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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected individuals that have hypertension or
cardiovascular comorbidities have an elevated risk of serious coronavirus disease 2019 (COVID-19) disease and high rates of
mortality but how COVID-19 and cardiovascular diseases interact are unclear. We therefore sought to identify novel
mechanisms of interaction by identifying genes with altered expression in SARS-CoV-2 infection that are relevant to the
pathogenesis of cardiovascular disease and hypertension. Some recent research shows the SARS-CoV-2 uses the angiotensin
converting enzyme-2 (ACE-2) as a receptor to infect human susceptible cells. The ACE2 gene is expressed in many human
tissues, including intestine, testis, kidneys, heart and lungs. ACE2 usually converts Angiotensin I in the
renin-angiotensin-aldosterone system to Angiotensin II, which affects blood pressure levels. ACE inhibitors prescribed for
cardiovascular disease and hypertension may increase the levels of ACE-2, although there are claims that such medications
actually reduce lung injury caused by COVID-19. We employed bioinformatics and systematic approaches to identify such
genetic links, using messenger RNA data peripheral blood cells from COVID-19 patients and compared them with blood
samples from patients with either chronic heart failure disease or hypertensive diseases. We have also considered the
immune response genes with elevated expression in COVID-19 to those active in cardiovascular diseases and hypertension.
Differentially expressed genes (DEGs) common to COVID-19 and chronic heart failure, and common to COVID-19 and
hypertension, were identified; the involvement of these common genes in the signalling pathways and ontologies studied.
COVID-19 does not share a large number of differentially expressed genes with the conditions under consideration.
However, those that were identified included genes playing roles in T cell functions, toll-like receptor pathways, cytokines,
chemokines, cell stress, type 2 diabetes and gastric cancer. We also identified protein—protein interactions, gene regulatory
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networks and suggested drug and chemical compound interactions using the differentially expressed genes. The result
of this study may help in identifying significant targets of treatment that can combat the ongoing pandemic due to

SARS-CoV-2 infection.

Key words: SARS-CoV-2; COVID-19; coronavirus; cardiovascular; hypertension; differentially expressed gene; cell signalling

pathway and ontology.

Introduction

The present pandemic of coronavirus disease 2019 (COVID-19)
resulting from the highly contagious severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is a World Health Organi-
zation (WHO) declared global public emergency. As of December
2020, almost 300 countries and territories around the world have
reported more than 65 million confirmed cases resulting in over
one and a half million deaths [1, 2, 6] Recent studies have found
that some pre-existing conditions greatly increase the risk of
severe symptoms and mortality in COVID-19 patients. These
include pulmonary diseases, cardiovascular diseases, kidney dis-
ease, type 2 diabetes and hypertension [47, 56]. Sequential Organ
Failure Assessment (SOFA) scores have been reported signifi-
cantly greater in SARS-CoV-2 associated deaths [49, 69]. While
COVID-19 primarily affects the respiratory system in the early
stages of the disease, while it also affects the cardiovascular
system of patients, greatly increasing their risk of fatality [22,
28, 68]. Multiple studies reported elevated death rates in patients
with SARS-CoV-2 infections and increased levels of markers
of chronic heart failure [8, 30, 41, 69]. Similarly, studies found
hypertension as comorbidity is associated with an increased
risk of severe disease with SARS-CoV-2 infection. Huang et al.
found 32% COVID-19 patients with other health conditions, most
commonly hypertension and cardiovascular disease were at risk.
[17,27]. The most frequent comorbidities in patients with severe
symptomatic (such as acute respiratory distress) COVID-19 are
hypertension (27%) and cardiovascular disease (6%) [62]. Since
patients with COVID-19 and pre-existing cardiovascular diseases
and hypertension have increased risk of severe disease and
death, studies are needed to identify the interactions between
these diseases and COVID-19. Further the therapies under the
investigation for COVID-19 may affect cardiovascular disease,
hypertension or other significant comorbidities by influencing
the pathways that mediate their interaction with COVID-19.
Angiotensin Converting Enzyme 2 (ACE2) is known to play an
importantrole in facilitating SARS-CoV-2 cell entry [26, 44, 46, 65].
Expression of the ACE2 gene is reported in many human tissues
including intestine, testis, kidneys, heart, and lungs [36]. ACE
usually converts Angiotensin I in the renin-angiotensin- aldos-
terone system (RAAS) of human physiology to Angiotensin II that
affects human blood pressure. Further, this type I membrane
protein has significant physiological functions relevant to car-
diovascular diseases [70]. ACE2 interacts with SARS-CoV2 thus
it may have the potential gene-pathway associations to cause
vascular dysfunction that may lead to myocardial infarction
[20]. ACE inhibitors and Angiotensin receptor blockers (ARBs) are
used as treatments for hypertension and cardiovascular disease
[14] by modulating the RAAS pathway. These drugs inhibit the
RAAS and interrupt the activity of ACE and increase the level
of ACE2 receptors [9, 14, 31]. It is thus possible that these drugs
could increase cell entry for the virus and increase the damage
to the cardiovascular and respiratory systems. However, recent
studies found that increased ACE2 and ARB levels can actually be
beneficial in COVID-19, a point of considerable research interest

[18, 19]. This serves to illustrate the potential importance of
interaction among cardiovascular diseases and hypertension
with COVID-19.

In this work, we considered the interaction of COVID-19 with
chronic heart failure (CHF) and three types of hypertensive dis-
eases and idiopathic portal hypertension (IPH), pulmonary arte-
rial hypertension (PAH), and preeclampsia. CHF is a progressive
condition that reduces cardiac output and blood oxygenation
insufficiency, and up to two-thirds of cases of heart failure
with preserved systolic function occur in patients over 70 years
old are results from CHF. IPH is characterised by an increased
pressure gradient in the portal system without the presence
of a clear cause of liver disease or cirrhosis [25, 50]. PAH is a
condition of increased blood pressure within the arteries of the
lungs [4]. Preeclampsia is a pregnancy complication which is
characterised by hypertensive condition and in less developed
countries, it remains a major cause of maternal mortality with
over 60 000 maternal deaths worldwide due to preeclampsia
per year [67]. Several studies demonstrated that SARS-CoV-2
infection may increase the health risk to pregnant women due
to physiological changes occurred during pregnancy [13, 37].

We have found several significant cell signalling pathways
and gene networks that are commonly associated with these
diseases and SARS-CoV-2 infection on circulating human blood
cells. The pathways and gene expression ontologies were
identified through examination of the common differentially
expressed genes (DEGs) shared among the diseases. We have
considered a COVID-19 blood sample dataset as well as a COVID-
19 immune response dataset to determine the genes and path-
ways that are involved in the interaction between COVID-19 and
CHEF, IPH, PAH, and PE. We have also analysed protein-protein,
drug and chemical, and transcription and post-transcription
expression interactions networks using the signature genes.
The identified pathways and networks are associated with other
diseases that might lead to improved therapeutic approaches for
life threatening SARS-CoV-2 infections.

Results

Differentially expressed genes in whole blood reveal
genetic relationships between the COVID-19, chronic
heart failure and hypertensive diseases.

We identified the differentially expressed genes (DEGs) for each
of these datasets using the criteria that the adjusted P-value
(adj p-value) is less than 0.05 and the absolute value of log fold-
change (IogFC) is not less than 1. We identified 1289 DEGs from
the COVID-19 blood datasets. The number of identified DEGs for
CHF, IHP, PAH and PE were 1321, 247, 249, and 127 respectively.
The four volcano plots in Figure 1 show the significant genes for
CHEF, IPH, PAH and PE. The red dots in the volcano plots indicate
the significant genes. We have also performed a comparative
analysis to identify the common DEGs between COVID-19 and
the other four diseases. The number of shared DEGs among the
conditions is presented in Figure 1G. Our observation suggests
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Figure 1. Volcano plots show DEGs of (A) CHF (B) IPH (C) PAH (D) PE, with genes having log fold-change of at least 1 and adjusted P value <0.05. Heatmaps show the
relationships among DEGs based on (E) adjusted P value and (F) log fold-change (G) Venn diagram depicts the shared DEGs among COVID-19 and other conditions.
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Figure 2. Heatmaps show the relationships among DEGs based on (A) adjusted P value and (B) log fold-change for the COVID-19 immune dataset (C) Venn diagram

depicts the shared DEGs among COVID-19 immune system and other conditions.

that COVID-19 shares more DEGs with CHF and IHP as compared
to the other two conditions. Figure 1E and 1F show heatmaps
generated by the unique DEGs common to COVID-19 and each of
the other four diseases. Figure 1E shows the association between
COVID-19 and other diseases from the perspective of adj P-value,
while Figure 1F shows the association from the perspective of
logFC. These two heat maps show that the COVID-19 does not
share a large number of DEGs with the diseases under consid-
eration. We have found 15 shared DEGs between COVID-19 and
CHF, and the DEGs include ABCB1, CCL4, IGKC, MS4A2, CTSB
and SAP30. COVID-19 has only two common DEGS with PAH
including LTF and FCRL55. COVID-19 shares the highest num-
ber of DEGs with IPH compared to the other conditions. Some
DEGs among these include IGKC, EZH2, MK167, CD180, IGHA1,
IGHA2, BTK and KNL1. We have identified 5 (NUAK1, CCR1,
RHOT1, CNTLN and PLA2G7) DEGs common to COVID-19 and
PE.

DEGs of COVID-19 immune responses in common with
CHF and the hypertensive diseases

We have identified the DEGs from each of the diseases, and iden-
tified (Figure 2C) a number of overlapping DEGs among them. We
have also generated heat maps to show the association among
the overlapping DEGs. The heat map presented in Figure 2A dis-
plays the association between gene and diseases from the per-
spective of adj P-value, while the heat map is shown in Figure 2B
displays the relationship between gene and diseases in terms of
the values of log fold change. Similar to the previous analysis on
COVID-19 blood samples, COVID-19 immune response dataset
shares more DEGs with CHF and IPH compared to the other
two diseases (PAH and PE). The DEGs that are common between
COVID-19 immune response and CHF include BCL2, TRAF4, HLA-
DQB1 and XCL1. The four shared DEGs with IPH include CD28,
IL2RG, SLAMF7 and CR1. COVID-19 immune response share only
one DEG, which is CCR1 (C-C chemokine receptor type 1), with
PE.

Gene set enrichment analysis reveals significant
shared signalling and ontology pathways.

We identified the cell signalling pathways that involve the DEGs
common to COVID-19 and each of the other diseases, then
determined what other genes may play a role in those pathways.
In this enrichment analysis, we have combined all the DEGs that
discovered from peripheral blood cells and the immune response
cells of COVID-19. We identified the signalling pathways of the
commonly DEGs between COVID-19 and each of the diseases
using six global pathway databases include BioPlanet, BioCarta,
WikiPathways, KEGG, Reactome and Panther. We have integrated
the pathways from these databases, and plotted the top 25
most significant pathways based on the adj P-value as shown in
Figure 3. The pathways with higher logarithmic adj P-value are
highly enriched. For example, highly enriched pathways com-
mon to COVID-19 and CHF is T cell receptor regulation of apop-
tosis as shown in Figure 3A and in Supplementary Table 1. The
significant signalling pathways that we have identified in the
relationship between COVID-19 and PAH are mostly associated
with T-cell and HIV (Figure 3D and Supplementary Table 4) such
as nef and signal transduction, HIV-induced T cell apoptosis,
T helper cell surface molecules, nef in HIV-1 replication and
disease pathogenesis and tob roles in T-cell activation.

We also identified the gene ontology pathways by analysing
biological process category of gene ontology. Gene ontology for
each of the diseases with COVID-19 has been discovered. Figure 4
displays the most significant ontology pathways based on the
adj P-value. As we see from Figure 4B, Phagocytosis is a promi-
nent ontology pathway in the case of COVID-19 and IPH (also see
the Supplementary Table 6).

Protein-protein interaction analysis identifies
functional networks

We have constructed protein-protein interaction (PPI) network
using all common DEGs among COVID-19 and the diseases
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Figure 3. Top 25 cell signalling pathways between COVID-19 and the diseases of cardiovascular and hypertension. The signalling pathways discovered using the DEGs
for each of the condition and the combined genes of COVID-19 whole blood and immune samples. (A) shows pathways for CHF. (B) shows pathways for IPH. (C) and (D)

show pathways for PAH and PE respectively.

of cardiovascular and hypertension. We have considered the
shared DEGs discovered by analysis of gene expression profiles
of blood cells and immune response cells from patients with
COVID-19 and the other four diseases. The PPI network has
been constructed using a web-based visualisation resource

STRING [54], and the network is displayed in Figure 5 (also see
the Supplementary Table 9). The figure shows the involvement

and association among the signature genes in PPI network.

We

can also observe the relationship among the diseases from the

perspective of PPL
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Figure 4. Top 25 gene ontology between COVID-19 and the diseases of cardiovascular and hypertension. The ontology pathways were discovered using the DEGs for
each of the condition and the combined genes of COVID-19 whole blood and immune samples. (A) shows ontology for CHF. (B) shows ontology for IPH. (C) and (D) show
ontology pathways for PAH and PE respectively.

Gene regulatory network analysis identifies
DEGs-miRNA and TF-gene interactions for the shared

genes

We have used the shared DEGs among COVID-19 and the dis-
eases of cardiovascular and hypertension. The DEGs derived

from both peripheral blood cell and immune response cells of
COVID-19 patients have been considered in this analysis. We
have identified DEG-miRNA interactions by utilising TarBase
and miRTarBase bases. The DEG-miRNA interactions network is
displayed in Figure 6. The circles in the figure represent the DEGs
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whereas the squares represent the miRNAs. The colour of the
circular node depends on the degree of the node. The degree of
a node is the number of connections the node has with other
nodes in the network. Nodes with a higher degree are considered
as important hubs of the network. In addition, the size of the
nodes is significant. Nodes representing genes that have strong
interactions with other differentially expressed genes appear
larger compared to the other nodes in the network. For example,
the green colours nodes such as DLGAPS, CD28, MK167, HAVCR2,
CD180 and EZH2 are more significant as we can observe from
Figure 6B.

We also identified the interaction network between the tran-
scription factor (TF) and DEGs. These DEGs are common among
COVID-19 and other conditions. Similar to the previous analysis,
we have combined the DEGs from blood cells and immune
response cells of COVID-19. To find the interactions between TF
and DEG, we have used JASPER database. The TF-DEG interaction
network is presented in Figure 7. The circular and squared nodes
represent the DEGs and the TFs, respectively. The size of a node
depends on the degree of the node. For example, PLA2G7, NUAK1,
CCR1 and CNTLN, are more among more highly expressed DEGs

COVID-19 and PE

as these genes have a higher degree in the network in the case
of COVID-19 and PE (Figure 7D). Transcription factors such as
GATA3 and FOXC1 are more significant than others as we see
in the same figure.

Suggested drug and chemical compounds analysis
identifies protein-drug and protein-chemical
interactions

The shared DEGs that have been discovered among the inter-
action of COVID-19 with chronic heart failure and hyperten-
sive diseases are used in this analysis. We have identified pro-
tein-drug and protein-chemical interactions that may influence
these genes. We have combined the DEGs identified from both
peripheral blood cell and immune response cell populations. The
protein-drug interaction is displayed in Figure 8. The squares in
the figure represent drugs that affect the expression of the gene.
The information of protein and drug relationship is obtained
from the DrugBank database. We did not find any protein-drug
relationship with the DEGs shared by COVID-19 and PAH. We did
however identify protein-chemical interactions with the shared
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Figure 6. Differentially expressed genes-micro RNA interaction network analysis.

DEGs. The interactions are presented in Figure 9. The circular
and squared nodes represent genes and chemical compounds
respectively.

Discussion

This study focuses on finding possible interaction pathways
between COVID-19 and chronic heart failure hypertension dis-
eases. We have worked with two types of COVID-19 datasets, and
we have chosen four different cardiovascular or cardiovascular-
related diseases. First, we identified the differentially expressed
genes from each of the datasets. Next, we compared the DEGs
common to the COVID-19 datasets and the four other individual
diseases of interest. We started with the whole blood cell dataset
of COVID-19, and identified 1289 differentially expressed gene,
then similarly identified the DEGs for the four other conditions.
The number of identified DEGs for CHF, IPH, PAH and PE are
1321, 247, 249 and 127, respectively. Next, we identified the
DEGs in common between COVID-19 and other four diseases.
We found the largest number of common DEGs (19) are those
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between COVID-19 and IPH, whereas in contrast only two
common DEGs were identified between COVID-19 and PAH.
Only one gene Immunoglobulin Kappa Constant (IGKC) has
been found to be common to COVID-19 and other two diseases,
CHF and IPH. Immunoglobulin highly influences plasma cells,
and plays a significant role to fight infectious pathogens in
the respiratory system and digestive system at the point of
pathogen entry [7]. We have also analysed COVID-19 immune
response samples with the four diseases to discover how COVID-
19 affected immune system responses progress in people with
cardiovascular and hypertension conditions. We identified 155
DEGs from COVID-19 immune dataset. We also found a smaller
number of DGEs shared by COVID-19 immune response and
other diseases. For instance, we have identified four common
upregulated DEGs (CD28, IL2RG, SLAMF7 and CR1) that are
exposed in COVID-19 immune response having IPH condition.
Most of these common DEGs show strong biological relevance
with COVID-19 pathology and pathogenesis. CD2 is a well
known co-stimulatory receptor that provides signals for the
production of classical inflammatory cytokines [32], that are
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Figure 7. Transcription factors-differentially expressed genes interaction network analysis.

involved in the cytokine storm reactions seen in SARS-CoV-
2 infection [10]. These severe inflammatory reactions can be
unpredictable, indeed there is a well known example of phase 1
clinical trial of CD28 superagonists that resulted rapid and life
threatening cytokine storm reactions in all the treated human
participants [53] which resembled in many respects the strong
inflammatory reactions of severe SARS-CoV-2 infection [40]. IL-
2RG gene express interleukin-2 receptor subunit gamma chain
(yc) protein that acts as a shared receptor component for a
number of cytokines, namely, IL-2, IL—4, IL-7, IL-9, IL—15 and
IL—21, which are yc family inflammatory cytokines [58]. At least
two of these yc cytokines were found elevated in plasma levels
critical SARS-CoV-2 infected patients [28]. The complement
Receptor Type 1 (CR1) gene encodes a transmembrane protein on
various immune cells and induces acute inflammatory immune
response via complement activation [61]. The roles of soluble
human CR1 (sCR1) has been manifested in Inflammatory Lung
Diseases, where alveolar macrophages release sCR1 to lead

acute respiratory distress syndrome (ARDS) [23]. ARDS was
significantly higher in SARS-CoV-, MERS-CoV- and SARS-CoV-
2-associated deaths, where sCR1 levels were detected markedly
higher in the bronchoalveolar lavage (BAL) samples [10]. Only
one DEG, CCR1, has been identified in COVID-19 responses in
the case of PE.

We performed gene set enrichment analysis by discover-
ing cell signalling pathways and biological processes of gene
ontology in order to obtain the association of COVID-19 and
other diseases from the perspective of their shared DEGs among
the diseases. The DEGs identified in analysing both periph-
eral blood cells and immune cells (in effect a subpopulation
of the peripheral blood cells) with chronic heart failure and
hypertension were combined for gene set enrichment analysis.
Apoptosis-related signalling pathways were mostly exposed in
the analysis of common DEGs between COVID-19 and chronic
heart failure. We observed that the family of interleukin, can-
cer and chemokine-related pathways were enriched. We also
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Figure 8. Protein-drug interactions analysis using the common DEGs among COVID-19 and the diseases of cardiovascular and hypertension.

identified p53 signalling pathway, which plays a significant role
in regulating proliferation of cells that have DNA damage [35, 48],
although the p53 pathway activation can also be induced by a
number of other stress signals.

In the case of IPH and COVID-19, we have pathways involved
in scavenging of heme from plasma which are highly enriched;
however, the family of the fibroblast growth factor receptor
(FGFR) signalling pathways were the dominant signals. FGFR
signalling pathways are concerned with many aspects of
vascular, connective tissue and skeletal cell functions [11].
Several T-cell, HIV and interleukin-related pathways were
enriched in their interaction between COVID-19 and PAH. The
most exposed pathways discovered with the common DEGs
of COVID-19 and PE were G-protein-coupled receptors (GPCRs).
The peptide GPCRs pathway is relevant to several physiological
processes such as growth, appetite and energy metabolism,
cardiac function, stress and reproductive physiology [52]. We
also identified several cytokine receptors such as TSLP pathway,
chemokine signalling pathway, and cytokine-cytokine receptor
interactions.

The gene ontology analysis reveals B cell, T cell, cytokine,
and interleukin related pathways for CHF. The biology ontolog-
ical process with the common DEGs for COVID-19 and IPH are
dominated by the families of interleukin pathways; such path-
ways are commonly found in disease conditions (and certainly
seen in COVID-19) as interleukins are major secreted hormonal
products of peripheral blood cells. Other ontology pathways
observed include natural killer cell activation and several T cell-
related pathways. In the case of PAH, in addition to T cell-
related functions, several chemotaxis ontology terms have been
observed. Our analysis reveals several calcium ion and leukocyte
ontology pathways for the interaction between COVID-19 and
PE. We have also observed other significant pathways include
chemokine-mediated signalling pathway, cellular response to
cytokine stimulus.

We also discovered relationships among the diseases with
respect to protein-protein, gene-miRNA, tf-gene, protein—-drug
and protein—chemical interactions. For CHF and COVID-19,
we identified PTGS2 as one of the most highly expressed
genes in gene regulatory networks as well as the networks of
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Figure 9. Protein-chemical interactions analysis using common DEGs among COVID-19 and the diseases of cardiovascular and hypertension.

suggested drug and chemical interactions. PTGS2 (prostaglandin-
endoperoxide synthase 2) is a protein-coding gene, and the
genetic variation in this gene is considered as one of the vital
risk factors behind the development of cardiovascular disease
[34]. PTGS2 has previously been identified as an upregulated
pro-viral factor in the infection of SARS-CoV-2 [38]. Thus our
finding validates previous work on cardiovascular disease and
COVID-19. We have also identified B-cell lymphoma 2 (BCL2) as
a highly expressed gene in CHF and COVID-19 interaction. BCL2
is another factor with known involvement in cardiovascular
diseases and COVID-19 [45]. In the hypertensive conditions, we
found CD28, CD180, EZH2, PRDM1, TOP2A, CENFF, LTF, FCRLS,
LGALS3, PLA2G7, RHOT1, CCR1, NUAK1 and CNTLN as highly
expressed. In [3], the authors found LTF as one of the potential
mediators of human hypertension. Mutation in LTF highly
affects the immune system [59], therefore, further study on the
nature of LTF is necessary in order to combat COVID-19 since
the human immune system is so greatly affected by COVID-19.
Among the identified genes, PLA2G7 (phospholipase A2 group
VII) is highly associated with cardiovascular, hypertension and

COVID-19 complications [66]. High levels of PLA2G7 is a cause
of platelet-activating factor (PAF)-related deficiency through its
catalyses PAF degradation.

We have identified micro-RNA species hsa-mir-6817-3p, hsa-
mir-6873-3p, hsa-mir-6833-3p, hsa-mir-3873-3p, hsa-mir-124-3p,
hsa-mir-16-5p and hsa-mir-195-5p among some of the micro-
RNAs shared by cardiovascular and hypertensive diseases with
COVID-19. The result of this work also identifies transcription
factors that are tightly coupled with cardiovascular and hyper-
tensive diseases. For example, we have found FOXC1, GATA2,
GATA3, YY1 and FOXL1 are highly expressed in the association
between COVID-19 and cardiovascular and hypertensive dis-
eases. Earlier studies found that the family of FOX and GATA
are involved in hypertension and cardiovascular conditions [24].
The chemical compounds found in our analysis include nickel,
valproic acid, arsenic, tretinoin, calcitriol and zinc. Valproic acid,
for instance, has been considered in the drug development for
cardiovascular and hypertensive diseases [39]. One recent study
suggests that valproic acid can also play a significant role in the
treatment of COVID-19 [51].
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Conclusions

Recent reports suggest the co-occurence of cardiovascular and
hypertension diseases on COVID-19 patients are high compared
to other conditions, and individuals with these comorbidities
have much higher rates of mortality. In this study, we have
investigated how SARS-CoV-2 infection might influence patients
with heart failure and three types of hypertension. We identified
the cell signalling and gene ontology pathways from two
different scenarios of interaction between COVID-19 and chronic
heart failure and hypertensive diseases. Our investigation
revealed that although IPH, PAH and PE are all forms of
hypertension, the shared DEGs between each of these diseases
with COVID-19 differ significantly. We also considered COVID-
19 elicited immune responses and identified the pathways
with heart failure and hypertensive diseases. The identified
DEGs were involved in a number of important pathways. We
observed that immune system-related pathways such as T cell,
interleukin and toll-like receptor pathways as seen in SARS-
CoV-2 infections and cardiovascular/hypertension diseases, as
well as gastric cancer related pathways. In the case of PE, there
are several bone and calcium ion related pathways that are are
highly expressed. We also observed HIV-related pathways in the
case of hypertension samples. We have identified several stress
related pathways between COVID-19 and chronic heart failure
samples, for example the families of FGFR and GPCR pathways
are more expressed with IPH and PE conditions respectively
which may indicate connective tissue problems such as
fibrosis.

We have combined the DEGs identified from whole periph-
eral blood and immune response cell samples for discovering
protein-protein interactions of SARS-CoV-2 infection in the pres-
ence of cardiovascular and hypertension in the human body.
We have also performed transcription and post-transcription
analysis in order to reveal DEGs-miRNAs, TFs-DEGs, proteins-
drugs and protein-chemical compound interactions. The finding
of this work identifies the molecules involved in the associ-
ation between COVID-19 with the diseases of cardiovascular
and hypertension. These findings also validate and support
the outcomes of the previous studies as we presented in the
discussion section. The identified significant genes, pathways,
and networks are associated with other diseases which might
lead to the discovery of possible new therapies that can combat
the effects of severe SARS-CoV-2 infection.

Materials and methods

The overall approach in this work consists of seven significant
phases. In the first phase, the datasets for representing each of
the diseases are collected. The goal of this phase is to ensure
that the samples taken to obtain the datasets were collected
using the same or different experiments performed on the same
tissue of the same organism. The second phase of our analytical
approach deals with determining the differentially expressed
genes (DEGs) from each of the selected datasets. The identifica-
tion of common DEGs between COVID-19 and each of the other
four diseases is performed in phase three. In the next phase, we
have performed gene set enrichment analysis to find the biolog-
ical significance among the identified DEGs. In phase five, we
focused on revealing protein—protein interaction networks. We
identified gene regulatory network (GRN) interactions in phase
six. The last phase of our analysis identified drug-chemical
compound interactions.

Gene expression datasets

In this paper, we have considered two SARS-CoV-2 infected
datasets. One of the datasets is peripheral blood sample dataset
for COVID-19 is taken from [64]. The blood cell samples were col-
lected from three SARS-CoV-2 patients and three healthy indi-
viduals. The second dataset was taken from [16]. The samples of
this dataset (E-MTAB-8871) were collected from whole peripheral
blood cell samples from COVID-19 patients and healthy individ-
uals by analysing the immune responses using the NanoString
Human Immunology Panel. The gene expression microarray
datasets have been considered for the diseases of cardiovas-
cular and hypertension. We chose four diseases that fall into
the categories of cardiovascular and hypertension diseases. We
collected four human gene expression raw datasets for these
diseases from the Gene Expression Omnibus of the National
Center for Biotechnology Information (NCBI) [5]. The samples
of the selected datasets having association number GSE21125,
GSE69601, GSE48424 and GSE38267 were collected by analysing
the peripheral blood of the patients and healthy controls of
corresponding diseases. The dataset chosen in this work for
chronic heart failure disease, GSE21125, is a microarray dataset
derived from transcriptional profiling of peripheral blood cells.
The dataset GSE69601, representing idiopathic portal hyperten-
sion, is a gene expression microarray data taken from blood
samples of IPH patients and healthy individuals. The pulmonary
arterial hypertension dataset, GSE38267, is obtained by gene
expression profiling in blood of PAH patients and healthy vol-
unteers. The dataset for Preeclampsia, GSE48424, is a microarray
data obtained from the blood sample of PE patients and healthy
women with normal pregnancy.

Identification of DEGs

We have identified DGEs from each of the mRNA datasets. The
first step in the process of finding DEG from a dataset is to
preform normalization on both disease and control state [21].
The goal is to make uniform mRNA expression in order to avoid
the issue in comparing gene expression data that are derived
from different platforms and experimental environment. We
have normalized all sample data using Z-score transformation
by following the equation presented in Equation 1.

gij — mean(g)

% =""5n(g)

(1)

In Equation 1, SD represents standard deviation, g; represents
the expression value of the gene i in sample j and Z; represents
the transformed value of the gene i in sample j. The outcome
of this transformation allows gene expression values of differ-
ent diseases at different platform comparable. After performing
normalization on the dataset, the next step is to use Student’s t-
test statistic in order to identify genes with altered expression
association with the individual disease states. Unpaired t-test
and log2 transformation operations were performed in order
to determine differentially expressed genes. Finally, genes for
which the adjusted P-values of the t-test are less than 0.05 and
values of log fold change (logFC) are at least 1 are identified as
statistically significant genes.

Gene set enrichment analysis

Gene set enrichment analysis involves signalling pathway anal-
ysis and gene ontology analysis [42]. Signalling pathway and



ontology analysis are performed in order to determine the bio-
logical significance of the identified DEGs. In gene set enrich-
ment analysis, we considered pathways for which the adjusted
P-value are less than 0.05. We have used Enrichr [33] to identify
signalling pathway and ontology terms. The pathways have been
considered from six databases including BioPlanet, BioCarta,
WikiPathways, KEGG, Reactome and Panther.

Protein—protein interactions analysis

In order to discover associations among the diseases from the
perspective of protein interactions, we have identified protein
subnetworks using enriched DEGs. STRING [55]—a protein inter-
actome database is used in this analysis. We have constructed
protein-protein interaction (PPI) network using the shared DEGs
among COVID-19 and other conditions. Gene clusters have been
identified using the Markov cluster algorithm (MCL) available in
STRING.

Gene regulatory networks (GRN) analysis

We have identified DEG-miRNA (microRNA) interaction net-
works and transcription factor(TF)-DEG interaction networks in
this analysis. The networks have been discovered using Network
Analyst [43, 63]. TarBase [57] and miRTarBase [29] databases
are used for discovering DEG-miRNA interaction networks. In
the case of TF-DEG interaction network analysis, JASPAR [15]
database has been used. In GRN analysis, we have used common
DEGs to reveal the transcriptional elements and miRNA that
regulate DEGs at post-transcriptional level.

Suggested Drug and Chemical Compound Analysis

In this analysis, we have identified protein-drug and protein-
chemical interactions using the enriched gene that COVID-19
shares with cardiovascular and hypertension. We have used Net-
work Analyst [63] to identify protein-drug and protein-chemical
interactions. DrugBank [60] database and Comparative Toxicoge-
nomics Database [12] are used for protein-drug and protein-
chemical compound interactions.

Key Points

® This work focuses on the influences of SAR-CoV-2
infection on individuals having chronic heart failure
and/or hypertensive conditions.

® RNA sequence data of whole blood samples were anal-
ysed to identify shared DEGs with chronic heart failure
and hypertension disorders.

® Gene set enrichment analysis with the identified DEGs
discovered cell signalling pathways and gene ontology.

® The protein-protein interaction of COVID-19 with
hypertensive and heart failure condition identified
significant hub genes.

® The gene regulatory network analysis revealed the
DEG-miRNA and TF-DEG interactions.

® Drug and chemical compound analysis identified
protein-drug and protein-chemical interactions that
might help to identify the development of vaccine and
medication for COVID-19.

® This work may lead to the discovery of possible new
therapies that can combat the effects of SARS-CoV-2
infection.
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Data availability

We have used all the data from the publicly available; all the
data links are provided to the manuscript.
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