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The criticisms of my theory, as given by Fraser & Wark [(2018), Acta Cryst. A74,

447–456], are built on a misunderstanding of the concept and the methodology I

have used. The assumption they have made rules out my description from which

they conclude that my theory is proved to be wrong. They assume that I have

misunderstood the diffraction associated with the shape of a crystal and my

calculation is only relevant to a parallelepiped and even that I have got wrong. It

only appears wrong to Fraser & Wark because the effect I predict has nothing to

do with the crystal shape. The effect though can be measured as well as the

crystal shape effects. This response describes my reasoning behind the theory,

how it can be related to the Ewald sphere construction, and the build-up of the

full diffraction pattern from all the scatterers in a stack of planes. It is the latter

point that makes the Fraser & Wark analysis incomplete. The description given

in this article describes my approach much more precisely with reference to the

Ewald sphere construction. Several experiments are described that directly

measure the predictions of the new theory, which are explained with reference

to the Ewald sphere description. In its simplest terms the new theory can be

considered as giving a thickness to the Ewald sphere surface, whereas in the

conventional theory it has no thickness. Any thickness immediately informs us

that the scattering from a peak at the Bragg angle does not have to be in the

Bragg condition to be observed. I believe the conventional theory is a very good

approximation, but as soon as it is tested with careful experiments it is shown to

be incomplete. The new theory puts forward the idea that there is persistent

intensity at the Bragg scattering angle outside the Bragg condition. This

intensity is weak (�10�5) but can be observed in careful laboratory experiments,

despite being on the limit of observation, yet it has a profound impact on how we

should interpret diffraction patterns.

1. Introduction

The new theory of X-ray diffraction arose from trying to

account for inexplicable experimental observations. Neither

the conventional dynamical nor kinematical theories could

explain the measurements. The microstructure would have to

be fantastical to account for some of these observations.

Several experimental examples are included in this article that

support the theoretical interpretation. My questioning of

conventional theory started in the 1990s when using the near-

perfect diffraction space probe (Fewster, 1989) to study

polycrystalline materials and perfect semiconductors, with

work on a different description beginning in the mid-2000s. It

was clear that the observed features could no longer be

dismissed as artefacts of the instrument, requiring an alter-

native explanation of experimental data.

This article is in five sections. The first relates the new

theory to the Ewald sphere construction to give a better visual

description, which is achieved by simply translating equation

(5) of Fewster (2014) into graphical form. The second part

describes the build-up of the scattering and where the inten-
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sity is concentrated, including the simple error/misunder-

standing/assumption made by Fraser & Wark (2018). The third

section gives some experimental evidence of the persistent

intensity at the Bragg scattering angle when not in the Bragg

condition. The fourth section considers the impact of crystal

shape. The fifth section lists some of the examples that are

difficult to explain using the conventional theory that are

easily explained with the new theory.

2. The relationship of the new theory to the Ewald
sphere

The whole basis of the new theory is that a strong scattering

feature, e.g. a Bragg peak, can still be observed as the crystal is

rotated away from its position on the Ewald sphere. This

applies to all the diffraction features, e.g. thickness fringes and

crystal truncation rods, but will be weak. The distance of a

diffraction feature from this ‘conventional’ Ewald sphere

surface is given by the length of the arc of a vector (for the

feature of interest) rotated about 000 (Fig. 1). The length of

the vectors in the figure corresponds to 1/dhkl. The arcs touch

the Ewald sphere at 2�hkl with a residual amplitude given by

equation (4) of Fewster (2014). The next section explains

why there is intensity at this position. Thus, a considerable

proportion of the full diffraction pattern should be observed if

there is sufficient intensity. This is exactly what we would

expect from optical diffraction. Rotating the crystal just

increases or decreases the intensity of the features in the

diffraction pattern, e.g. Bragg peaks, thickness fringes, crystal

truncation rods, fringes from spherical crystals etc., and when

they coincide with the surface of the ‘conventional’ Ewald

sphere the intensity for that feature reaches its maximum

value. The ‘conventional’ Ewald sphere just represents the

specular condition and has no width. The new theory just

expresses that there is a residual specular contribution that

does not go to zero as soon as the feature giving rise to it is

rotated away from the optimum position on the sphere

surface.

There is also a philosophical question here: if the Ewald

sphere has no width then how can a reciprocal-lattice point

interact with it? If the crystal is stationary, the source is

monochromatic and there is no beam divergence, what would

the intensity be? This was a serious problem for Wojtas et al.

(2017) in their interpretation of XFEL (X-ray free-electron

laser) data, requiring the partial capture of a reciprocal-lattice

point and invoking angular tolerances to obtain some expla-

nation of the data. If there were too many ‘Bragg peaks’ then

they assumed that they were capturing data from more than

one crystal and rejected the data. The new theory defines a

width for the sphere surface and this dilemma does not exist.

Because it has a width then intensity will be captured away

from the Bragg condition. The new theory describes the

thickness profile and the associated residual amplitude that is

captured.

So, what evidence is there for this? Well there is plenty of

evidence, from calculating the diffraction pattern from first

principles, results from XFEL sources and even data collected

from standard laboratory sources. Let us start with the

calculated evidence from my colleague John Anderson and

presented by Fewster (2017). This considers a single-

wavelength plane wave impinging on a three-dimensional

array of point scatterers, which will form a spherical wave from

each point. When the scattering is brought together in the far

field, i.e. the waves travelling in a parallel scattered direction

are brought together, a diffraction pattern is formed. The

phases of the contributions depend on the difference in path

lengths of all the contributions at each 2� value. The first thing

to notice is that the full diffraction pattern exists (Fig. 2a).

That is not predicted in conventional theory where intensity

from a feature only occurs when it touches the surface of the

Ewald sphere. This figure is plotted on a logarithmic scale to

reveal the detail. For a real experiment the data will have a

finite dynamic range and only the strong features are likely to

be observed (Fig. 2b). These simulations reveal the fringing

due to the crystal surface boundary conditions (the shape

transform) and if a fringe is close to the Ewald sphere then it

could be more intense than the associated Bragg peak that is

more remote, e.g. Fewster (2016) and Fig. 5 below. These

calculations do not contain any complicated parameters

(wavelength dispersion or divergence etc.), yet the resulting

diffraction patterns are very similar to those observed at

XFELs, i.e. several peaks in an instantaneous image, occa-

sional row of fringes etc., depending on where the dynamic

range of these calculations is truncated. The diffraction

pattern can be indexed from the 2�B of the observed peaks.1

Studying these images in greater detail and concentrating

on the 2�B positions for the Bragg peaks, it is possible to
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Figure 1
The new theory in terms of the Ewald sphere construction. All the
reciprocal-lattice points coloured blue can form intensity at this incident
angle at their respective 2�B values (e.g. green dots) if 0 < � < 2�B. The
distance of the reciprocal-lattice point to the surface of the Ewald sphere
along an arc in � defines its amplitude, which decreases as the distance
increases. For example, 0�113 is in the Bragg condition and the amplitude is
at its maximum value, whereas 002 is weaker and 0�223 is very weak etc. The
arcs drawn for some of the reflections give a guide to the strength of the
scattering. The Ewald sphere surface can be considered to have a
thickness with a profile given by equation (4) of Fewster (2014).

1 The peak 2�B values were determined with a ruler on the diffraction image
and so could only be measured within a few % reliability, because of the peak
breadth and the influence of the interference with the fringes, e.g. in the
vicinity of the 120 peak position.



observe intensity enhancement at these angles for this single

incident angle. It must be recognized though that there will be

peak movements resulting from the interference of the

amplitude oscillations related to shape effects and those

related to the enhancement effect as � is varied. This will also

be influenced by how close their contributions are to the

surface of the Ewald sphere. The overlap of fringes from

reflections of different order will also influence the observed

diffraction pattern, which is particularly relevant for small,

perfect crystals (Holý & Fewster, 2008; Fewster, 2015, 2018).

We can separate out the shape effects by extending the

familiar description of Bragg’s law.

3. The explanation of the persistent peak at 2hB and
response to the Fraser & Wark analysis

A series of diagrams (Fig. 3) is given that explains the thinking

behind the new theory and the reasoning of Fraser & Wark to

make it clear where their misunderstanding has occurred.

A point P0 on the upper plane will be in phase with any

point in any position on the lower plane Q when in the Bragg

condition, which in turn will also be in phase with all other

points on the upper plane (Fig. 3a). When the planes are

rotated away from the Bragg condition, the point P0 will have

a close phase relationship with several points on the lower

plane, Q01, Q02, Q03, Q04 etc., and we would expect to see some

residual intensity at the specular angle (Fig. 3b). The point P0

can never be exactly in phase with a Q0 point for this

combination of � and 2� outside the Bragg condition (i.e. � =

�B). The Fraser & Wark analysis to this

point would be the same; then they

consider this angular spread of accep-

table phases combined with the density

of scattering points on the lower plane

to give rise to an intensity. I have no

dispute with this.

If we now include another point on

the top plane, which we call P1 (Fig. 3c),

then there will be another set of points

on the lower plane that have the same

relationship as for P0. We shall call these

points Q11, Q12, Q13, Q14 etc. These

scattering points on the lower plane Q1n

will have some overlap with the points

Q0n. Since there are as many scattering

points on the P and Q planes we should

pair every P point with a Q point, and

the conclusion would be the same as

before if all the P points are in phase

(Fig. 3c). This arrangement of scattering

points produces a peak of intensity at

the specular scattering angle that we can

call 2�s. This scattering angle is defined

by the crystal surface where the scat-

tered wave exits the crystal and is a

result of the boundary condition, which

requires the component of the electric field parallel to the

surface of the crystal to be continuous. This explains the

fringing associated with the crystal shape, often termed the

shape transform. If the incident angle is not equal to the Bragg

angle, then 2�s can never equal 2�B. This is the conclusion in

Fraser & Wark that I agree with; it is purely a conclusion of the

conventional theory.

What happens if the detector is moved to a different 2�
angle, whilst maintaining the same incident angle? The

description of Fraser & Wark or the conventional theory does

not consider this. The scattering does not correspond to the

specular condition (Fig. 3d) and P0 is no longer in phase with

P1 and similarly the phase relationship between the scattering

from the points P and Q has changed. Conventional theory

and that of Fraser & Wark simply assume that intensity only

exists when the points P are perfectly in phase. But what

happens if the points P scatter slightly out of phase? Is it

realistic to assume that there is no intensity in this case? This is

a major anomaly in the conventional theory and can be

interpreted as the Ewald sphere surface having no thickness.

If we postulate that the points P0 and P1 can scatter in a less

than perfect phase alignment, then we must conclude that

there is intensity outside the specular condition. This has

nothing to do with crystal shape. If the detector is moved

further the phase relationships between all the P points and all

the Q points will change again. Because the phase relationship

between all P points can be determined and every P to every Q

can be determined, the PQ pair can be paired in an arbitrary

way. It is convenient to find the PQ pair that forms a path

length difference closest to one wavelength. The phase
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Figure 2
The simulation of the diffraction pattern from a three-dimensional array of point scatterers with
dimensions 40� 39� 40 nm with point separations of 2� 3� 4 nm using a wavelength of 1.54 nm.
The whole pattern is revealed in a logarithmic plot (a). When plotted on a linear scale (b) there are
six ‘peaks’ observed. This is very characteristic of data from XFELs. Diffraction based on the
conventional theory would reveal nothing in this arbitrary orientation (these are not in the Bragg
condition). The central peak in (a) is the direct beam and is removed from the linear plot in (b), to
reveal the other peaks with linear scaling. The plots are displayed on a radius of 2� out to a
maximum of 90�. The peaks can be indexed based on their 2�B values and the restriction 0 < � < 2�B,
yet their intensities vary significantly indicating that the reciprocal-lattice points cannot all be close
to their Bragg conditions. It can be seen in (b) on a linear scale that peak intensities <�1% of the
most intense peak are not observed.



difference between P0, P1, P2 etc. is determined purely by the

incident angle � to their plane and the detection point 2�
[equation (4), Fewster (2014)], which defines the maximum

amplitude possible from the P plane for this � at 2�, i.e. A� .

A� applies to the second and all subsequent planes and the

maximum amplitude that can exist for this incident angle

occurs when all planes scatter in phase with each other, i.e.

NA� where N is the number of planes. This will only occur if

there are PQ pairings that have a path length of one wave-

length. By taking a point P on the upper plane and an incident

angle �, we search for a pairing with a Q position that will give

a path length difference of one wavelength by allowing 2� to

take on any value. Fig. 4 is a plot of the angle combinations �
and 2� where a one-wavelength path difference can exist

between a P position and a Q position. For any given incident

angle � there is a one-wavelength path difference possible at

2�B. We can consider that an incident angle below the Bragg

angle will form a specular peak at 2�s with a maximum path

length difference < � and by increasing 2� the path length

difference can be increased. Similarly, for an incident angle

above the Bragg angle a specular peak will form at 2�s with a

minimum path length difference > � and by reducing 2� the
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Figure 3
(a) The Bragg condition, where all the scattering from all the positions on both planes is in phase, so any pairing of a scattering point from one plane with
any point on another plane will be in phase. (b) When the scattering planes are rotated away from the Bragg angle a point P0 cannot scatter in phase with
any point Q at the specular scattering angle 2�s. (c) For the same incident angle and the same specular scattering angle the near-phase relationship holds
across the plane for P0, P1 etc. (d) However, if we move the detector to a different 2�, P0 and P1 no longer scatter perfectly in phase and similarly the
phase relationship associated with P and Q points will change. The phase relationship between the scattering from P and Q points can therefore be varied
by moving the detector. If there is a detector position where the path length difference is � then all the planes will scatter in phase, with a maximum value
defined by the phase sum of the amplitudes of points P0, P1 etc.

Figure 4
The distribution of path lengths equal to one wavelength (to within a very
small tolerance) from scattering points on adjacent planes. As the
tolerance is reduced it concentrates on a single value at 2�B and the other
coincidences become sparser.



path length difference can be decreased. In both cases we can

achieve a path length of � to form an amplitude of NA�.

This same analysis can be performed for any part of the

truncation rod; however, the path length difference never

reaches one wavelength but would be associated with a path

length above or below this value. The conclusion is that the

diffraction pattern is rich with information as in Fig. 2(a). This

approach ensures that all scattering centres across these

planes and by extension all planes in the stack are included.

The new theory therefore predicts that a scan in 2� over a

large range at a fixed incident angle would encounter a peak

at 2�s corresponding to the specular condition (e.g. crystal

truncation rod) and at 2�B (the enhancement or persistent

peak). This is exactly what was observed by Fewster (2016)

and further clearer examples are given in the following

section, including the measurement of the predicted arc in

Fig. 1 [example (iv) in x4].

4. Experimental evidence from laboratory sources

(i) The first example was an early test of my theory. The

sample is a large, perfect crystal wafer of 111-oriented silicon.

The incident beam (Cu K) is collimated to give an angular

divergence of 0.03� and the crystal is set to several incident

angles, �, either side of the 111 Bragg angle (�B). The scat-

tering is captured by scanning in 2� (Fig. 5a). Peaks are

observed that correspond to the intersection of the crystal

truncation rod at 2� = 2� and further peaks at 2� = 2�B for

both the Cu K� and Cu K� wavelengths for the d111 crystal

planes. The 2� = 2�B peaks are observed for incident angles up

to 6� away from the Bragg condition.

(a) How can a crystal set at an incident angle remote from

the Bragg condition produce a peak at 2�B?

(b) How can two 2�B peaks associated with different

wavelengths that require different incident angles be observed

simultaneously?
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Figure 5
(a) Several 2� scans for fixed � settings with the interpretation in (b)
based on the modified Ewald sphere construction. The spheres have
different radii: 1/�� and 1/��, centred on p and o, respectively. Consider
the 2� scan for � = 12.5� in (a) (the crystal is orientated 1.7� from the
Bragg angle �B� for the Cu K� wavelength). There is a single specular
peak (the intersection of the 2� scan and the truncation rod) that is
described in (b), where the specular contributions occur at the same 2�
but capture different positions on the truncation rod at a and b, which is
the same for both conventional and new theories. The two peaks, c and d,
correspond to the d111 plane spacing for both the Cu K� and Cu K�
wavelengths, i.e. 2�� and 2��; in the conventional description these should
not exist. The peaks at c and d can only be described with the new theory,
i.e. the persistent intensity at 2�� and 2��. The 2�� peak can be observed
up to |� � �B| � 6�. The specular peaks are sharp (they are dominated
by the proportion of the incident-beam divergence that satisfies this
condition, i.e. a small region on the sample), and the enhancement peaks
are broad (because all the incident-beam divergence directions will form
intensity at 2�B and these exist over the full footprint of the beam on the
sample. As the Bragg condition is approached the peak will sharpen
because the strongest contributions come from a smaller range of
divergence and smaller regions on the sample and dominate). The
features at the base of the specular peaks are tube focus artefacts.

Figure 6
[Fig. 3 from Fewster (2014)]: (a) the scattering pattern from�120 crystals
(or if perfectly packed 300 crystals) isolated with a 3.5 mm incident beam
that perpendicularly intersects a 1 mm-wide single layer of crystals of
LaB6 with sizes of 2 to 5 mm. (b) gives the profile with�30 crystallites or if
perfectly packed 75 crystallites (3.5 mm � 0.25 mm sample size), where
only three reflections are clearly resolved compared with all ten in the
larger sample size. The data were collected with a 0.01� divergent Cu K�1

beam from a 1.8 kW X-ray laboratory source in 35 min. The samples were
stationary throughout, so the incident beam only explored one
orientation from each crystal. The peaks are narrow and occur at the
correct 2�B positions and correspond to the interpretation where each
crystal contributes intensity as in Fig. 1.



The explanation based on the new theory is given in Fig.

5(b), and because of the large dimension parallel to the

surface the shape function is dominated by the crystal trun-

cation rod. The residual peaks at 2�B follow the prediction of

equation (4), Fewster (2014).

(ii) A very highly collimated monochromatic beam 3.5 mm

wide (horizontal with a divergence of 0.01�)2 is incident on a

1 mm-wide (vertical) polycrystalline sample to form a cross

section of 0.0035 mm2 that is one crystal thick. The average

crystal is 3.5 mm in diameter; this illuminated area and

absorption measurements (to estimate the packing density)

suggest there are �120 crystals being illuminated. The sample

is kept stationary and the scattering is captured on a position-

sensitive detector (the angular spread normal to the scattering

plane is limited to 2.3� with a Soller slit). All ten possible peaks

at their correct 2�B are observed and are sharp (Fig. 6a). The

probability of capturing one crystal in the Bragg condition is 1

in 23 000, and therefore to capture all ten is 1 in 4 � 1043.

(a) How, when the probability of observing a peak at the

Bragg condition is 1 in 100 000, can a repeat experiment with

�30 crystals form three clear peaks (Fig. 6b)?

(b) Is it reasonable to expect each crystal to be composed of

�100 000 mosaic blocks?

(c) If there are 100 000 mosaic blocks in each crystal, they

would have an average diameter of �0.075 mm. How can the

average intrinsic width for these mosaic blocks (�0.11�) be

reconciled with the measured width of 0.026�?3

The new theory has a simple explanation by building all the

weak contributions from each crystal as in Fig. 1.

(iii) This is an example of the data from the beam selection

diffractometer (Fewster, 2004). This instrument creates very

high intensity, near-‘zero’ wavelength dispersion and well

understood instrumental artefacts. The scattering from the

sample 004 reflection is captured with a single reflection 004

analyser crystal (Fig. 7a). The sample is a perfect crystal. The

combination of the analyser crystal and a slit to control the

wavelength dispersion still shows the remnants of the Cu K�2

component. In addition to the layer thickness fringes, there
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Figure 7
(a) A diffraction space map close to the 004 reflection (logarithmic scale)
from an InGaAs structure grown epitaxially on a GaAs substrate. The
data were collected with the beam selection diffractometer (Fewster,
2004), with a single reflection 004 analyser crystal (stepping in � followed
by a scan with movements in � and 2�maintaining a 1:2 ratio). The strong
fringing is associated with the layer structure (the shape transform) and
occurs along the crystal surface normal. The streak where 2� = 2�
corresponds to the incident-beam divergence and the streak along 2� for
a constant � value corresponds to the detector acceptance range (in this
case the diffraction profile of the analyser crystal). The remaining streak
at constant 2�B for varying � values is the ‘enhancement’ peak for the
substrate (as in Fig. 5b). (b) This is the extracted profile along the 2�B

enhancement that is smoothly decreasing from the peak as expected,
apart from interference of the Cu K�2 streak on the high-angle side. If all
the artefacts could be removed and the alignment improved, this could be
considered as the thickness profile of the Ewald sphere surface for this
reflection and crystal.

Figure 8
The complex scattering (logarithmic scale) close to the 113 reflection
from a Si (001) wafer, with a 46 nm epitaxial layer of Si0.21Ge0.79 on top,
obtained with a high-resolution diffractometer, courtesy of A. Kharch-
enko and J. Woitok. The fringing relates to the thickness of the SiGe
layer, which can all be explained by conventional (dynamical) theory. The
various features determined by the instrument and diffraction geometry
are given in the figure and can be related to those in Fig. 7(a). The streak
of intensity at constant 2�B cannot be explained with conventional theory
but is predicted by the new theory and corresponds to an arc in Fig. 1.

2 This divergence is based on dynamical theory, and also happens to be the
same as the geometrically derived value based on the source size and a
crystallite.

3 This is the measured width, whereas the intrinsic width is �0.0025�. An
isolated 10 mm Si crystal within a polycrystalline sample (Fewster, 2014) gave a
measured width of 0.002�, using a high-resolution diffractometer.



are the influences of the incident-beam divergence and the

detector acceptance, which are clearly revealed as streaks

emanating from the intense substrate peak. In addition, there

is a prominent streak at constant 2�B. The crystal plane

rotation is not accurately normal to the reciprocal-lattice

mesh, so this streak is inclined to the plane of the diffract-

ometer.

(a) What is the explanation for the streak of intensity at

constant 2�B as the crystal is rotated in �?

The new theory predicts this 2�B streak, its shape and how it

changes with crystal alignment. Fig. 7(b) gives an indication of

the intensity along the 2�B streak for this sample, i.e. 10�5 to

10�6 of the Bragg peak at an angle of 0.15� from the Bragg

condition.

(iv) This example uses a high-resolution monochromator

and a position-sensitive detector to study a (001)-oriented Si

wafer that has a single Si0.21Ge0.79 46 nm layer grown

epitaxially on top. The data were collected close to the 113

reflection by stepping in � and scanning in 2�, and plotted in

reciprocal-space coordinates forming an arc of captured data

(Fig. 8). The SiGe layer is tilted with respect to the substrate,4

giving a tilted truncation rod (their individual crystal trunca-

tion rods are not coincident but still interfere with each other).

The substrate gives rise to the most intense peak and the layer

gives a broad peak with fringes. The influence of the incident-

beam divergence and the 2� capture line for a fixed incident

angle can all be explained within the description of conven-

tional theory. The substrate is perfect device-grade Si and is

not mosaic. There is a very prominent arc of intensity at

constant 2�B which corresponds exactly to the substrate d113

plane spacing. This is the persistent intensity or ‘enhancement’

predicted by the new theory.

(a) Is there any explanation within the confines of

conventional theory that can explain this arc of intensity at

constant 2�B from a perfect crystal as it is rotated in �?

This arc of intensity follows the description in Fig. 1 (and

discussed later in Fig. 10). It cannot be described by any shape

function.

(v) This example is taken from a careful experiment on a

structure composed of two epitaxial layers of GaAs/InGaAs

on a GaAs substrate. The structure appears to be perfect until

it is studied in greater detail with a very high resolution

diffractometer (Fewster, 1989) (Fig. 9). There are two signifi-

cant features that are observed: a crystal truncation rod that

‘wiggles’5 and an intensity streak along 2�B associated with the

substrate. These features are a common observation in well

aligned, good quality crystals, for layer structures and blank

crystal wafers. The fringes associated with the layers indicate

that the interfaces are flat and parallel. There is interference

between the crystal truncation rod for the substrate and the

layers, which is only possible if there is significant overlap. The

intensity spreading at constant 2�B for each part of the

structure would account for this overlap and the wiggles.

(a) How can the truncation rods of the substrate and layers

interfere without some overlap to create these ‘wiggles’?

(b) What is the reason for the 2�B streak that also gives rise

to a broadened base of the substrate peak in an open detector

rocking curve?

The new theory predicts the existence of the streak in 2�B,

which in turn will account for the interference of the crystal

truncation rods to explain the ‘wiggles’. It also indicates how a

full two-dimensional diffraction space map can be simulated.

5. The impact of crystal shape

The crystal shape will modify the intensity close to the Bragg

peak, which was recognized by Fewster (2014) p. 262: ‘Hence a

powder sample that has a distribution of orientations will

create fringes associated with its size and surface shape and an

enhancement at 2�B for each crystallite plane’. The main

thrust of this theory is to concentrate on the persistent

intensity at 2�B, whereas all shape effects will modify the

intensity around the Bragg condition peak and will not form

intensity at 2�B unless by chance. Equation (5) in Fewster

(2014) can be considered as the formula for a crystal wafer

with crystal planes parallel to the surface. For other crystal

shapes, the full shape transform can be included, but the

position of the Bragg condition is unchanged. To include the

shape transform for a parallelepiped, as in the work of James

(1962) and Authier (2001), for a small crystal, would involve

extra terms in equation (5), i.e. of the form sinðNxÞ= sin x and

sinðNyÞ= sin y. Since so few crystals conform to this shape I

refer to my original statement above, i.e. any shape can be

included but the persistent intensity at 2�B still exists.
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Figure 9
The 004 diffraction space map (logarithmic scale) expanded normal to
the crystal truncation rod to emphasize the wavy streak of the 80 Å
In0.15Ga0.85As quantum well, buried in a complex AlGaAs/GaAs
structure. The other dominant feature is the streak along 2�B. When
the data were projected along 2�B, the resultant profile fitted precisely
with the simulation based on dynamical theory. Collecting data with a
high-resolution diffractometer without an analyser (a rocking curve) gave
small fringe displacements with a broadened base to the substrate peak (a
commonly observed feature, which can be associated with the 2�B

enhancement for varying �), whereas a single scan along the crystal
truncation rod gave regions of missing intensity.

4 This tilt was determined by analysing the 004 reflection at opposite azimuths
around the crystal surface normal.
5 I first considered this to be a problem with the diffractometer; however this is
reproduced on different instruments based on different mechanical config-
urations and scanning arrangements.



To explain the diffraction in the new theory compared with

the conventional theory for a parallelepiped, consider Fig. 10

(shape function A), where its shape transform has been

simplified to a cross with the tails diminishing in magnitude

further from the reciprocal-lattice point. The conventional

theory will reveal intensity where the shape transform inter-

sects the Ewald sphere surface, resulting in two peaks. In the

new theory the Ewald sphere surface has a thickness given by

equation (4) of Fewster (2014). This results in intensity asso-

ciated with all parts of the shape function and much of it will

be very weak. The two peaks as in the conventional theory

may well be the most dominant features; however, a strong

feature like the maximum in the shape transform will also

produce a peak, which may or may not be observed depending

on the measurement conditions as in the examples above.

The example given in Fig. 8 has a shape transform like B in

Fig. 10 and interacts with a different position on the Ewald

sphere surface. The arc of intensity measured corresponds

precisely to the prediction in the new theory. More details are

given in the caption.

In the new theory, a very small crystal will have a very broad

thickness profile for the surface of the Ewald sphere. This

increases the observed intensity of features remote from the

optimum position on the Ewald sphere surface; so, although

the fringing could be touching the optimum position, the main

peak in the shape transform can still dominate. This is exactly

what is observed in the simulation from a perfect parallele-

piped crystal in Fig. 2.

6. The difficulties with ‘conventional theory’

Requiring crystals to be mosaic to suppress dynamical effects

(Darwin, 1922) for the kinematical approximation to be

applied in structure determination puts a big onus on all

crystals. Is that reasonable? The number of crystals required

to form a reliable polycrystalline diffraction pattern is greater

than in a typical sample, in which case microdiffraction will not

work; but it does, so what is going on? This did not go

unnoticed by Alexander et al. (1948) who suggested crystals in

a powder diffraction sample must be mosaic; but how small are

they? De Wolff (1958) suggested that slack gearing in

diffractometers may be the cause, but high-quality diffract-

ometers of today would rule that out. Smith (1999) concluded

that the data cannot be reliable even with the numbers of

crystals used in Bragg–Brentano geometry. More recently, the

data from XFELs show that there are reflections simulta-

neously observed in a snapshot from a single crystal, which

should be a very rare event but is very common. This has led to

a plethora of complex explanations to account for the data,

e.g. Wojtas et al. (2017).

Each explanation is specific to the method by stretching the

limits of conventional theory, which is in danger of becoming

inconsistent with itself. The descriptions presented by the

early workers in this field were valid explanations for their

time, but perhaps they cannot be universally applied today.

Suppose the fundamental theory is not the complete answer,

then the results could be unreliable. Kuhn (2012) would view

the conventional theory as a powerful paradigm needing a

crisis, e.g. inexplicable results, to change it. Have we reached

that stage yet? Or can the conventional theory still reveal

reliable results? Popper (2002) suggested all theories are

waiting to be disproved and therefore should be falsifiable.

The assumptions in conventional theory have increased to

accommodate these diverse experiments to prevent falsifica-

tion. This situation is not favoured by the law of parsimony

(Occam’s razor), which would prefer the theory with the

fewest assumptions, because it is easier to falsify.

7. Conclusions

The new theory explains the experimental results. There is, as

far as I know, no alternative explanation within the confines of

conventional theory. Those who can understand my descrip-

tion as well as the conventional theory should be able to

compare these two approaches and make a judgement on

which best describes their data. The new theory could be

considered as defining a thickness profile for the Ewald sphere

surface. In conventional theory this surface has no thickness,

placing all the experimental interpretation on changing the

shape of the reciprocal-lattice point, e.g. mosaic crystals.

Shape effects cannot explain the results described above and

therefore the conventional theory can only be an approx-

imation. I consider my theory to be a better description of
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Figure 10
The interaction of different shape functions with the Ewald sphere. A
gives rise to peaks ac1 and ac2 where the tails touch the Ewald sphere; this
is the interpretation based on the conventional theory. In the new theory
there is another term [equation (4), Fewster (2014)], so that three peaks
appear an1, an2 and an3 (an3 is the enhancement peak) and there is also
residual intensity associated with the whole of the shape function. The
shape function given at B corresponds to the sample used in Fig. 8, i.e. for
a crystal wafer with a truncation rod normal to the surface with a very
short arm parallel to the surface. At this orientation the conventional
theory predicts no peaks since no part of the shape function touches the
Ewald sphere. The new theory predicts a peak at 2�B (bn1) for all
orientations in �. The reciprocal-space map B can be compared with the
measured data from Fig. 8 (inset) to show how a single extracted 2� scan
away from the Bragg condition forms enhanced intensity at 2�B.



X-ray diffraction. The criticisms of my theory by Fraser &

Wark are therefore based on an invalid argument.
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