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Abstract: The paper presents an original study on adsorption and aggregation phenomena in a
mixed system consisting of a macromolecular compound, heavy metal ions and an innovative
adsorbent. The authors used ionic polyacrylamides (PAM), Cu(II) ions and carbon–silica composite
(C-SiO2) in the experiments. Such a system has not yet been described in the literature and therefore,
the article is of significant novelty and great importance. The composite was prepared by mixing
phenol–formaldehyde resin with silica and pyrolysis at 800 ◦C. The adsorbed amounts of Cu(II) ions
and PAM were determined spectrophotometrically. C-SiO2 was characterized using potentiometric
titration, microelecrophoresis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. In turn,
the C-SiO2 aggregation was established turbidimetrically as well as using a particle size analyzer.
The obtained results indicated that both Cu(II) ions and ionic polyacrylamide were adsorbed on
the composite surface at pH 6. The highest noted adsorbed amounts were 9.8 mg/g for Cu(II) and
35.72 mg/g for CT PAM-25%. Cu(II) ions increased the anionic PAM adsorbed and reduced the cationic
PAM one. The adsorption of anionic PAM (50 ppm) stimulated the solid aggregation significantly.
What is more, Cu(II) ions enhanced this process. The size of particles/aggregates formed without
additives equaled 0.44 µm, whereas in the mixed Cu(II)/AN PAM system, they were even at 1.04 µm.

Keywords: mixed adsorption layer; adsorption and aggregation mechanism; particle sizeanalysis;
turbidimetry; flocculation

1. Introduction

Adsorption is one of the main surface phenomena occurring in many physical, chemical and
biological systems, both natural and artificial [1]. This process is commonly applied in industry and
research. Adsorption is of great importance in implantology. It decides whether the implant will
be accepted or rejected by the body [2]. This process is also significant in environmental protection.
Various types of adsorbents are used to remove toxic substances from water and wastewater [3]. In a
soil environment, adsorption leads to the immobilization of heavy metal ions and thereby reduces
their availability to organisms [4]. In medicine and biotechnology, the described phenomenon is very
helpful in the preparation of biosensors and drug delivery systems [5]. In the food industry, it facilitates
the removal of various types of sediments from beverages [6]. What is more, adsorption is applied in
various types of catalysts [7].

The adsorption efficiency is highly dependent on the type and properties of used adsorbent.
Its textual properties are extremely important, i.e., specific surface area and porosity, particle size,

Polymers 2020, 12, 961; doi:10.3390/polym12040961 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-8682-3491
https://orcid.org/0000-0001-9784-1348
https://orcid.org/0000-0003-2309-0785
http://www.mdpi.com/2073-4360/12/4/961?type=check_update&version=1
http://dx.doi.org/10.3390/polym12040961
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 961 2 of 15

as well as surface charge density. Scientists from many research centers are working on new adsorbents
that allow for the effective removal of various substances. There are studies on the separation of
many organic molecules such as surfactants, polymers, dyes and antibiotics from aqueous media.
Some researchers used alumina particles modified with anionic surfactant in removal of oxytetracycline
and heavy metals [8,9]. Others applied alumina of different particle size in poly(styrenesulfonate)
adsorption [10]. Pham and co-workers synthesized nanosilica from rice husk and used it as an
adsorbent of antibiotics, i.e., beta-lactam cefixime and ciprofloxacin [11–13]. The same team prepared
modified adsorbents from laterite soil and used them in cationic dye removal [14]. Tomczyk et al. used
biochar for copper(II) immobilization [15]. Adamczuk and Kołodyńska described the removal of heavy
metals using modified fly ash [16,17]. Nowicki et al. prepared carbonaceous adsorbents from coffee
waste materials and tropical fruit skins [18,19]. Orooji et al. synthesized a nanocomposite of silver
iodide/graphitic carbon nitride as well as titania/polyether sulfone [20,21]. Irani-nezhad et al. described
nanocomposite with peroxidase-like activity [22]. Hassandoost et al. developed heterojunctions based
on Ce3+/Cr4+ modified Fe3O4 nanoparticles anchored onto graphene oxide [23]. Karimi-Maleh et al.
focused on the application of magnetite/grapheme oxide nanocomposite [24]. In turn, Zhang et al.
described porous magnetic carbon sheets from biomass [25].

Therefore, it may be stated that there are many papers describing adsorption of heavy metal ions
or organic compounds on the various solids in the single systems, i.e., composed of one adsorbate
type. But, this process occurring in the mixed systems is scarcely reported in the literature. Due to
this fact, our team focused on this issue. Fijałkowska et al. [26] determined anionic polyacrylamide
impact on lead(II) immobilization on kaolinite surface. The same authors [27] examined the effect
of polyacrylamide containing quaternary amine groups on the Pb(II) and Cr(VI) accumulation on
montmorillonite. Wiśniewska and Nowicki described simultaneous removal of organic molecules
from a mixed system using peat-based activated carbons [28], as well as the adsorption of lead(II)
and polyacrylic acid from a mixed solution using biocarbons prepared from corncob and peanut shell
precursors [29]. In turn, Szewczuk-Karpisz et al. [30] focused on the adsorption capacity of hay-based
activated biochars in the mixed system of Cu(II) ions and polyacrylamide.

In this paper, the effect of simultaneous adsorption of Cu(II) ions and ionic polyacrylamide (PAM)
on the aggregation of carbon–silica composite (C-SiO2) was determined. In other words, the adsorptive
and aggregation properties of innovative C-SiO2 adsorbent were examined in the mixed Cu(II)/PAM
system. The solid was prepared by pyrolysis of the mixture (1:1) of phenol–formaldehyde resin and
silica. The obtained composite was characterized using Fourier Transform Infrared Spectroscopy (FTIR)
and nitrogen adsorption/desorption method. The adsorption/aggregation mechanism was proposed
based on the adsorption study, potentiometric titration and zeta potential study results. The aggregate
formation without and with adsorbates was established using a particle size analyzer and turbidimeter.
The presented results are of high importance. They supplement the literature with information on
adsorption and aggregation of solids in the mixed heavy metal/polymer systems. Moreover, the paper
provides information on whether the selected solid can be used during water and wastewater treatment
as an effective adsorbent of copper(II) and polyacrylamide. In addition, whether it can be applied as a
soil additive to immobilize Cu(II) ions, even in the presence of soil polyacrylamide flocculant.

2. Materials and Methods

Carbon–silica composite, marked as C-SiO2, was used in the experiments as the adsorbent. It was
prepared at Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine. At the
beginning, pyrogenic silica A-300 (Pilot plant of Institute of Surface Chemistry NAN of Ukraine,
Kalush, Ukraine) and phenol–formaldehyde resin of novolac type (JSC ‘Ukrainian resins’, Kalush,
Ukraine) were grinded by a porcelain ball mill at a 1:1 ratio for 2 h. Then, the obtained mixture was
pyrolyzed in a stainless steel reactor at 800 ◦C for 2 h in an argon flow. The composition of final product
was determined thermogravimetrically and was as follows: 31.5% by weight carbon, 63.6% SiO2 and
4.9% adsorbed H2O. Textural properties of C-SiO2 were also measured using low-temperature nitrogen
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adsorption/desorption method (sorptometer ASAP 2020, Micrometrics). The specific surface area
(SBET) of the solid was 297 m2/g, whereas the average pore diameter equaled 6.1 nm. It was found that
the C-SiO2 composite was characterized by polydisperse porous structure consisting mainly of pores
in the diameter ranges of 0.54–0.59 nm, 1.27–1.36 nm and 25.25–86.24 nm.

The images of C-SiO2 were made using a scanning electron microscope, Phenom ProX (Thermo
Fisher Instruments, Somerset, NJ, USA) with the magnification of 500 and 1000. They are presented in
Figure 1.

Polymers 2020, 12, x FOR PEER REVIEW 3 of 15

of final product was determined thermogravimetrically and was as follows: 31.5% by weight carbon,

63.6% SiO2 and 4.9% adsorbed H2O. Textural properties of C-SiO2 were also measured using

low-temperature nitrogen adsorption/desorption method (sorptometer ASAP 2020, Micrometrics). 

The specific surface area (SBET) of the solid was 297 m2/g, whereas the average pore diameter equaled

6.1 nm. It was found that the C-SiO2 composite was characterized by polydisperse porous structure 

consisting mainly of pores in the diameter ranges of 0.54–0.59 nm, 1.27–1.36 nm and 25.25–86.24 nm. 

The images of C-SiO2 were made using a scanning electron microscope, Phenom ProX (Thermo 

Fisher Instruments, Somerset, NJ, USA) with the magnification of 500 and 1000. They are presented 

in Figure 1. 

(a) (b) 

Figure 1. Scanning Electron Microscope (SEM) images of the C-SiO2 composite of magnification 500x

(a) and 1000x (b). 

Surface charge density (σ0) as a function of pH value as well as point of zero charge (pHpzc) of 

the solid was established using the potentiometric titration method and the software ‘titr_v3’ [31]. 

The apparatus consisted of a Teflon vessel thermostated using thermostat RE 204 (Lauda), glass and

calomel electrodes (Beckman Instruments), pHmeter PHM 240 (Radiometer, Copenhagen, 

Denmark), microburette Dosimat 765 (Metrohm, Herisau, Switzerland) and computer. The σ0

parameter was calculated based on the difference in the base volume added to the C-SiO2 suspension 

and the supporting electrolyte solution (0.001 mol/dm3 NaCl) assuring the specific pH value. The

examined systems were prepared by addition of 0.1 g of C-SiO2 to 50 cm3 of the supporting 

electrolyte solution. 0.1 mol/dm3 NaOH was used as a titrant. A single titration was performed in the

pH range of 3–10. 

Electrophoretic mobility as a function of pH value as well as isoelectric point (pHiep) of the

adsorbent were determined using the microelectrophoresis method (zetameter Nano ZS, Malvern

Instruments, Worcestershire, UK). 0.02 g of the solid was added to 200 cm3 of the supporting 

electrolyte (0.001 mol/dm3 NaCl) solution. Such prepared suspension was divided into several parts 

(of different pH value in the range of 3–10). After 3-minute sonication, the zeta potential was

measured. Zeta potential (ζ) of the solid was calculated using Henry’s equation [32]. 

Surface groups of C-SiO2 were determined using Fourier-transform infrared spectroscopy 

(Nicolet 8700A FTIR spectrometer, Thermo Scientific, Somerset, NJ, USA). The solid was examined 

in pellet form with KBr.

Modified, ionic polyacrylamide (PAM), delivered by Korona JV, was used in the study as 

adsorbate. There were 4 types of PAM: (1) cationic PAM containing 15% of ionizable groups (CT 

PAM-15%), (2) cationic PAM containing 25% of ionizable groups (CT PAM-25%), (3) anionic PAM 

containing 12% of ionizable groups (AN PAM-12%) and (4) anionic PAM containing 40% of 

ionizable groups (AN PAM-40%). In the case of cationic PAMs, quaternary amine groups were able 

to ionize, whereas in the case of anionic PAMs—carboxylic ones. The average molecular weight (𝑀𝑤
̅̅ ̅̅ ) 

of the polymers was: 12,000 kDa (AN PAM-12%), 13,000 kDa (AN PAM-40%), 7200 kDa (CT 

PAM-15%) and 6800 kDa (CT PAM-25%). The pKa values of anionic polymers were: 4.4 (AN 

PAM-12%), 5.3 (AN PAM-40%. In turn, the pKb values of cationic ones equaled: 9.4 (CT PAM-15%) 

and 9.6 (CT PAM-25%). At pH 6, dissociation degrees (α) of used polyacrylamides were equal to: 

Figure 1. Scanning Electron Microscope (SEM) images of the C-SiO2 composite of magnification
500× (a) and 1000× (b).

Surface charge density (σ0) as a function of pH value as well as point of zero charge (pHpzc) of
the solid was established using the potentiometric titration method and the software ‘titr_v3’ [31].
The apparatus consisted of a Teflon vessel thermostated using thermostat RE 204 (Lauda), glass and
calomel electrodes (Beckman Instruments), pHmeter PHM 240 (Radiometer, Copenhagen, Denmark),
microburette Dosimat 765 (Metrohm, Herisau, Switzerland) and computer. The σ0 parameter was
calculated based on the difference in the base volume added to the C-SiO2 suspension and the
supporting electrolyte solution (0.001 mol/dm3 NaCl) assuring the specific pH value. The examined
systems were prepared by addition of 0.1 g of C-SiO2 to 50 cm3 of the supporting electrolyte solution.
0.1 mol/dm3 NaOH was used as a titrant. A single titration was performed in the pH range of 3–10.

Electrophoretic mobility as a function of pH value as well as isoelectric point (pHiep) of the
adsorbent were determined using the microelectrophoresis method (zetameter Nano ZS, Malvern
Instruments, Worcestershire, UK). 0.02 g of the solid was added to 200 cm3 of the supporting electrolyte
(0.001 mol/dm3 NaCl) solution. Such prepared suspension was divided into several parts (of different
pH value in the range of 3–10). After 3-min sonication, the zeta potential was measured. Zeta potential
(ζ) of the solid was calculated using Henry’s equation [32].

Surface groups of C-SiO2 were determined using Fourier-transform infrared spectroscopy (Nicolet
8700A FTIR spectrometer, Thermo Scientific, Somerset, NJ, USA). The solid was examined in pellet
form with KBr.

Modified, ionic polyacrylamide (PAM), delivered by Korona JV, was used in the study as adsorbate.
There were 4 types of PAM: (1) cationic PAM containing 15% of ionizable groups (CT PAM-15%),
(2) cationic PAM containing 25% of ionizable groups (CT PAM-25%), (3) anionic PAM containing
12% of ionizable groups (AN PAM-12%) and (4) anionic PAM containing 40% of ionizable groups
(AN PAM-40%). In the case of cationic PAMs, quaternary amine groups were able to ionize, whereas
in the case of anionic PAMs—carboxylic ones. The average molecular weight (Mw) of the polymers
was: 12,000 kDa (AN PAM-12%), 13,000 kDa (AN PAM-40%), 7200 kDa (CT PAM-15%) and 6800 kDa
(CT PAM-25%). The pKa values of anionic polymers were: 4.4 (AN PAM-12%), 5.3 (AN PAM-40%).
In turn, the pKb values of cationic ones equaled: 9.4 (CT PAM-15%) and 9.6 (CT PAM-25%). At pH 6,
dissociation degrees (α) of used polyacrylamides were equal to: 0.98 (AN PAM-12%), 0.83 (AN PAM-40%),
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0.99 (CT PAM-15%) and 0.99 (CT PAM-25%). The above parameters were determined using potentiometric
titration as well as the following equations [33]:

pH − pKa = log
∝

1− ∝
(1)

pKa + pKb = 14 (2)

The structure of the monomers of the used PAMs is presented in Figure 2.
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Figure 2. The monomer structure of anionic polyacrylamide (a) and cationic one (b).

Cu(II) ions were also used as adsorbate in this study. Their stock solution was prepared using CuCl2.
Adsorbed amounts of ionic polyacrylamide and copper(II) ions on the C-SiO2 surface were

determined based on the reduction in their concentration in the solution after the adsorption process.
The samples were prepared by addition of 0.02 g of C-SiO2 to 10 cm3 of the solution containing
supporting electrolyte (0.001 mol/dm3 NaCl) and 50 or 100 ppm of PAM/Cu(II). When the pH value of
the samples was adjusted to the value of 6, the adsorption was started and conducted by a specific time
(24 h in the case of polyacrylamide adsorption, 1 h—Cu(II) adsorption), which were established based
on the kinetics study. After the process completion, the samples were filtered and the concentration
of adsorbate was determined spectrophotometrically (Jasco V-530 UV/Vis spectrophotometer) in
the obtained clear solutions. The concentration of anionic polyacrylamide was determined using
hyamine 1622 solution [34] 1.5 mL of this indicator was added to 5 mL of the examined sample and the
obtained turbidity was measured after 5 min at λ = 500 nm. Cationic polyacrylamide concentration
was determined using brilliant yellow. At the beginning, the pH value of the studied solutions was
adjusted to the value of 9.5. Then, 0.5 mL of the sample was introduced to 4.5 mL of the indicator and
the obtained orange-yellow color was measured at λ = 495 nm. Copper(II) ions concentration was
determined using ammonia [35]. 50 µL of the indicator was added to 5 mL of the examined solution
and the obtained dark-blue color was measured at λ = 620 nm. The Cu(II) ions effect on the PAM
adsorbed amount as well as PAM impact on the copper(II) adsorption were measured in the samples
containing 50 or 100 ppm of PAM and 100 ppm of Cu(II).

Aggregation tendency of the C-SiO2 composite without and with Cu(II) ions and/or PAM was
established turbidimetrically (turbidimeter Hach 2100AN, Omc Envag, Poland). The probes were
prepared by addition 0.04 g of C-SiO2 to 20 cm3 of the solution containing supporting electrolyte
(0.001 mol/dm3 NaCl). After a 3-min sonication, the polymer or heavy metal ions were added to the
system and the pH value was adjusted to 6. In the next step, the measurement was started and the
turbidity of the sample was registered after 2, 5, 10, 30, 60 and 90 min.

Diameter of the particles/aggregates present in the C-SiO2 suspension without and with ionic
polyacrylamide and/or copper(II) ions was determined using CPS analyzer (CPS Instruments, Anaheim,
CA, USA). In the experiments 8% and 24% sucrose were used in the gradient formation. The disc rate
was 2500 rpm, whereas the diameter range equals 0.12–12 µm. The samples were prepared in the same
way as for turbidimetric analyzes.
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Each measurement was repeated three times. The measurement errors of zeta potential,
potentiometric titration, turbidimetry and CPS analysis were very small and did not exceed 3%
(thus the error bars were not visible on the graphs). In turn, the measurement error of adsorption study
did not exceed 5%.

3. Results

3.1. Surface Charge Density, Zeta Potential and Functional Groups of the Carbon–Silica Composite

The carbon–silica composite was characterized by determination of its surface charge density,
zeta potential and surface functional groups. The dependency of C-SiO2 surface charge density and
zeta potential on solution pH value is presented in Figure 3.
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Potentiometric titration indicated that point of zero charge (pHpzc) of the carbon–silica composite
was about 3.1. This means that at pH 3.1 the C-SiO2 surface is characterized by zero surface charge.
The amounts of positive and negative surface groups are almost identical. At pH <3.1 the solid surface
is positively charged, in turn at pH >3.1—negatively charged. On the other hand, microelectrophoresis
study showed that isoelectric point (pHiep) of selected composite was 3.2. Thus, at pH 3.2 the net
charge of the C-SiO2 slipping plane is close to 0. At pH <3.2, positive groups dominate in this structure
(zeta potential has positive values), whereas at pH >3.2—negative moieties prevail (zeta potential is
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negative). Analogous dependency of zeta potential and surface charge density on solution pH value
was observed during various studies [36,37].

The obtained FTIR spectrum of C-SiO2 is presented in Figure 4.
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The FTIR analysis indicated the specific groups on the C-SiO2 surface. In the obtained spectrum
the following bands were noted: (1) 3374 cm−1 (attributed to OH groups stretching), (2) 1561 cm−1

(C=C stretching in aromatic rings), (3) 1381 cm−1 (O-H bonds deformation), 1096 cm−1 (C-O bonds
stretching), 782 cm−1 (Si-C bonds stretching), 462 cm−1 (Si-O bonds stretching). Similar bonds were
also observed and described by other researchers [38–40].
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The results of adsorption study performed in the single and mixed Cu(II)/PAM systems are
presented in Figure 5.
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Figure 5a showed that the highest PAM adsorbed amounts on the C-SiO2 composite were noted
for the polymer containing quaternary amine groups (CT PAM). The adsorbed amounts of anionic
polyacrylamides (AN PAM) were significantly lower. For the initial PAM concentration 100 ppm,
the measured adsorbed amounts were as follows: 3.45 mg/g for AN PAM-12% (6.9% of the ions were
adsorbed), 4.62 mg/g (9.14%) for AN PAM-40%, 26.46 mg/g (52.92%) for CT PAM-15% and 35.72 mg/g
(71.16%) for CT PAM-25%. What is more, the selected sorbent bonded a certain amount of Cu(II)
ions. For the initial Cu(II) concentration 100 ppm, its adsorbed amount was 9.8 mg/g. Then the Cu(II)
adsorption efficiency was 19.6%.

The PAM adsorbed amounts noted in the Cu(II) presence were different than those measured
in the single system. As can be seen in Figure 5b, Cu(II) ions increased the adsorbed amounts of
anionic polyacrylamide and reduced those of cationic polyacrylamide. When 100 ppm of Cu(II) ions
were added to the system, the AN PAM-12% and AN PAM-40% adsorbed amounts were 49.68 mg/g
and 49.83 mg/g, respectively. Then the adsorption efficiency reached almost 100%. The CT PAM
adsorbed amounts in the Cu(II) ions presence were not so large. For CT PAM-15%, this parameter
equaled 21.08 mg/g, while for CT PAM-25%—25.6 mg/g. The adsorption efficiency was 42.16% and
51.8%, respectively.
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On the other hand, polyacrylamides also affected the Cu(II) ions adsorption on the C-SiO2

composite. AN PAM contributed to higher adsorption of heavy metal ions, whereas CT PAM made the
Cu(II) adsorption lower (Figure 5c). The Cu(II) adsorbed amount in the AN PAM-12% or AN PAM-40%
presence was about 16 mg/g (32% of the ions were adsorbed). In turn, in the CT PAM-15% and
CT PAM-25% presence this parameter equaled only 2.5 mg/g (5%) and 1.5 mg/g (3%), respectively.

3.3. C-SiO2 Aggregation without and with Ionic Polyacrylamide/Cu(II) Ions in the Simple and Mixed Systems

The C-SiO2 aggregation tendency in the simple and mixed PAM/Cu(II) systems was established
based on the results of turbidimetric measurements. They are presented in Figure 6.

The obtained results indicated that all adsorbates significantly influenced the C-SiO2 aggregation.
When 50 ppm of AN PAM was added to the system, there was a fast formation of aggregates that
fell into the vial bottom. As a consequence, the suspension was clear just after 10 min (the system
turbidity did not exceed 20 NTU). The same concentration of CT PAM had different effect on the C-SiO2

aggregation. It was noted that some of the particles formed aggregates that fell into the vial bottom,
but some of them remained suspended in the solution. As a result, the clarification of the system did
not occur. The measured turbidity of the suspension was relatively high and equaled even 40 NTU
after 10 min for the system containing 50 ppm of CT PAM-25%. Higher PAM concentration (100 ppm)
had a similar effect. In the systems containing such amount of the polymer (AN PAM or CT PAM),
the solid aggregation was not enhanced enough to observe a clear suspension. Some of the particles
remained suspended in the system and thus the noted turbidity was relatively high.

The Cu(II) ions added to the system did not affect the turbidity of the C-SiO2 suspension
significantly. In most cases, when the heavy metal ions and the polymer were added to the system at
the same time, the aggregation tendency of the solid was similar to that observed in the suspension
containing only the macromolecular compound.

To confirm the flocculating ability of AN PAM with the concentration of 50 ppm, the CPS analysis
of the C-SiO2 suspension was performed. The results obtained for AN PAM-12% are presented in
Figure 7. The data noted for AN PAM-40% were analogous.

The CPS analysis confirmed that anionic polyacrylamide (50 ppm) had flocculating ability relative
to the C-SiO2 particles. In the system containing no adsorbate, the most numerous particles were
characterized by diameter of 0.44 µm. In the presence of AN PAM-12%, their size equaled 0.56 µm,
whereas in the mixed AN PAM-12%/Cu(II) system this parameter was 1.04 µm. Based on these
results, it can be stated that copper(II) ions enhanced the C-SiO2 aggregation occurring in the anionic
polymer presence.

4. Discussion

The adsorption measurements showed that at pH 6 all types of polyacrylamide were adsorbed
on the composite surface. However, the adsorbed amounts were significantly higher in the case of
cationic polymers (compared to anionic ones). This phenomenon is mainly dictated by the character of
electrostatic interactions occurring between the macromolecular compound and the solid. Anionic
polyacrylamides contain carboxylic groups in their macromolecules. At pH 6 some of these moieties are
dissociated and, as a result, AN PAM is negatively charged. On the other hand, cationic polyacrylamides
contain quaternary amine groups. Under examined conditions, some of them are also dissociated and
contribute to positive charge of CT PAM. As previously mentioned, at pH 6 the composite surface
is negatively charged (σ0 = −8.01 µC/cm2; ζ = −9.21 mV). Thus, there is an electrostatic attraction
between positively charged CT PAM macromolecules and negative solid surface, which promotes
the adsorption process. In turn, in the system containing anionic polymer, there is an electrostatic
repulsion between negative AN PAM and negative solid particles, which significantly impedes the
contact between system components. Owing to above interactions, the AN PAM adsorbed amounts
are clearly smaller than those of CT PAM.
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one—50 ppm.

Among cationic polyacrylamides, higher adsorbed amount was observed for CT PAM-25%. At pH 6,
the dissociation degree (α) of cationic polymers is close to 1, which means that practically all of the
quaternary amino groups in their macromolecules are dissociated. CT PAM-25% contains a larger
number of positive groups and therefore the electrostatic attraction between its macromolecules and the
solid is stronger than in the case of CT PAM-15%. Among anionic polyacrylamides, a larger adsorbed
amount was also noted for the polymer containing greater number of ionizable functional groups
(AN PAM-40%). This observation is primarily dictated by the different conformation of AN PAM-12%
and AN PAM-40% macromolecules on the composite surface. At pH 6, the dissociation degree of
AN PAM-12% is 0.98, while of AN PAM-40%—0.83. This means that under selected conditions,
AN PAM-12% contains about 11.7% of dissociated carboxylic groups, whereas AN PAM-40%—about
33.2%. Due to this fact, AN PAM-40% containing greater number of dissociated functional groups are
characterized by more expanded conformation in the solution. Owing to strong electrostatic repulsion
between polymer chains and the solid, AN PAM-40% creates long structures like "loops" and "tails"
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on the composite surface. Within this conformation, the number of contact sites of AN PAM-40%
and C-SiO2 is limited. A single macromolecule takes a relatively small part of the solid and therefore
large number of AN PAM-40% chains can be adsorbed on unit solid surface. The smaller number
of dissociated carboxylic groups in AN PAM-12% contributes to its more coiled conformation in the
solution as well as in the adsorption layer. A single macromolecule occupies a large part of the surface
and thus smaller number of AN PAM-12% can interact with C-SiO2. This makes the AN PAM-12%
adsorption lower. Under electrostatic repulsion between adsorbent and adsorbate, polymer adsorption
on the composite surface is mainly caused by the formation of hydrogen bonds [41,42].

Wiśniewska et al. also examined the impact of functional group content on the polyacrylamide
adsorbed amount. This team used montmorillonite [42], alumina [43] and chromium(III) oxide [44] as
adsorbents in the studies. It was found that on the montmorillonite surface polyacrylamide containing
greater number of carboxylic groups was adsorbed in smaller quantity. In turn, in the case of alumina
and chromium(III) oxide, the adsorbed amounts of polyacrylamide with a larger number of carboxylic
groups were higher. Fijałkowska et al. [22] observed a higher adsorption level of polyacrylamide
containing a greater number of quaternary amine groups on the montmorillonite surface. Other
researchers also examined the adsorption process on the solid surface, e.g., on magnesium hydroxide
particles [45] and talc [46].

The performed experiments also indicated that the carbon–silica composite adsorbed a certain
amount of copper(II) ions. The highest Cu(II) adsorbed amount observed in the examined system
was equal to 9.8 mg/g. Other researchers also examined copper(II) adsorption on various solids.
Jin et al. [47] found that algae–dairy–manure slurry pyrolyzed at 400 ◦C adsorbed 21.12 mg/g Cu2+

at pH 6 in 1440 min. Shim et al. [48] observed that giant Miscanthus pyrolyzed at 600 ◦C adsorbed
15.4 mg/g Cu2+ at pH 6 in 2880 min. In turn, Hoslett et al. [49] showed that biochar derived from
the pyrolysis of municipal solid waste adsorbed 3.82 mg/g Cu2+ at pH 6 in 120 min. In the previous
study, our team found that at pH 6 hay-based activated biochar obtained by chemical activation in a
microwave furnace adsorbed 68.2 mg/g [30].

The Cu(II) ions added to the system significantly affected the adsorbed amount of ionic
polyacrylamide. Heavy metal ions increased the adsorbed amounts of AN PAM and reduced
those of CT PAM. In the system containing Cu(II) ions and anionic polymer, the formation of Cu(II)-AN
PAM complexes may occur because there is an attraction between metal cations and negatively charged
macromolecules. The created complexes are characterized by less negative net charge than AN PAM
chains and thus their adsorption is more favorable. On the other hand, cationic polyacrylamide and
Cu(II) ions compete with each other for access to the C-SiO2 surface. As a result, the polymer adsorption
is limited. The same mechanisms and phenomena are responsible for higher Cu(II) adsorbed amounts
in the presence of AN PAM and lower Cu(II) adsorbed amounts in the presence of CT PAM (in
comparison to the systems without polymers).

The impact of anionic polyacrylamide on the C-SiO2 aggregation is dependent on the polymer
concentration. When it is equal to 50 ppm, AN PAM stimulates the aggregation of all particles. Large
sedimenting aggregates, confirmed by CPS analysis, are formed and thus the system is clarified.
This phenomenon is strongly connected with flocculation, which is based on the creation of polymer
bridges between the solid particles. This process occurs mainly when the solid surface is not completely
covered with the polymer, i.e., for low polymer adsorbed amounts on the solid. Moreover, it is
possible even when zeta potential values of the solid particles are negative [50,51]. When the AN
PAM concentration is 100 ppm, the macromolecular compound contributes to the aggregation of only
part of particles. Some of them are still suspended in the solution and give the system relatively
high turbidity. Under these conditions, due to larger surface coverage with the polymer, a clear
flocculation is not possible. There are electrosteric forces between solid particles that improve the
system stability [52]. These interactions are based on electrostatic repulsion between negative groups of
adsorbed macromolecules as well as steric repulsion between adsorption layers. The same phenomena
occur in the systems containing 50 and 100 ppm of CT PAM. For both initial concentrations of cationic
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polyacrylamides, the adsorbed amounts are relatively high, which prevents flocculation. Flocculating
ability of polyacrylamide at appropriate concentration was also confirmed by other researchers [42,43].

Cu(II) ions minimally affect the C-SiO2 aggregation, which is probably dictated by their low
adsorbed amount on the solid surface. When the Cu(II) ions are added to the system with the
polymer, they do not change the polymer effect on the solid aggregation. In other words, the selected
macromolecular compounds retain their abilities to stabilize or destabilize the suspension in the
presence of heavy metal. It must be also mentioned that in the mixed system of AN PAM (50 ppm)
and Cu(II), heavy metal ions enhance the C-SiO2 aggregation. Then the AN PAM-Cu(II) complexes of
slight net charge are adsorbed on the surface and, as a result, the particles can easily aggregate.

5. Conclusions

The preformed study allowed for the following conclusions. An innovative carbon–silica
composite may be used as an adsorbent during water purification or wastewater treatment. Moreover,
it can be applied as soil additive immobilizing copper(II) ions. This solid adsorbs 9.8 mg/g when
the heavy metal initial concentration is 100 ppm. When the anionic polyacrylamide is present in the
system, the Cu(II) adsorbed amount on Ci-SiO2 is higher and equals 16 mg/g. However, cationic
polyacrylamide limits the adsorption ability of the examined composite. When CT PAM-25% is added
to the system, the Cu(II) adsorbed amount is 1.5 mg/g.

The examined composite adsorbs ionic polyacrylamide macromolecules. Due to more favorable
electrostatic interactions, cationic polyacrylamide adsorbed amounts on the composite are higher than
those of anionic one. The adsorbed amount of AN PAM-12% is 3.45 mg/g, of AN PAM-40%—4.62 mg/g,
of CT PAM-15%—25.46 mg/g, whereas of CT PAM-25%—35.72 mg/g. Cu(II) ions enhance the adsorption
of anionic polymers. Then the adsorption efficiency of AN PAM is almost 100% (49.83 mg/g for AN
PAM-40%). In turn, the adsorbed amounts of cationic polymers in the presence of heavy metal ions are
lower. For example, for CT PAM-15%, this parameter equals 21.08 mg/g.

The C-SiO2 aggregation is dependent on both type and concentration of polyacrylamide.
Flocculating ability is observed only in the case of anionic polyacrylamides with the concentration of
50 ppm. Then, the flocculation process is possible. Cu(II) ions, added to this system, stimulate the
solid aggregation additionally. These data may be very helpful in the development of procedures of
solid separation from aqueous media as well as during soil remediation.
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