayesian network 

were also identified by ARACNe and/or CLR, though as undirected edges since these latter 

methods are based on mutual information notions (Fig. 6b,c, Supplementary Figures 8, 9). 

Consistency across network inference methods has been shown experimentally to 

characterize accurate edge inference26,27, and in our case here data permutation studies 

show that the topologies inferred by the Bayesian network, ARACNe, and CLR are 

significant (Supplementary Note 1 and Supplementary Figure 10). Because in the context of 

proteomic signaling networks it is problematic to make broad assumptions about edge 

directionality absent extensive prior knowledge (e.g., concerning particular kinase-substrate 

relationships), we believe that predicting edge directionality using methods such as Bayesian 

network modeling offers appealing advantage.

DISCUSSION

In contrast to RPAs, MWAs have the ability to reduce the complexity of lysates after 

arraying, minimizing effort in experimental scale-up. Most of the information of a 

traditional western blot can be obtained, using 200-fold less protein and antibody. MWAs 

should be useful for analysis of proteins from cell lines and tissues where lysates are 

sufficient to print hundreds of MWAs that could be distributed en masse in an analogous 

manner to spotted DNA microarrays for interrogation with the user's choice of antibodies. 

The only devices required following printing are commercially available 96-well gaskets 

and an imager. The ability to obtain information regarding hundreds of proteins with the 

MWA method should allow advances in our understanding of cell-context-specific networks 

underlying human disease when combined with appropriate computational modeling 

methods.

MWAs could also be very useful for large-scale, systematic validation of antibodies. 

Antibody collections could be systematically verified for selectivity by examining lysates 

from cells transfected with a cDNA or depleted for the cognate protein by RNAi. The 

amount of antibody obtained from a single rabbit immunization (~5 mg) would be sufficient 

for over 100,000 MWAs, thus minimizing lot-tolot variability of polyclonal antibodies. 

MWAs could be useful for current efforts to build a human protein atlas; samples from 

tissues used for in situ analyses could be examined with MWAs to verify that signals 

observed with each antibody resulted from proteins of the predicted molecular weight(s).

The ability to gather dynamic information regarding hundreds of proteins under many 

conditions poses new challenges for computational modeling. The Bayesian network 

described here represents direct and/or indirect effects of a given node on other nodes as 

indicated by high-probability connecting arcs, which are hypothesized to represent 

relationships of influence among the phosphoproteins in the network. Using prior 
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knowledge to restrict edge directionality across a Bayesian network equivalence class, one 

can bolster the case for assigning directionality to these edges. To further support a case for 

interpreting network connections as causal, one could explicitly model the temporal data28 

and/or use interventional data15,17 which will be the source of future inquiry.

The timing and amplitude of phosphorylation dynamics observed here coupled with the 

connectivities modeled in the Bayesian network suggest several candidate sources of RTK-

coactivation, each of which may be important in specific cancer contexts: 1) direct 

dimerization and/or phosphorylation by EGFR or other downstream tyrosine kinases as 

suggested by the rapid phosphorylation kinetics of Src, ErbB2 and 4, coupled with their 

close proximity at the top of the network; 2) activation of proteases that activate precursor 

growth factors or latent RTKs as might be predicted from the delayed phosphorylation 

amplitudes of FGFR1(100kDa) and MET activation loop sites coupled with their distance 

from EGFR in the network and; 3) inactivation of tyrosine phosphatases through oxidation 

by reactive oxygen species29. Phosphorylation of Tyr542 of Shp2 phosphatase displayed the 

highest fold-change of any site in our analysis; this site has been suggested to relieve 

inhibition of phosphatase30 activity. The sustained phosphorylation of this and other 

tyrosine sites at EGF levels ≥ 50 ng/ml suggests that it (and other cysteine-based tyrosine 

phosphatases) may be inactivated thus unmasking many tyrosine kinase activities. Each of 

these mechanisms may play distinct roles in the context of cancers that have become 

resistant to single kinase inhibitors; systems level analysis of other tyrosine kinase-driven 

cancers may be helpful in revealing appropriate therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ONLINE METHODS

Cell stimulation and lysis

A431 cells were a gift from Dr. Shutsung Liao. Cells were passaged three times after 

thawing from frozen stocks. For the final passage, plates at 80% confluence were split 1:10 

into fresh plates (6 plates per EGF concentration tested). 0.7 mL of Trypsin-EDTA was 

incubated with cells for seven minutes at 37 deg C. Newly plated cells were grown in 8% 

fetal bovine serum, 0 I.U. penicillin, and 50 μg/ml streptomycin, and the media was replaced 

with serum-free media when they reached 50% confluence. Cells were maintained in serum 
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free DMEM with penicillin and streptomycin for 48 hrs. A stock solution of EGF was 

prepared at 200 μg/ml and was applied at the appropriate dilution in serum-free media after 

washing twice with PBS. At each time point the cells were again washed twice with PBS 

(see Supplementary Note 2 for all recipes). 1.0 ml of Lysis Buffer was added and the cells 

scraped into a 2 mL microcentrifuge tube. After lysis, the samples were boiled for ten 

minutes and then frozen at -80 deg C. The following day, the cells were sonicated at Power 

5 on a Sonic Cell Disruptor for ten seconds, alternating one second on, one second off (total 

20 seconds time). The samples were boiled for 2 minutes and 500 μL were immediately 

placed in a micro-concentration device with a 10 kDa molecular weight cutoff. The tubes 

were spun at 12000 G for approximately ten minutes until the volume was reduced by 5X. 

Each sample was then topped off to 100 μl with lysis buffer so that each sample was of 

equal volume. Samples were divided into 20 μl aliquots and frozen at -80 deg to avoid 

repeated freeze-thaw cycles until printing. Samples were boiled for 2 minutes immediately 

before printing. Product Numbers are provided in Supplementary Table 5.

Gel fabrication

Glass casting plates (one measuring 14 × 27 cm, the other measuring 14 × 28 cm) were 

sprayed with BlueSlick and wiped thoroughly with a paper towel to provide an even layer of 

solution over the entire side of the glass plate. Rubber spacers were placed on three sides of 

the inner coated sides of the glass plate (two long sides and one short side) making sure 

there were no gaps between the spacers on the corner (as this would be a potential source of 

acrylamide leakage). One rectangle of Netfix was placed on the glass plate on top of the 

spacers. The second glass plate was placed on top with the coated surface facing down, 

leaving a small lip (about 1 cm) to inject the unpolymerized gel. 12 clamps were placed 

around the three gasketed edges of the sandwich.

Gel reagents (Supplementary Note 2) were gently mixed to avoid bubble formation in a 50 

ml conical tube. One corner of the sandwiched plates was placed on an object about three 

inches high so that gel could run at a slant in two dimensions. A 30 ml syringe with a 19 

gauge needle was used to inject the gel mixtures so that it ran down the length of one long 

side, then along the length of the bottom short side, and then up the second length in order to 

avoid any trapped air. After the sample was poured, the sandwich was laid horizontally 

during polymerization to avoid leakage. After one hour, the clamps were removed and the 

top plate was pried off with a plastic wedge. The gel was removed from the bottom glass 

plate by lifting manually from the plate and placed between two plastic Gelfix sheets.

A standard paper cutter was used to remove the Netfix border and then used to divide the gel 

into two parts (with each half measuring at least 11.5 cm wide in each dimension). The gels 

were saved in vacuum sealed bags and refrigerated at 4 deg C prior to use. The performance 

was not found to differ substantially following storage for several weeks.

Micro-arraying

The lysates were spotted using a non-contact microarrayer (Gesim Nanoplotter 2.1 E) with 

active humidification. The printing performance of each tip was validated with a 
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stroboscope prior to beginning each microarray print. If printing was inconsistent, 200 μL of 

50% methanol/50% HCl was loaded into the tip and dispensed three times using manual 

mode. The tips were washed for sixty seconds using the Wash/Dry cycle and rechecked with 

the stroboscope. The Gelfix sheet was removed from the gel and the gels prehydrated in 

hydration buffer (100 ml) containing 1 ml 1M sodium bisulfite and 1 ml 1M DTT) for five 

minutes. Excess fluid was blotted off with a piece of cardboard.

To keep the gel and samples hydrated, the relative humidity was maintained at 80%. Z-

height measurements were taken prior to the print of each gel. Micro-western arrays were 

printed onto two gels per array run. Tip dispense height was held at 1.5 mm above the gel 

surface while printing.

Samples were placed with the ladder in well A1 of a 384 well plate and samples 

consecutively in A2-A7. Software NP2.15.46 was used. The TransferTipMultiSim04H9 

(Gesim) was run using the transfer text and the workplate definition file provided in 

Supplementary Note 3.

LI-COR protein ladder was printed in lane 1 at a 1:2 dilution in lysis buffer. This ladder is 

printed at high concentration so that it may be visible on the nitrocellulose membrane after 

transfer to facilitate alignment of the gasket.

Following print completion, the gel was maintained for an additional ten minutes in the 

humidified environment to insure that all droplets were absorbed beneath the gel surface. 

The gel was subsequently rehydrated for five in the rehydration buffer described above with 

gentle agitation. Following rehydration, the gel was placed onto the Genephor for horizontal 

semidry electrophoresis.

Horizontal Semidry Electrophoresis

Samples were separated by size using a horizontal electrophoresis device pre-chilled to 10 

deg C. Three drops of kerosene were added on to the surface of the Genephor and spread 

with a Kimwipe to provide a homogenous layer on the surface. A clean piece of Gelfix 

measuring 14×14 cm was added to the surface of the Genephor. The hydrated gel was 

placed on top of the plastic sheet covering the area of both electrode rectangles. Three filter 

wicks were cut in half and each half stacked three deep. Each stack was placed in electrode 

buffer (Supplementary Note 2) for several seconds and air was manually pressed out of them 

while submerged. The first (bottom) lid of the Genephor was placed over the gel making 

sure that there was no fluid making contact with the lid from the gel. The two stacks of 

hydrated wicks were placed in the center of each electrode slat on the gel. The second and 

third (upper) lids of the Genephor were then closed. The power supply was set at 350V, 30 

watts, and unlimited amps. The lowest molecular weight ladder bands migrated about 9 mm 

(the length of one well of a 96-well plate) in 12 minutes.

Transfer

Following electrophoresis, the gel was placed protein side down onto nitrocellulose pre-

moistened in transfer buffer (Supplementary Note 2). Filter paper was placed on either side 
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of the nitrocellulose and gel and clamped in a transfer box cartridge. All bubbles were 

pressed out with a roller. The gels were transferred either at 0.8 amps for 60 min or 0.15 

amps overnight at 4 deg in a Criterion transfer box with plate electrode. The box was pre-

chilled to 4 deg and kept in a cold room with gentle agitation to maintain a constant 

temperature.

Blotting

Nitrocellulose was removed from the transfer apparatus and washed for five minutes in TBS 

(without Tween 20) to remove methanol. The blots were blocked for 1 hour in Odyssey 

Blocking Buffer. The blot was aligned on the gasket by placing the visible ladder on the 

vertical lines and centering the ladder between the horizontal lines. The gasket was clamped 

into the 96-well isolation device and primary antibodies were pipetted into the appropriate 

wells, making sure that the membrane stayed wet during the process. The primary antibody 

was diluted in pure Odyssey blocking buffer (without Tween 20) overnight. 150 μl of diluted 

antibody was added per well. After incubation, the wells were washed four times with 200 μl 

of TBST per well using a multichannel pipettor. Goat anti-rabbit Alexa 680 conjugated 

secondary, goat anti-rabbit, and goat anti-mouse IR800-conjugated secondary antibodies 

(1:5000) were diluted in 20% Odyssey blocking buffer, 80% TBS (without Tween 20). 150 

μl of the diluted secondary was added to the appropriate well. After incubation for an hour, 

the blot was washed three times with 200 μl TBST while clamped in the gasketing device. 

The blot was then removed from the gasket, placed in a box top and washed for an 

additional five minutes in TBST. For the fifth wash, TBS without Tween 20 was used, 

washing for five minutes. The membrane was completely dried using pressurized air and 

scanned using the LI-COR Odyssey imager at 24 micron resolution and high quality (Laser 

Intensity 1.0 on the 700 channel, Laser Intensity 2.0 on the 800 channel) settings.

Analysis

Scanned images were saved for analysis as 16-bit tiff files. Genepix 8.0 was used to record 

the mean by drawing an equally-sized circle around the appropriately sized band for each 

sample. Appropriate size is defined as within 10 kD of the size as defined by the antibody 

product sheet as measured in comparison to the LI-COR ladder bands. All bands within this 

region that were visible were recorded. Bands outside this region were noted but the 

intensities were not recorded or analyzed. The background fluorescence was recorded by 

placing an equal sized circle in the blank space to the left of the first sample (not covering 

sample or ladder space) and the minimum value of this circle was recorded. Net intensity 

was calculated by subtracting each sample intensity from the background. To normalize 

sample concentration, the net intensities were divided by a simple mean of the net intensities 

for GAPDH, Tubulin, and Actin calculated separately for each array print. To calculate fold 

change, each normalized net intensity was divided by the value at the zero minute time point 

and subtracted by one. Graphs, heatmaps, and clustergrams were generated using MATLAB 

2007b.
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Signaling network inference modeling

Bayesian networks were modeled using a dynamic programming algorithm that computes 

the exact marginal posterior probability of edges in the Bayesian network derived from the 

data set16. The algorithm was implemented using a modified version of the open-source 

Bayesian Network Structure Learning toolbox in MATLAB17. Node conditional probability 

distributions were represented by multinomials using a uniform Dirichlet prior with 

equivalent sample size of one, and a prior over graph structures was calculated by 

accounting for the number of ways to choose parents sets in a graph, as previously 

described31,16. Networks were scored using the Bayesian Dirichlet likelihood equivalent 

uniform (BDeu) score32. The BDeu score accounts for both model fit and complexity, and 

thus avoids overfitting the data. Although this dynamic programming algorithm introduces a 

non-uniform prior over graph structures, it has been shown to perform better at structure 

learning tasks16,17 than local search methods that use a uniform prior over graph structures, 

such as Markov Chain Monte Carlo searches over directed acyclic graphs33, as well as 

MCMC searches over node orderings, which uses a non-uniform prior31.

All nodes were discretized using three-level k-means clustering to indicate low, medium, 

and high phosphoprotein levels (Supplementary Table 6). Clustering was done using the 

squared Euclidean distance metric and repeated 50 times for each node to find the optimal 

clustering assignments. It is believed that by using k-means clustering, we are better 

representing the physiological diversity in signaling states of the phosphoproteins in the 

network, compared to more arbitrary discretization schemes, like interval and quantile 

discretization, that do not try to explicitly capture clusters in the data.

CLR was implemented using MATLAB code provided by the original authors, with Z 

scores (edge weights) calculated as previously described25. ARACNe was implemented 

using the minet package in R34. To minimize the sources of variation between algorithms, 

the same discretized data that was used to learn the Bayesian network model was also used 

to learn the CLR and ARACNe models. The mutual information matrix for ARACNe was 

calculated using a simple histogram method in the minet package, and for CLR was 

calculated directly from the discretized data. The edge score thresholds for CLR and 

ARACNe were varied in an effort to maximize the similarity between the Bayesian network 

and ARACNE (or CLR), both given the > 0.3 edge weight threshold for the Bayesian 

network (Fig. 6) and when this constraint on the Bayesian network edge weight threshold 

was removed, though in both cases staying within edge weight thresholds that gave 

significant network results (see Supplementary Note 1 and Supplementary Figs. 8-10).

The sign of the influences between nodes in the Bayesian network were estimated using 

pairwise correlation coefficients. 17 of 24 pairwise interactions had a highly significant (p < 

0.001) positive correlation coefficient. 2 of 24 had a significant (p < 0.05) negative 

correlation coefficient. The remaining 5 of 24 pairwise interactions had a non-significant (p 

> 0.05) correlation coefficient, but were edges in two- or three-parent interactions, 

suggesting a simple pairwise correlation coefficient was not sufficient to capture the parent-

child behavior. Interestingly, both negative interactions were directed at p-

PDGFRA(Tyr754). Five of the six two-parent interactions (including all four with p-
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EGFR(Tyr845) and p-PDGFRB(Tyr1009) as the parent set) were consistent with ‘AND 

gate’ behavior. The parent-child raw data from all one-, two-, and three-parent interactions 

are plotted versus one another in Supplementary Figure 11.

Considering up to three parents per node in the Bayesian network captured almost all 

higher-order interactions in the data set (see Supplementary Note 1 and Supplementary 

Figure 12). While additional higher-order interactions may be present but there are simply 

not enough data for the Bayesian network to infer them, it may also be that such higher-

order interactions are indeed not present, regardless of how much data are available 

describing the network. ARACNe and CLR, which only consider undirected pairwise 

interactions, thus represent useful, but likely not complete, approximations of interactions in 

this data set.
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Fig. 1. Micro-western array (MWA) procedure
Procedural schematic for the micro-western array method.
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Fig. 2. MWA Validation of Linear Response
(a) (left) 5 μL of a series of 1/2 dilutions of LI-COR protein ladder were electrophoresed 

using traditional 10% SDS-PAGE. (right) 60 nl of the identical samples were run in the 

micro-western format. The difference in scale is noted below the figure. (b) The median net 

signal intensity was quantified for three bands (150 kDa, 50 kDa, and 25 kDa) of the LI-

COR protein ladder in the traditional western blot as shown in part (a). The intensity vs. 

concentration of proteins displayed a linear relationship for all protein bands quantified. (c) 

The median net signal intensities quantified from micro-western dilution series. The 
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intensity vs. concentration displayed a similar linear relationship as that from the traditional 

western. (d) 1/2 dilutions of lysates from A431 cells stimulated for 5 min with 200 ng ml-1 

of EGF probed with seven rabbit primary antibodies directed at proteins spanning a range of 

molecular weights (175 kDa to 15 kDa) and detected with IR700-labeled secondary 

antibody. (e) The median net signal intensity for each band vs. relative concentration as 

shown in part (d). The graphs show a linear relationship between net fluorescence and 

concentration for all antibodies tested.
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Fig. 3. Comparison of MWA to traditional western blot
A comparison of eleven traditional western blots is shown parallel to the identical samples 

run in triplicate in micro-western array format. Lysates from A431 cells stimulated with 

EGF (200 ng ml-1) and lysed at 0,1,5,15,30, and 60 minutes after stimulation along with the 

LI-COR protein ladder. β-actin monoclonal mouse primary antibody (detected with IR800 

secondary antibody shown in green) was probed with each of the eleven rabbit primary 

antibodies (detected with IR700 secondary antibody shown in red) polyclonal antibodies to 

demonstrate equal loading of each sample. An arrow indicating the band quantified is 
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indicated to the left of the blot along with the corresponding sizes of the LI-COR protein 

standard. Quantification of the fluorescence of the traditional western (red) is shown in 

comparison to the micro-western (blue). Error bars shown represent the standard error of the 

three technical replicates of the micro-westerns shown. Absolute sizes of the blots are 

indicated below to demonstrate the extent of the miniaturization of scale of the micro-

western in comparison to the traditional western Blot.
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Fig. 4. An MWA containing 6 cell lysates probed with 192 antibodies
The red channel (700 nm laser) shows the stimulation of A431 cells with 200 ng/ml EGF 

probed with a panel of rabbit anti-human polyclonal antibodies detected with IR700-labeled 

secondary antibodies. The green channel (800 nm laser) reflects a scan of the samples 

probed with mouse monoclonal antihuman β-actin antibody detected with IR800-labeled 

secondary antibodies to demonstrate the consistency of printing across the area of the 

membrane. For antibody layout, see Supplementary Table 2.
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Fig. 5. A clustered heatmap profile of fold changes for antibody bands representing specific 
phosphorylation sites of proteins in A431 cells over six time points for four stimulation 
conditions and one 0 ng ml-1 control
The net fold-change is color coded as indicated in the legend. Antibody bands are clustered 

into six clusters according to the time point (0, 1, 5, 15, 30, or 60 min) at which maximal 

fold change occurs. The antibodies are in descending order sorted in each cluster by the 

value of the fold change at the 200 ng ml-1 stimulation condition at the time point 

representative of that particular cluster. The antibody names are listed as given by the 
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manufacturer followed in parentheses by an approximation of the size of each band. The 

EGF mock stimulation is shown on the right image block.
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Fig. 6. 
Consensus model of EGFR receptor level influences modeled by Bayesian network 

inference with comparison to ARACNe and CLR. (a) A consensus model of the EGF 

signaling network obtained by exact Bayesian model averaging following Bayesian network 

inference (Supplementary Note 1). Significant (p < 0.001) positive edges (green), significant 

(p < 0.05) negative edges (red blunt edges), and interactions with a non-significant 

correlation coefficient (black) are shown. Edges for which the directionality could not be 

determined using equivalence class analysis are shown as undirected. (b) Heatmaps show 

the undirected adjacency matrices comparing the Bayesian network to the ARACNe and 

CLR networks. An edge between node i and node j is represented by matrix value (i, j). 

Because the undirected networks are compared, the adjacency matrix is symmetric across 

the diagonal, and thus only the lower triangular matrix of the adjacency matrix is shown. 

Edge weight thresholds were set to > 0.3 for the Bayesian network and ARACNe (using 

ARACNe Data Processing Inequality parameter τ= 0.03) and to Z > 1.13 for CLR. Eight of 

11 edges present only in the Bayesian network and not in the ARACNe network would 

induce three-node triplets in the ARACNe network, which is precisely what ARACNe is 

designed to prune out (see Supplementary Figure 8). (c) Venn diagram comparing edges 

across the three networks. The ARACNe network forms a complete subnetwork of the CLR 

network and a near complete subnetwork of the Bayesian network, which forms a near 

complete subnetwork of the CLR network.
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