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Abstract

Our visual brain makes use of recent experience to interact with the visual world, and effi-

ciently select relevant information. This is exemplified by speeded search when target- and

distractor features repeat across trials versus when they switch, a phenomenon referred

to as intertrial priming. Here, we present fAIM, a computational model that demonstrates

how priming can be explained by a simple feature-weighting mechanism integrated into an

established model of bottom-up vision. In fAIM, such modulations in feature gains are wide-

spread and not just restricted to one or a few features. Consequentially, priming effects

result from the overall tuning of visual features to the task at hand. Such tuning allows the

model to reproduce priming for different types of stimuli, including for typical stimulus dimen-

sions such as ‘color’ and for less obvious dimensions such as ‘spikiness’ of shapes. More-

over, the model explains some puzzling findings from the literature: it shows how priming

can be found for target-distractor stimulus relations rather than for their absolute stimulus

values per se, without an explicit representation of relations. Similarly, it simulates effects

that have been taken to reflect a modulation of priming by an observers’ goals—without

any representation of goals in the model. We conclude that priming is best considered as a

consequence of a general adaptation of the brain to visual input, and not as a peculiarity of

visual search.

Introduction

Because our human visual system has a limited capacity, it constantly selects only a subset of

input at the expense of other information in a visual scene. This occurs by means of visual
attention [1, for a review]. Ideally, attention would always select the information that is cur-

rently most relevant to us, but doing this is not straightforward. For example, physically con-

spicuous stimuli tend to capture attention, even when we already know them to be irrelevant

[2]. Moreover, in many situations we will not even know beforehand what aspects of visual

information will be relevant.

Because of this, selecting what we selected before can be a useful heuristic. Take for example

a hot night where one may want to hunt down mosquitoes in the bedroom. Mosquitoes can be

hard to spot, but as soon as the first one has been found, it often becomes easier to find others:
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our visual system has swiftly recalibrated to find again what has just been found. Experiments

on visual attention and selection have illustrated that the visual system is indeed strongly mod-

ulated by past experience, both on short- [3–5] and longer time scales [6–9].

One phenomenon that clearly demonstrates the effects of recent experience is intertrial

priming of pop-out [5]. In typical priming experiments, participants are presented with a

search display where a target stimulus has one of two colors (classically red and green), and

a set of distractor stimuli of the other color. Participants do not know in advance what the

color of the target will be, but regardless, this is an easy task. Because the target ‘pops out’

from the rest of the items it can be found through a ‘bottom-up’ search, based on local con-

trasts in visual input [1, 10, 11]. Nevertheless, performance on this task is strongly affected

by the recent past: search is hampered when the colors of the target and distractor switch

from trial to trial, and is facilitated when they stay the same. It thus seems that already

early on, low-level processing of a visual scene is affected by recent visual experience (see

also [12, 13]).

Many studies have concluded that such intertrial priming automatically changes the

‘weights’ of different visual features in the task [5, 14–17]. This claim gives rise to several ques-

tions. Most prominently, what is actually being weighted in feature weighting? And how does

this affect future attentional deployments?

An intuitive answer would be that priming modulates the responsiveness or baseline activ-

ity of visual neurons coding for observed target- and distractor feature values. Recent findings

on priming of pop-out, however, suggest that it may not be so straightforward. Several studies

supported the idea that perhaps not the value of targets and distractors is primed in visual

search, but rather their relation. One illustrative experiment [18] involved a singleton search

where stimulus colors are either yellow, orange or red. It was found that repetition priming

not only occurred for straight repetitions of target-distractor stimuli, but also for displays with

different stimuli where the relation between target and distractors remained constant. So for

example: an orange target among yellow distractors would be primed by a preceding red target

among orange distractors, because the target remained the ‘reddest’ item in the display. Note

that in this case, priming was found even though the preceding distractor color (orange)

became the new target color. Conversely, a repeated orange target among yellow distractors

would be harder to find after an ‘orange target-red distractor’ trial, even though target color

remained constant. In this case, the relation reversed: the target was the yellowest element in

the display, and became the reddest.

Such relational priming has been observed across various dimensions: colors of different

palettes, size, luminance [18–20], and even higher-order shape features such as ‘spikiness’ of

star-shaped stimuli, and the ‘complexity’ of visual shapes [21]. These results suggest that inter-

trial priming does not act upon the features in the scene per se, but rather on a representation

of the relation between the target and the distractors. However, no proposal has been made for

what such a representation would look like or how it would arise.

Another puzzling finding is that priming may depend on the task that is to be performed

on the next trial. In one pop-out visual search experiment [22] search displays always con-

tained two separate singleton items: a color singleton (red versus green) and a shape singleton

(circle versus rectangle). Before each trial, a cue would instruct the participant whether to

search for (and respond to) the color singleton or the shape singleton. It was found that repeti-

tion of the singleton only affected search for the dimension that was relevant to the current

goals, resulting in goal-dependent priming. Remarkably, this effect was independent of what

had been the task on the previous trial. It seemed as if priming of either color or shape was

associated with its dimension. If that dimension then turned out to be irrelevant, priming

would no longer affect the subsequent search.

The fAIM model of priming of pop-out
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Both relational- and goal-dependent priming seem to contradict the simple conceptualiza-

tion of priming as the automatic weighting of target- and distractor features. However, because

there is very little clarity on what ‘feature weighting’ actually is, it is hard to determine whether

these findings truly warrant a different explanation of priming. For the case of relational prim-

ing, it has indeed been argued that the finding is consistent with a theory of absolute feature

weighting [20]. Similarly, the extent to which goal-directed effects on visual attention should

be attributed to automatic, (goal-independent) priming is strongly debated [23, 24]. However,

we feel these debates will remain unresolved and vulnerable to much ambiguity until we con-

struct a more detailed hypothesis of how priming effects arise in the brain.

To bring theoretical clarity, we set out to provide the first comprehensive, explicit, compu-

tational account of intertrial priming. We aimed to develop a model that is as simple and as

general as possible, and that is consistent with current views on visual search.

These considerations led us to use the AIM model (Attention by Information Maximization

[25, 26]) of bottom-up visual processing as a basis. AIM is a salience model, devised to describe

how certain locations in a visual scene come to be more conspicuous than others. Although

AIM is primarily derived from computational principles, its computations are highly consis-

tent with the organization of the human visual system. Crucially, the model does not rely on a

hand-crafted feature base (in contrast to most salience models [27–29], see [30] for a review).

Instead, it learns a sparse visual representation from the statistical regularities in visual input.

This approach ensured that we did not unconsciously rely on custom-built representations

that had been chosen or modified to explain the priming phenomena of interest.

We present fAIM (feature-weighted AIM), which is essentially AIM extended with a single

computational step in which the ‘gain’ of visual feature channels can be modulated. For pop-

out visual search, we propose that this modulation can arise from only two processes: accom-

modation to recent visual experience, and an up-regulation of those features associated with

detecting the target stimulus. Here, we show that this minimal approach to priming can

account for a surprisingly wide range of effects, including classical priming effects and their

time course, relational priming in various dimensions, and task-dependent priming.

Analysis

The AIM model of bottom-up visual processing

The AIM model consists of two distinct phases: (1) the computation of sparse feature base to

represent visual information, and the computation of salience maps. Here, we will give a con-

ceptual outline of both. For more implementation detail, we refer to the Supporting Informa-

tion S1 Text, or the original publications on AIM [25, 26].

Visual features. The feature basis used in AIM represents a sparse code for visual infor-

mation. This representation is derived from the natural statistics of typical visual input. To this

end, a large number of small image patches is extracted from a collection of natural color pho-

tographs (we have used the SUN Database [31]). Then, Independent Component Analysis is

performed on these patches, to derive a sparse spatiochromatic basis that define the features

(Fig 1A). All simulations in this study utilized the same component analysis, which yielded 54

features that explained at least 95% of the variance in visual input. These components make up

the visual features that are used in the salience computation.

Interestingly, these features have response profiles that resemble those of neurons in early

visual areas, suggesting that our visual system indeed implements such a sparse visual repre-

sentation. (See [32–35] for a more extensive argument for such a sparse visual code in the

brain, and see [36–38] for other successful applications using similarly derived visual

representations.)

The fAIM model of priming of pop-out
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Self-information and visual pop-out. AIM defines salience as the ‘uniqueness’ of a loca-

tion in the visual scene with respect to its surround. From an information theoretic viewpoint,

such uniqueness is measured by the amount of self-information [39], which is a function of

how likely the visual input at that location is. AIM computes the likelihood at a location by

constructing image histograms for all the feature values surrounding that location. From these

histograms the model estimates the joint probability of the particular combination of feature

values found at a location.

In the simplest implementation of AIM, the ‘surround’ is defined by the entire image.

This way, the feature histograms only need to be constructed once, which can be used to

determine self-information at each location. This is an oversimplification, as it renders the

model insensitive to local variations in feature frequency. Effects of local contrast can be

incorporated into AIM by computing different feature histograms at every location, based

on the local surround. However, this comes at a large computational cost and has been

shown to yield only small improvement of performance [25]. Therefore, we will here also

adopt the simpler implementation.

AIM can take any input image and produces a salience map that marks conspicuous loca-

tions. As is common for salience map models, its performance has been validated by compar-

ing these maps to fixation data of human observers [40]. The present work aims to simulate

human performance in singleton search, indexed by response times (RTs) and the amount of

fixations on the target. This requires a single measure of pop-out that can be used to compare

the model to empirical data. We derive this measure from the salience maps as the extent to

which the average salience value of the target differs from the average salience value of all sti-

muli in the image.

Fig 1. A The features that are used in AIM and fAIM are derived from the statistics of visual input. By means of an independent component

analysis (ICA) performed on a large image database, features are obtained that have response properties similar to those of neurons in low-

level visual areas. B In AIM, the response of each of these features is used to generate one ‘salience map’ for each feature channel, based

on the principle of self-information. The sum of these maps across all channels yields the overall salience at each location. C fAIM

additionally assigns a gain to each feature channel that weights the feature’s contribution to the overall salience. The channel gains are

adjusted on every trial, as a function of target- and distractor salience values within a channel.

https://doi.org/10.1371/journal.pone.0187556.g001

The fAIM model of priming of pop-out
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The fAIM model

In AIM, each feature channel contributes equally, and total salience is determined as the sum

of self-information in each feature channel (Fig 1B). fAIM generalizes this model and assigns a

dynamic weight or ‘gain’ gf to each feature channel (Fig 1B). These gains are equal at initializa-

tion, and are modulated throughout sequences of search trials.

We assume that two distinct processes affect the gains of different feature channels to func-

tionally inhibit or excite them on a subsequent trial. Evidence for a dissociation between exci-

tation and inhibition can be observed behaviorally in the individual variation across observers

[15]. We relate the down- and up-regulation of gains in singleton search to two distinct pro-

cesses: First, features that have previously yielded high salience values will have a discounted

gain on the subsequent trial. This reflects the fact that repeated presentation of a visual stimu-

lus will reduce its salience [25, 29], which is characterized by attenuated responses in the brain

[3, 41, 42]. Second, features that evoked high salience in the target will have a positive gain

change, which may reflect a strengthening of synapses triggered by the inherent reward in

finding a target. The resulting intertrial gain modulation for each feature channel f in our

model is defined as:

Dgf ¼ we
�ST

f � wi
�SA

f

where �ST
f and �SA

f refer to the average salience value within channel f for the ‘Target-’ and of

‘All’ stimuli respectively. The parameters we, wi scale the relative contribution of positive

(excitatory) and negative (inhibitory) gain modulations: they function as positive and negative

learning rates, respectively. Although they are separated in this equation to highlight how they

likely reflect different processes, we = wi = 1 in all simulations that follow. As such, they reflect

a single scaling parameter of the magnitude of priming effects. Of note, none of the other

parameters in the model have any qualitative influence on the results, which rely on changes in

stimulus salience, expressed in arbitrary units.

Note that the computation of gain modulations is equivalent to our definition of stimulus

pop-out: both rely on the salience contrast between the target and distractors. Priming will

therefore increase the gain of those feature channels that contribute to this contrast, thereby

increasing target pop-out in a repeated display. One interpretation of this is that priming thus

regulates the gains of feature channels in correspondence with the signal-to-noise ratio within

these channels [43, 44].

It would be implausible to assume that effective gain changes in the brain would occur line-

arly and unbounded. This would, after sufficient repetition, render the brain wholly unrespon-

sive to certain visual input. We therefore constrained the gains in our model between a lower

bound of 0, and an upper bound of twice their starting value. These limits were enforced via a

sigmoid function, which rendered gain changes incrementally smaller as they approached

these bounds.

Comparing fAIM to intertrial priming experiments

We compared model performance in simulations of several key experiments of priming in

visual search. Images resembling the visual displays from these experiments were used as

input, and the model produced a measure of pop-out P, in the manner discussed above. More

detail on the stimulus displays is given as supporting information S2 Text.

Typically in these experiments the difference in performance on repetition and switch trials

is taken as a measure of priming. The model implementation allows us to isolate the priming

effect of different trial combinations by comparing target pop-out to baseline pop-out without

The fAIM model of priming of pop-out
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priming, i.e. with equal gains for all feature channels. Priming effects can be quantified in the

model as the change in target pop-out (labeled ΔP) evoked by different trial combinations.

The comparison of these model priming effects to the experiments will be qualitative. For

each experimental condition, fAIM produces a deterministic value that reflects the change in

salience due to priming (ΔP). With empirical data, experimenters have to rely on indirect mea-

sures of pop-out (e.g. RT, the amount of first fixations on a target item, or response accuracy).

It is beyond the scope of the present work to assess how the model priming measure quantita-

tively relates to RT distributions or error percentages, but we assume that ΔP monotonically

maps onto average priming effects found in experiments, be it indexed by RT or as a propor-

tion of fixations. As such, the model should be able to account for the presence or absence of

priming in a given condition, and to some extent for the size of effects in different conditions

within one experiment.

Results

Feature priming of pop-out with two stimuli

Our first simulations assess fAIM in a ‘standard’ priming of pop-out paradigm, with two possi-

ble stimuli. Each input image contained either a green target circle among red distractor cir-

cles, or vice versa.

Fig 2A illustrates the effect of both repetition- and switch conditions on the output salience

values of the four different stimuli (ΔS). The repetition effect is visible in this figure as

increased salience (lighter hue) for the upper left target in the case of a repetition relative to a

switch. It is clear from this figure that priming more strongly affects the salience of the edges

of the stimuli than the center. This is because the majority of the features are variable types

of edge detectors, and changes in their gain will thus have less effect on the center of the stimu-

lus. It may seem surprising that the change in salience is positive at both the target and the

Fig 2. A The change in salience ΔS of the target (top left stimulus) and distractors, averaged across repetition and switch trial pairs. Priming

enhances the salience of both targets and distractors relative to baseline, but for repetition trials this increment is higher for targets than for

distractors. After a switch, their difference has decreased. B As a result, priming only enhances target pop-out for those trial combinations

that constitute a repetition. The effects of repetition or switches for opposite trial combinations are not necessarily identical in magnitude. In

this and all subsequent figures, red colors are used to either indicate a switch trial, a decrease in gain, or a decrease in target-pop-out

whereas the color blue is used for repetitions and increases in pop-out.

https://doi.org/10.1371/journal.pone.0187556.g002

The fAIM model of priming of pop-out
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distractor locations in both conditions, and that priming thus enhances the salience of both in

fAIM. The reason for this is that since the target is a unique singleton, it will likely ‘pop-out’

to some extent in most feature channels. As a result, the gain change will be positive for most

feature channels, resulting in an increase in overall salience. However, critical to the ease of

the search (or: the amount of pop-out P), this change in salience differs for the target and the

distractors. The net result is a larger difference in salience between the two when the target

repeats, and a smaller difference when the target switches.

Fig 2B illustrates this net pop-out change ΔP for the four possible color combinations. This

figure also illustrates that the amount of priming is not necessarily symmetric between two col-

ors. Here, increases and decreases in pop-out are somewhat more pronounced for trial pairs

that had a red target on the preceding trial. This is the consequence of an asymmetry in the

baseline red-green and green-red salience in AIM. Interestingly, we have have observed such a

color asymmetry ourselves in several psychophysical experiments, although they are rarely of

primary interest and tend to vary across participants. Often, RTs are found to be faster for red

targets than for green targets.

Note that the intertrial ‘distractor enhancement’ that is shown in Fig 2A only occurs for the

first few trials in a sequence. Fig 3A illustrates priming throughout a random sequence of 60

trials, relative to the amount of pop-out in the baseline salience map. The first trials show an

overall increase in pop-out for both repetition and switch-trials, i.e. nonspecific facilitation of

the search. This is not unlike the first trials in an experiment, where observers quickly adapt

to the task parameters (although such startup effects probably also reflect learning processes

other than priming—such as general task acquisition and response preparation). Once the

gains are in a range that is appropriate for the task, repetitions and switches strengthen and

decrease the ease of the search, respectively, in a manner that is commonly observed during a

pop-out visual search. Once the weights are in a stable regimen, the pattern of repetition and

switch-trials resembles that of RTs in typical priming of pop-out experiments [45].

The evolution of gains for the sequence shown in Fig 3A is depicted in Fig 3B. In this figure,

blue shading indicates an increase of the gains relative to baseline, and red indicates a decrease.

As was explained above, the gains predominantly increase, although some gains become

smaller. Importantly, this figure also highlights that in fAIM, priming is not determined by

one, or a few features alone. Rather, the majority of visual features will modulate their gains in

response to the visual input, which taken together gives rise to priming effects.

The sequential effects that arise in such a trial sequence are summarized in Fig 3c, which

depicts the amount of pop-out P given that the target is either a repetition or switch compared

to the target k trials in the past (following [5]). As has often been found, priming decays over

some 5-8 trials [5, 16, 17].

In all following simulations, we will only measure priming as the change in target pop-out

ΔP relative to the baseline level, as shown in Fig 2B.

Relational priming in various stimulus dimensions

Fig 4A illustrates empirical data [20] for the relational priming effect that was described in the

introduction: when stimulus values vary from yellow to red, then only trial pairs where the tar-

get-distractor relation reverses yield switch costs, and pairs where the relation remains the

same yield priming benefits. To investigate this effect, we defined six different stimulus dimen-

sions, modeled after stimuli that have been used in experiments to elicit relational priming [18,

20, 21]: two color gradients (blue to green and yellow to red); luminance (darker to brighter);

size (smaller to larger); and two more abstract shape dimensions: stars with an increasing

number of spikes; and regular polygons with an increasing number of edges. We define four

The fAIM model of priming of pop-out
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Fig 3. A Priming, measured as the change in target pop-out ΔP, throughout a trial sequence simulated with

fAIM. The scale has been inverted because increases in ΔP should yield decreases in RT, the common

empirical measure. At the start of a sequence, both repetition and switch trials tend to increase target pop-out

compared to baseline. Later in the sequence, the fluctuations in priming across repetition- and switch-trials

match those in typical experiments [45]. B The gain change relative to baseline for all feature channels.

Increases are depicted as blue shading, decreases in red, and the baseline value in white. Most gains

increase, but the magnitude and direction of these changes varies across features. The observed priming

effects result from this concert of gain modulations. C Target pop-out as a function of whether the target

The fAIM model of priming of pop-out
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stimulus values along each dimension, and create a display for each possible target-distractor

combination (4 × 3 = 12 displays). Each display contained one target stimulus, and three dis-

tractor stimuli. We compute the intertrial priming effect for each of the 12 × 12 = 144 possible

intertrial combinations.

Fig 4B–4G depict the priming effects produced by the model for every possible trial combi-

nation in each simulated stimulus dimension. For these figures, displays were sorted based on

the ‘feature distance’ between target- and distractor values. The x-axis corresponds to the dis-

play index on trial n − 1, and the y-axis to the index on trial n. The colors of the tiles mark the

resulting change in pop-out, with blue shading marking an increase in pop-out, and red shad-

ing a decrease. Note that because of the way the x-and y-axes are sorted, the bottom-left and

top-right quadrants group trial combinations with a relation repetition (RR), and the top-left

and bottom right those combinations where the relation switches (RS); The tiles on the diago-

nals correspond to Full Repetitions (FR) and full switches (FS) of targets and distractors. Each

plot is accompanied by a bar chart summarizing relational priming as the average pop-out

change in FR trials, RR trials (excluding FR), RS trials (excluding FS), and FS trials.

The figures show that fAIM gives rise to relational priming: The overall change in pop-out

is clearly different for RR and RS trials. Increases and decreases in pop-out, marked by blue

and red shading, are clustered and coarsely confined to RR and RS trials, respectively. For

some dimensions clustering is particularly clear, such as for the blue-green color dimension or

the luminance dimensions. The accompanying bar chart shows there is approximately equal

priming for FR and RR trials, and equal switch costs for FS and RS trials. In other dimensions,

such as for the polygons, positive and negative priming effects are somewhat less well confined

to stimulus relations. From their bar charts it can be observed that priming is larger for full

repetitions and switches than for merely relational repetitions and switches. This has similarly

been observed empirically [20].

Taken together, these simulations demonstrate that relational priming effects arise in fAIM,

a model that does not use an explicit relational code.

Relational priming of complex shapes

In the preceding simulations, relational effects were less consistent for the polygon search

dimension than for the other stimuli. There are several mismatches between our simulations

and the exact experiment that could underly this. For example, the orientation of the stimuli

was always the same in our simulation, whereas stimuli were randomly rotated in the experi-

ment [21]. We therefore ran additional simulations that more closely corresponded to the

design of the original experiments on relational priming in shapes.

In the original experiment, relational priming was studied using blocks with two types of

search displays. Each display type was characterized by a specific predefined Target-Distractor

value combination. Display types would repeat or switch unpredictably. Every display con-

tained one target and seven distractors, evenly distributed on a circle, and each stimulus in a

display had a random orientation. Performance was quantified by the proportion of trials

where the first eye movement landed on the target singleton. Relational priming was assessed

in a block, measured as performance differences on trials where the display type repeated or

switched.

The precise display types (i.e. target-distractor combinations) that were used in different

blocks are summarized in Table 1. The numbers in this table correspond to either the number

repeats or switches compared to k trials ago (scale again inverted). Simulated priming decays over 5–8 trials,

as is commonly found in the literature.

https://doi.org/10.1371/journal.pone.0187556.g003

The fAIM model of priming of pop-out
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Fig 4. A Typical data for relational priming measured as the change in RT (in ms) compared to the average

across all conditions (y-axis inversed). Full repetitions (FR) and switches (FS) of target-and distractor roles

yield repetition benefits and switch costs, respectively. Similar priming is observed for combinations where the

target-distractor relation repeats (RR) or switches (RS). Data from [20]. B-G Simulation results for all possible

trial combinations in six different visual feature dimensions. Dark blue and dark red sections of the grid

indicate trial combinations with strong priming and switch costs, respectively; light shading indicates minimal

priming effects. The x- and y-axes mark all possible display combinations for trial n − 1 and n, respectively.
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of spikes on the stars or the number of sides on the polygons. Asterisks mark intertrial combi-

nations where the target value remained constant. In each pair, the first digit refers to the value

of the targets, the second of the distractors. The original study on relative shape priming also

reports from an experiment with stimuli of increasing ‘complexity’; however, complexity

increases in this study coincided with increases in stimulus size, a confound that was also

acknowledged. Since our simulations already showed strong relational effects of size, so we

omitted that experiment from our simulations. All stimuli used in these simulations have an

identical surface area.

For our simulations we generated fifteen trials for each condition in each block, with ran-

domly rotated stimuli. Priming was computed for all possible trial combinations, excluding

the repetition of identical displays (as display repetitions with identically rotated stimuli would

not have occurred in the original experiment). The resulting priming values were averaged

across trial combinations with display type repetitions, compared to switches.

The results for the three simulated experiments are summarized in Fig 5 (left), and the

mean empirical data are depicted for comparison right. To facilitate the comparison, a con-

stant baseline (c = .1) was added to all simulation results, to yield visually similar graphs. In the

empirical data, the repetition of a display type was statistically different from switches only in

those blocks where a switch constituted a relation switch (RS) or a full switch (FS). For those

blocks where the different display types had the same relation (RR), no significant difference

was found. For fAIM, these effects can be inspected by considering the difference in the

amount of priming exerted by display type repetitions versus switches. As is is clear in these

figures, this difference is strongly attenuated or completely absent in those blocks where the

stimulus relation remains the same across display types.

To a large extent, the model also captures the relative magnitude of the priming effects. For

example, in both star experiments, the relational priming effect is greater in the FS-condition

than in the RS-condition. For the polygon experiment, the priming effect is smaller in the rela-

tion-switch-block where the target remained the same throughout (RS�) than where it did not

(RS).

Relative and absolute attentional capture

The simulations presented above illustrate that relational priming effects are produced by

fAIM, a model that implements priming through gain changes in its feature base. This imple-

mentation seems to argue for an absolute feature weighting account, rather than a relational

Axes are sorted based on the target-distractor feature distance. As a result, intertrial relations are clustered:

RR in the lower left and upper right quadrant, RS in the upper left and lower right quadrants, and FR and FS

on the diagonals. The bar graphs summarize the priming effects in these conditions. All dimensions yield

relational priming with increased pop-out when the relation remains identical, but decreases when the relation

reverses.

https://doi.org/10.1371/journal.pone.0187556.g004

Table 1. Target–distractor combinations for relational priming with shapes.

Condition Label Stars (A) Stars (B) Polygons

Full Switch FS 5–7, 7–5 7–9, 9–7

Relation Switch RS 5–7, 9–7 3–6, 4–3

Relation Repeat RR 5–9, 7–9 5–7, 7–9 3–4, 4–8

Relation Switch (constant target) RS* 7–5, 7–9 5–3, 5–10

Relation Repeat (constant target) RR* 3–5, 3–10

https://doi.org/10.1371/journal.pone.0187556.t001
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Fig 5. Relational priming of ‘higher level’ shape representations is found both empirically (left) and with fAIM (right). Stimuli are

described in Table 1. In the simulations, priming is quantified by the change in pop-out (ΔP), and a single constant has been added to these

scores. The resulting values are proportional to the measure used in the empirical data: the mean percentage of first fixations on the target,

reported in [21]. Critically, priming of display type is only observed in blocks where switches result in a relational switch (with repetition of the

target stimulus, RS* or without, RS) or a full switch (FS), and not for blocks where the relation only repeats (RR* and RR).

https://doi.org/10.1371/journal.pone.0187556.g005
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code for feature guidance. Because of this contrast, it is of interest that relational attention

effects have not only been reported in the context of intertrial priming. In a set of studies inves-

tigating attentional capture with consistent target- and distractor features, it was shown that an

additional singleton can capture attention in similar, relational fashion [46]. Interestingly, one

experiment additionally showed that such relative attentional capture could be modulated, and

that attention could be ‘trained’ to be driven by absolute rather than relative feature values

[47]. In the present section, we explore these effects to investigate whether relative capture

might also arise in the visual representation put forward by fAIM.

To this end, we simulated this experiment [47, Expt 3] (Fig 6A). In the singleton search con-

dition of that experiment, participants consistently searched for an orange target among three

yellow distractors, each randomly positioned on one of four fixed locations. Either on the left

or on the right of these stimuli, an additional distractor item was presented that was never the

target and had one of five colors that ranged from yellow to red. Of interest was the amount of

oculomotor capture by this distractor, which was assessed as the percentage of first fixations

that went to this distractor item. Capture was found to be relative: the eyes were captured

more often by distractors that were more red compared to those that were more yellow (sum-

marized in Fig 6B as ‘Baseline’, light blue curve). Note that this was found even though the tar-

get was consistently orange, the redder distractors would capture the eyes more often than an

orange distractor. The experiment additionally contained blocks with a reversed relation,

where the target was orange among red, which yielded conceptually identical results. The same

held for our simulations of this condition, and these results are therefore not reported here.

To explore these results with fAIM we computed a salience map for singleton search dis-

plays like those in the experiment, and computed the amount of pop-out of the additional dis-

tractor item for each of its five possible color values. The result is plotted as ‘Baseline’ in Fig 6C

(light blue curve). The level of pop-out increases approximately linearly across stimulus values

Fig 6. Relative and absolute attentional capture in the additional singleton paradigm. A The displays used in the experiment [47] and

simulations. In both feature- and singleton search, the target is always orange. During feature search, the target is embedded among more

red and more yellow non-targets. During singleton search, the non-targets are always yellow, and an additional singleton distractor is added

with a color value anywhere from yellow to red (disks labeled 1–5). B Participants who first engage in singleton search show relative capture:

fixations on the distractor almost linearly increase as it becomes more red (Baseline, light blue curve). Participants who first ‘train’ in feature

search show absolute capture in subsequent singleton search, where the eyes are drawn most to an orange distractor (After Training, dark

blue curve). C Simulations with fAIM reveal that with homogeneous feature weights, salience of the distractor in singleton search

corresponds to relative capture (Baseline, light blue curve). The average priming effect elicited in a feature search block boosts the salience

of orange stimuli, and attenuates the salience of yellow and red items (Average priming, red curve). If a scaled version of this priming effect

is added to the baseline curve, it gives rise to absolute, rather than relative capture (After Training, light blue curve).

https://doi.org/10.1371/journal.pone.0187556.g006
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ranging from yellow to red, which is very similar to the experimental data pattern. What this

suggests is that relative capture in singleton search does not necessarily reflect relative feature

guidance: AIM (and thus fAIM) predicts a similar pattern of relational pop-out, based purely

on the physical salience within the display.

Critically, a subset of participants in the experiment engaged in a feature search task in the

first half of the experiment, before performing the singleton search. During feature search the

target was also orange, but it was on each display accompanied by different distractors that

could be both more yellow and more red. Strikingly, these observers, who first engaged in fea-

ture search, showed a somewhat different pattern of capture during the subsequent singleton

search task. Capture was a combination of relative and absolute: red items still captured the

eyes more often than yellow items did, but orange items captured the eyes even more often

than red items did (Fig 6B, ‘After training’). This effect was robust, as it did not seem to attenu-

ate over the course of the singleton search trials.

Such long-term effects are not modeled by fAIM in its current form: the priming effects it

models will dissipate within 5–8 trials (Fig 3C). Nevertheless, we show here that the model can

offer insight into the nature of such guidance, as it is closely related to the gain modulations in

intertrial priming.

We let fAIM process a sequence of 25 feature search trials, and modulate the gains in the

same way as before. After every trial, we independently assessed how these gain modulations

affect the pop-out of the additional distractors in the display used in singleton search. This

yielded a ‘priming effect’ of the feature search on each possible distractor value. The average of

these priming effects is depicted in Fig 6C as ‘Average priming’ (red curve). The curve shows

that priming exerted by feature search trials increases pop-out for an orange distractor, and

attenuates pop-out of red and yellow distractors. If this effect is scaled (multiplied by a con-

stant, 8.0), and then added to the baseline salience of these stimuli in the singleton display, the

result is very similar to the empirically observed amount of capture across stimuli (compare

Fig 6B and 6C, dark blue curves labeled: ‘After Training’).

This simulation illustrates that the long-lasting absolute guidance that was found after fea-

ture-search could reflect a stronger, more pronounced expression of the same mechanisms

that govern intertrial priming. An obvious difference, however, is their time course. It seems

that feature search can give rise to long-lasting modulations of attention to particular features,

whereas priming in singleton search is only short-lived (see also [6, 7, 47–49]). This point is

addressed further in the Discussion.

Is priming modulated by the relevance of the dimension?

Priming in fAIM is established by weighting feature channels, dependent on their contribution

in dissociating the target from the distractors. Priming is therefore considered a by-product of

target selection, which will affect subsequent visual processing, regardless of the upcoming

task. This view is at odds with the goal-dependent priming hypothesis [22]. This hypothesis

was based on an empirical observation that the effects of target repetitions or switches in a

dimension that becomes task-irrelevant are smaller than what would be expected if priming

results from absolute feature weighting. Here, we re-examine the experiment that gave rise to

the goal-dependent priming hypothesis by simulating it with fAIM.

In this experiment, participants were presented with displays with two singletons: one

shape- and one color singleton (Fig 7C). Before display onset, participants were instructed

which singleton was the target, which rendered one dimension relevant and the other task-

irrelevant. Priming through repetition of irrelevant target features was so small as to be statisti-

cally insignificant. However in the analysis, priming was only considered as a function of
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repetitions or switches of the properties of the target singleton. This ignores the effects that

priming might have had on the distractor stimuli. We therefore assessed the levels of priming

predicted by fAIM in this experimental design. As fAIM takes the whole image into account, it

can uncover whether an absolute priming account would truly predict a different result than

what was found.

Simulations were run to compute priming for all possible trial pairs in the experiment. To

make model output comparable to the RTs in the empirical data, model output was trans-

formed by subtracting the predicted change in target pop-out from a preset constant baseline

(c − ΔP; with c = .4 for the color task and c = 1.0 for the shape task, to reflect their difference in

overall difficulty). Subsequently, scores were aggregated for trial combinations in which the

task relevant or irrelevant feature was repeated or not, separately for color- and shape tasks.

Our simulation results are depicted in Fig 7, alongside the mean RTs observed in the study.

Much like the empirical data, repetition effects are strongly attenuated for target repetitions

and switches in the task-irrelevant dimension.

How can fAIM produce goal-dependent priming effects if it has no representation of its

goal? The answer can be found in the intertrial contingencies embedded in the experiment.

Consider, for example, the scenario where trial n is a ‘color-trial’:

• If the target on trial n − 1 was also defined by its color, then features that helped dissociate

this target based on its color were boosted. On trial n, the target is again defined by color.

Therefore, repetitions or switches of the irrelevant dimension—the shape—can either be

accompanied by a repetition or by a switch in the relevant dimension. The net result then is

that shape repetitions or switches produce little to no priming.

• If a target on trial n − 1 was defined by its shape, then features that helped dissociate this tar-

get based on its shape will be boosted. Since on trial n the target will be defined by color this

implies that, by task design, all but one of the non-targets have the same shape as the target.

The feature modulations that affect the salience of the target, will therefore similarly affect

the salience of these non-targets. The net-result is that the level of pop-out of the target stim-

ulus with respect to the rest of the display is hardly affected by both repetitions and switches

of shapes. On trial n, the target is now defined by color. If the target’s shape repeats, the

homogeneous non-targets necessarily will have the same shape as the target, and priming

Fig 7. A Two example displays used in the simulations. Every display has two separate singleton stimuli, either a color singleton or a shape

singleton. B Empirical data from [22]. Priming is strongly attenuated for repetitions and switches in the dimension that is irrelevant for the

current task. C Simulations with fAIM. Bars represent the simulated priming effect ΔP, subtracted from a baseline c. A different baseline was

assumed for the color task (c = 0.4) than for the shape task (c = 1.0), reflecting the apparent difference in difficulty. A similar task-dependent

modulation is found, even though fAIM does not take task into account.

https://doi.org/10.1371/journal.pone.0187556.g007
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will yield little benefit. Similarly, if the shape switches, this would negatively affect the

salience of both the target and the non-targets, and the priming effects would be limited.

A similar argument can be made for the opposite scenario, where trial n is a ‘shape trial’.

The simulations with fAIM thus reveal that neither a representation of goal, nor goal-

dependent modulations of priming are necessary to give rise to these findings. We therefore

conclude that the task-dependent modulation of priming of pop-out that was taken as evi-

dence for goal-dependent priming, is likely to reflect an epiphenomenon caused by intertrial

contingencies in the experiment, rather than a true modulation of priming by the current

goals of the observer.

Discussion

In this study we have presented fAIM, a computational model of intertrial priming in bottom-

up driven visual search. The model shows how visual search trials give rise to modulations of

the gains of different visual features, which causes the visual system to tune to the task at hand.

fAIM was constructed with minimal assumptions and designed by implementing a priming

mechanism within an established model of bottom-up visual salience. The model implements

priming as a result of feature weighting, which has often been proposed to underlie priming

[5, 14, 16, 50–54], sometimes in the form of dimension weighting [55]. What makes fAIM dif-

ferent is that it offers an in-depth perspective of what feature weighting entails for bottom-up

visual processing. Our simulations with fAIM led to the following results:

• Priming of Pop-out can be successfully simulated with fAIM. It is found for classic stimulus

properties such as colors, but also for less obvious ones such as ‘spikiness’ of star-shapes.

• Priming in fAIM is not restricted to a single feature that is boosted or inhibited, but results

from patterns of change over all features.

• Thus, priming is part of a general adaptation to the task as a whole, and not just to target-

and distractor features in isolation.

• Relational priming effects can emerge through the absolute weighting of independent fea-

tures, without a representation of stimulus relation.

• Results suggestive of goal-dependent priming can emerge through the stimulus interactions

within a display, without any representation of the current goal.

Much like most empirical work on priming, other computational models of priming [54,

56, 57] only consider whether target- and distractor features repeat or switch roles across trials

[56, 57]. fAIM, on the other hand, models how visual experience impacts the entire visual

representation, and how this in turn results in priming. Consequentially, repetition effects are

not limited to the precise stimulus values that caused it, which explains how the model natu-

rally produces relational priming and goal-dependent priming. These successes simulta-

neously provide new evidence that a visual representation as proposed by AIM is a reasonable

model of visual processing.

Interestingly, one way to interpret the workings of fAIM is that the multivariate representa-

tion of salience inherently gives rise to a ‘relational code’. That is, those feature channels that

respond strongly to, e.g., orange-red stimulus contrast are similarly involved in yellow-orange

contrast, and are different from those involved in orange-yellow contrast. As such, the model

demonstrates how relational guidance can emerge from absolute feature weighting, which is a

mechanism that previous treatments of relational guidance of attention [19–21, 44, 47] never

have put forward.
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While the idea of feature weighting is widespread in the priming literature, it remains

unclear what mechanisms would cause up- and down-regulation of feature gains. Although

our simulations are consistent with various possible mechanisms, we have suggested that two

processes underlie gain modulation in singleton search: accommodation to visual input, and

reward-based learning through the intrinsic reward of finding a target. The idea that the up-

and down-weighting of features result from dissociable processes has received some empirical

support [12, 15, 58], and both processes have been alluded to in the literature. Priming has pre-

viously been linked to Repetition Attenuation, a decrease in neural activity in response to stim-

ulus repetition, which has been observed throughout the brain in neural imaging studies [41,

42]. Many computational models of visual salience already incorporate the idea that repetition

of features in time reduces their salience [25, 29, 59]. Likewise, the idea that target boosting is

caused by the intrinsic reward of finding a target is supported by studies that show increased

priming for targets associated with reward [60–62]. A major advantage of expressing feature

modulation in terms of accommodation to input and reward-mediated boosting is that it

allows us to approach priming as a natural consequence of known processes, rather than a sep-

arate mechanism introduced to explain priming effects.

In the present work we have largely focused on experiments where the target is a singleton.

The simulations with fAIM show how well the results in these tasks can be captured without

an explicitly represented goal or a representation of a target template; terms typically associ-

ated with ‘top-down’ attention. The presented mechanisms may not suffice to model behavior

in search where the target is not at all salient, such as in conjunction search, or tasks where a

distractor singleton is much more salient than the target and requires active suppression. In

such cases, fAIM would still be useful as a model of the bottom-up representation that the top-

down processes operate on, for example to infer search conditions that require more or less

cognitive control to overcome bottom-up distraction. Also, the model could be used to gain a

better understanding of what such cognitive control would actually entail; what features can

and should actually be modulated to successfully select target items [23, 63]?

Finally, we feel fAIM could help dissociate the processes that determine repetition effects in

feedforward-driven search and repetition effects in more effortful, goal-driven search. Strong

differences do seem to exist between the two, in particular with respect to their time course. In

our current implementation, the effects of priming only last a few trials, as each gain modula-

tion overwrites previous modulations. Although this is often observed in singleton search [16,

56], priming effects in other types of search might be more persistent. We have previously

reported on long-term priming in conjunction search [7] that caused persistent attentional

biases towards targets that were presented more often. No such pattern was found for singleton

search. The absolute feature guidance experiment that we simulated in this study can be inter-

preted in similar vein: priming was driven by relative stimulus values throughout a singleton

search block with a constant target. However, a block with an absolute feature search had

much more persistent effects, that modulated visual salience in future blocks. This is compara-

ble to findings on the ‘attentional set’, that is acquired after training on a visual task [6, 64, 65].

Using fAIM as a basis, future work could look at the top-down modulations that these tasks

require, and relate those to the longer lasting learning that occurs in such tasks.

There are also limitations to fAIM. First, the output of the model is a salience map, and how

this output translates to measures of search performance (RT, eye movements or accuracy)

must be further developed. Other models, have simulated the quantitative relation of priming

to RT and accuracy measures in much more detail [54], and future work could combine these

models to go beyond qualitative analyses of fAIM. Second, our work does not cover response-

and position priming that usually co-occurs with feature priming in singleton search. How-

ever, this does not invalidate the present results as these different forms of priming have
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usually been found to be independent [53, 66–68]. Third, fAIM constructs its salience map at a

single spatial scale, ignoring the hierarchical organization of the visual pathway. One can imag-

ine a hierarchical visual representation based on similar principles, where higher order maps

encode regularities in the low-level output [38, 59]. This might allow for interactions between

stimuli across larger spatial distances that are currently neglected in fAIM.

We conclude that fAIM offers new insight into visual priming by emphasizing the wealth of

information in the visual representation. The model describes how this wealth can be used by

the brain to adapt our senses to the stimuli it will likely have to deal with in the future. This

highlights how priming is more than just a peculiarity arising in visual search experiments.

Instead, it is an expression of an adapting brain in a dynamic environment.
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