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Abstract

Background: In Singapore, dose–response bioassays of Aedes aegypti (L.) adults have been conducted, but the
mechanisms underlying resistance to insecticides remain unclear. In this study, we evaluated insecticide resistance
and its underlying mechanism in field populations of Ae. aegypti adults.

Methods: Seven populations of Ae. aegypti were collected from public residential areas and assays were conducted
according to WHO guidelines to determine their susceptibility to several commonly used insecticides.

Results: Various levels of pyrethroid resistance (RR50 = 3.76 to 142.06-fold) and low levels of pirimiphos-methyl
resistance (RR50 = 1.01 to 1.51-fold) were detected. The insecticide susceptibility profile of Ae. aegypti adults was
homogenous among the different study sites. Addition of the synergists piperonyl butoxide, S,S,S,-tributyl
phosphorotrithioate, and triphenyl phosphate generally failed to enhance the toxicity of the insecticides
investigated, suggesting an insignificant role of metabolic-based insecticide resistance and possible involvement
of target site resistance. Further biochemical investigation of specific metabolic enzyme activities provided further
evidence that detoxifying enzymes such as mono-oxygenases, esterases, glutathione S-transferases and altered
acethylcholinesterases generally did not contribute to the resistance observed.

Conclusions: This study confirmed the presence of pyrethroid resistance among Ae. aegypti adults in Singapore
and documented the early onset of organophosphate resistance.
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Background
Dengue continues to be one of the most serious vector-
borne diseases in the world. The global situation of den-
gue is well documented [1]. Thousands to hundreds of
thousands of dengue cases occur every year in each of
the many dengue-endemic countries, including Singapore,
and the complex dengue epidemiology is a major chal-
lenge in managing the epidemics [2]. A proactive vector
control approach is required to achieve effective and sus-
tainable control of this disease [3], as there is still no vac-
cine or specific treatment for dengue.
Dengue viruses are transmitted by Aedes mosquitoes,

and Aedes aegypti (L.) is the primary dengue vector in
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Singapore. This species has diurnal blood-feeding behav-
iour, with peak activities in the early morning and late
afternoon. It is highly anthropophilic and displays a pref-
erence to feed and rest indoors or in close proximity to
their breeding sites [4,5]. Thus, they are highly abundant
in urban areas, propagating in and around human dwell-
ings. Detection of the adult can be difficult, where they
can rest undisturbed in sheltered areas.
Space spraying with adulticides is a common practice

implemented in many dengue-endemic areas and this
control method is necessary especially in areas with high
mosquito density. The choice of space spraying tech-
niques, such as ultra-low-volume application, thermal
fogging, and indoor residual spraying, depends on the
setting and field conditions to ensure maximum control.
These treatments target the behaviour of Ae. aegypti,
which usually rest on wall surfaces, thus increasing
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contact exposure of insecticides to achieve control [4].
However, the difficulty of achieving full coverage of the
adult mosquito habitat limits the efficacy of application.
Adults tend to rest hidden in sheltered locations, where
insecticide may not reach. Furthermore, appropriate tim-
ing for fogging has often not been taken into account,
although several models for effective fogging have been
published in the last two decades [6,7].
The extensive and probably inappropriate application

of insecticides has led to the development of insecticide
resistance in Ae. aegypti. This species exhibits varying de-
grees of resistance to different insecticides. The numerous
reports on the different types of resistance mechanisms
have raised awareness on the importance of a good un-
derstanding of the resistance mechanisms for effective
vector control.
Two important insecticide resistance mechanisms ex-

hibited by insects are metabolic-based resistance and
target site insensitivity [8-10]. The former involves three
groups of detoxifying enzymes: mono-oxygenases (MFOs),
esterases (ESTs), and glutathione S-transferases (GSTs)
[11]. The target site insensitivity is associated with modifi-
cation of three target sites: voltage-gated sodium channels,
gamma-aminobutyric acid (GABA) receptors and acethyl-
cholinesterases [12].
The objective of this study was to assess the extent of

insecticide resistance and characterize the underlying
mechanisms that may potentially play a role in the re-
sistance. In this study, the susceptibility of Ae. aegypti
adults to different classes of insecticides used in Singapore
was assessed with bioassay, synergism, and biochemical
studies. The insecticide susceptibility of mosquito popula-
tions from historical and new dengue sensitive areas was
compared. Historically sensitive areas were locations where
dengue clusters had been present for at least five years
when larvae were collected; in these areas, insecticides
were frequently used to manage dengue outbreaks. New
sensitive areas are those where dengue clusters were re-
ported less than five years before the commencement of
larvae collection in 2010. We tested the hypothesis that the
resistance level in historical sensitive areas is higher than
that in new sensitive areas due to longer period of insecti-
cide exposure in the former.

Methods
Experimental design
The Bora-Bora strain of Ae. aegypti was used in a base-
line assay to define the diagnostic dose of each insecti-
cide. Using the diagnostic dose, which is defined as two
fold of lethal concentration that kills 99% of the reference
population tested (LC99 × 2), the mortality rate, 50% and
99% knockdown time of mosquitoes (KT50 and KT99) for
each field strain per insecticide were determined. In separ-
ate experiments, synergists were included to determine
their effects on mortality rate at the diagnostic dose of the
insecticides. Biochemical assays were performed on the
same batch of mosquitoes (F1 generation).
Mosquitoes
Seven populations of Ae. aegypti were collected from
public residential areas (i.e. government built residential
buildings) in Singapore, from January 2010 to March
2011. These areas were selected based on the relatively
high number of reported dengue cases and Ae. aegypti
indoor breeding sites. The areas were divided into two
categories: historical dengue sensitive areas (Ang Mo Kio,
Jurong East, and Yishun) where dengue clusters have been
reported for more than five years when samples were col-
lected; and new dengue sensitive areas (Choa Chu Kang,
Clementi, Pasir Ris, and Woodlands) where dengue clus-
ters were only more recently reported (in less than five
years) (Figure 1 and Table 1).
Eggs from each site were collected and maintained

separately as a single colony. To collect the eggs, ovi-
traps filled with hay-infusion [13] were placed along cor-
ridors in shaded areas or near potted plants. The traps
were replaced weekly and paddles were air-dried for 1 or
2 weeks prior to hatching of eggs. All emerged adults
were identified to species based on morphological char-
acteristics [14], and those identified as Ae. aegypti were
maintained at 25 ± 2°C, 75 ± 5% relative humidity, and a
10 h light:14 h dark photoperiod with a 10% sucrose solu-
tion. Female mosquitoes aged 5–7 d were allowed to
blood-feed on live guinea pigs. The use of live animals for
laboratory work was approved by the Institutional Animal
Care and Use Committee at the Environmental Health
Institute, National Environment Agency, Singapore. Bio-
chemical assays were performed using adults, which were
killed at −20°C. Bioassay studies were conducted using F2
progenies. The Bora-Bora strain, which is a reference sus-
ceptible strain (F112) that has never been exposed to in-
secticide, was used for comparison. Standard protocols
were followed strictly to ensure the production of uniform
sized adults.
Insecticides
Technical grade insecticides (>90% purity) were used in
this study. The following insecticides were tested: type I
pyrethroid (permethrin (97.1%) from Bayer Cropscience,
Bangkok, Thailand); type II pyrethroids (cypermethrin
(93%) and deltamethrin (98%) from Asiatic Agricultural
Industries, Singapore); non-ester pyrethroid (etofenprox
(95.3%) from Jiangyin Trust, Jiangyin, Jiangsu, China), and
organophosphate (pirimiphos-methyl (91.5%) from Syn-
genta Crop Protection, Singapore). To estimate LC50 and
LC99 of each insecticide for each strain, five different con-
centrations of each insecticide were prepared according



Figure 1 Map of Singapore showing the sites where populations of Ae. aegypti were collected, the distribution of dengue cases and
Ae. aegypti breeding from 2001 to 2007. Ang Mo Kio, Jurong East and Yishun are historically sensitive areas, whereas the remaining locations
are new sensitive areas.
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to the WHO protocol [15]. Ethanol was used as the
solvent.

WHO bioassays
The tests consisted of two parts: baseline test and diag-
nostic test. The baseline test was first performed using
the Bora-Bora strain to determine the local diagnostic
Table 1 Mosquito collection sites in Singapore (2010 – 2011)

Locations Collection sites Number of
buildings #

Ang Mo Kio* Ang Mo Kio St 41 5

Jurong East* Jurong East St 13 5

Yishun Yishun St 71 4

Choa Chu Kang Choa Chu Kang Ave 3 3

Clementi Clementi Ave 3 6

Pasir Ris Pasir Ris St 21 4

Pasir Ris Dr 6 5

Woodlands Woodlands Circle 7

Ave: Avenue, Dr: Drive, St: Street, *conducted a second collection during the first qu
buildings to get the sufficient amount of eggs. Ang Mo Kio, Jurong East and Yishun
dosages (LC99 × 2) to use for the tests of field strains.
Susceptibility of the Bora-Bora strain to all insecticides
was determined by exposing 5–7 d old non-blood-fed fe-
male mosquitoes to varying concentrations of insecti-
cides prepared in ethanol. A batch of 20–25 mosquitoes
was aspirated into a plastic holding tube (12 × 4 cm)
lined internally with an untreated filter paper (Whatman
residential Coordinates Collection period

1°21’N 103°51’E Jan – Feb 10

1°20’N 103°44’E Feb – May 10

1°25’N 103°49’E Jan – Apr 10

1°22’N 103°44’E Feb – May 10

1°18’N 103°45’E Jan – Feb 10

1°22’N 103°57’E Jan – Apr 10

1°22’N 103°57’E Jan – Apr 10

1°26’N 103°47’E May – Jun 10

arter of 2011. # Ovitraps were set along the corridors at all residential
are historically sensitive areas; others are new sensitive areas.
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12 × 15 cm, evenly impregnated with 3 ml of 10% etha-
nol and left to air dry for 30 min before being sealed and
kept for 24 h prior to the test) and observed for viability
for 30 min. Weak and damaged mosquitoes were removed
and replaced. Mosquitoes from the holding tube were
transferred to a horizontal testing tube (lined internally
with a treated filter paper impregnated with 3 ml of in-
secticide solution) and exposed to insecticide for 1 h.
Mosquitoes were transferred back to the holding tube ver-
tically after 1 h of insecticide exposure for recovery, where
10% sucrose solution was provided. Mortality at 24 h
post-treatment was recorded. Knockdown was defined as
“collapsed against the netting or fallen to the base of the
test tube and not moving” [16].
To establish the diagnostic dose (LC99 × 2), the Bora-

Bora strain was tested using five concentrations of each
insecticide in four replicates, to obtain mortality ranges
from 0 to 100% to generate LC50 and LC99 values ac-
cording to the WHO guidelines [15]. Five controls with-
out insecticide (filter paper treated with 10% ethanol
only) were used per test.
To assess the susceptibility of each field population to

each insecticide, adults were exposed to the diagnostic
dose (obtained from susceptibility baseline) for 1 h and
3 h for organophosphate and all pyrethroid insecticides,
respectively. The number of knockdown mosquitoes was
observed at 10, 30, 45, 60, 90, 120, 150 and 180 min to
obtain the KT50 and KT99 values. Knockdown time is a
more sensitive indicator than mortality rate for resistance
detection [17]. Unlike a dose/response test, it requires
fewer individuals for toxicity evaluation. Knockdown time
(KT50), which is the time required for 50% of individuals
to be knocked down was used compared to lethal concen-
tration (LC50) for resistance when resistance is recessive
or present in low frequency [18]. The longer exposure
period (3 h instead of 1 h) was used in all pyrethroid bio-
assays because preliminary tests showed that no knock-
down occurred within 1 h. Mosquitoes were held for 24 h
in the holding tube after exposure before mortality was re-
corded. Three tests, each performed on consecutive days,
were conducted for each insecticide for each of the seven
field populations.

Synergism tests
Synergism tests were conducted using the field popula-
tions to evaluate the effectiveness of synergists on detoxifi-
cation of insecticides. Piperonyl butoxide (PBO) (94.4%,
from Endura Fine Chemicals, Bologna, Italy), S,S,S-tribu-
tyl phosphorotrithioate (DEF) (97.1%, from Greyhound
Chromatography and Allied Chemicals, Birkenhead,
Merseyside, UK), and triphenyl phosphate (TPP) (99%,
from Sigma-Aldrich, Singapore) were used. Adult mos-
quitoes were exposed to each synergist at varying con-
centrations to determine the maximum sub-lethal
concentration. Subsequently, the sub-lethal doses (4%,
5% and 10% for PBO, DEF, and TPP, respectively) were
used in synergism tests. The protocol for the synergism
tests were similar to the bioassays described above, ex-
cept that the insecticide was mixed with synergist (1:1)
prior to the test. Each synergist was used in conjunction
with each of the five insecticides. Diagnostic tests in
WHO bioassays section (exposure to insecticide only)
served as positive control while bioassays without in-
secticide (exposure to 10% ethanol only) were used as
negative control.

Biochemical assays
Enzyme levels in individual adults of the same batch of
mosquitoes (the Bora-Bora strain, F112, and field strains,
F1 generation) were measured according to the WHO pro-
cedure previously described by Hemingway [19]. Briefly,
non-blood-fed young adult female mosquitoes (<3 d old)
were individually homogenized in 200 μl of reverse-
osmosis water on ice. Next, 25 μl of homogenate were used
in the acetylcholinesterase assay. The remaining homogen-
ate was centrifuged at 14 K, 4°C for 30 s, and the super-
natant was used as the enzyme source for all other enzyme
assays. A total of 94 adults per strain were analysed. The
assays were performed in 96-well microplates on ice, and
the absorbance (optical density (OD) values) was measured
using a microtitre plate reader (ELISA system, Sunrise™,
Tecan®, Mannedorf, Switzerland) with Magellan™ data ana-
lysis software (Tecan Group Ltd, Mannedorf, Switzerland).
Enzyme activities were calculated as described below.

Acetylcholinesterase (AchE) assay
For each sample, 25 μl of insect homogenate were mixed
with 145 μl of triton phosphate buffer. Next, 10 μl of
0.01 M dithiobis 2-nitrobenzoic acid solution and 25 μl of
0.01 M acetylthiocholine iodide were added to initiate the
reaction. Two such reactions were prepared for each sam-
ple. While one reaction was allowed to progress, the other
was inhibited using 0.05 μl of 0.1 M propoxur. The OD of
both reactions was measured at 405 nm after 1 h incuba-
tion, and the activity was expressed as percentage insensi-
tive AchE activity after propoxur inhibition [20].

Non-specific esterase (EST) assay
For each sample, 20 μl of supernatant derived from the
insect homogenate were mixed with 200 μl of the sub-
strate, 30 mM α-naphthyl acetate. At the same time, an-
other replicate of the same samples was also incubated
with 30 mM β-naphthyl acetate. After 15 mins of incu-
bation at room temperature, 50 μl of fast blue stain were
added to each reaction. The OD value was measured at
570 nm 15 min later. The activity against each substrate
was calculated from standard curves of absorbance for
known concentrations of α-naphthol or β-naphthol.



Koou et al. Parasites & Vectors 2014, 7:471 Page 5 of 15
http://www.parasitesandvectors.com/content/7/1/471
Enzyme activities are expressed as nmole of α-naphthol
or β-naphthol/min/mg protein.

Glutathione S-transferase (GST) assay
A total of 200 μl of 10 mM reduced glutathione (GSH)
and 63 mM 1-chloro-2,4-dinitrobenzene mixture was
added to 10 μl of supernatant derived from the insect
homogenate. Absorbance was determined at 340 nm after
20 min of incubation. GST activity was calculated follow-
ing Beer’s Law (A = εcl) and is reported as mMole of
CDNB/min/mg protein. The OD value (A) was trans-
formed to μmole of CDNB conjugates using the extinction
coefficient (ε) of 4.39 mM−1. The path length (the depth
of the buffer solution in the microplate well, l) was 0.6 cm.

Monooxygenase (MFO) assay
MFO activity was initiated by the addition of 80 μl of
0.625 M potassium phosphate buffer pH7.2, 200 μl of
methanol solution of 3,3,5,5-tetramethyl benzidine solu-
tion, and 25 μl of hydrogen peroxide (3%) to 2 μl of super-
natant derived from the insect homogenate. The reaction
was allowed to oxidise for 2 h at room temperature before
the OD value was read at 650 nm. MFO activity was
calculated from a standard curve of absorbance for a
known concentration of cytochrome C [21]. Enzyme ac-
tivity is expressed as equivalent units of cytochrome
P450/min/mg protein.

Protein assay
Protein concentration was used as a standard correction
factor for the data for all enzyme activities to account
for size variances among individuals. The protein con-
centration was calculated and transformed from the bo-
vine serum albumin standard curve using a commercial
kit (Bio-Rad, Foster City, California, USA). For this assay,
10 μl of homogenate were mixed with 300 μl of Bio-Rad
dye reagent and incubated for 5 min. The OD was read at
570 nm.

Data analysis
Two different resistance classifications (mortality per-
centage and resistance ratio, RR50) were used to indicate
the susceptibility of Ae. aegypti to the insecticides tested
in this study. Mortality percentage was used to assess
Table 2 Diagnostic dose (%) of five adulticides determined us

Adulticides n LC50 (95% CL) (%)

Cypermethrin 1765 0.017 (0.015 - 0.020)

Permethrin 1852 0.067 (0.052 - 0.087)

Etofenprox 1861 0.344 (0.236 - 0.499)

Deltamethrin 1851 0.002 (0.001 - 0.002)

Pirimiphos-methyl 1841 0.033 (0.032 - 0.034)

LC: Lethal concentrations, CL: Confident limits, Diagnostic Dose: LC99 × 2.
the effectiveness of synergists in enhancing the toxicity
of insecticides, whereas the RR50 is a more sensitive in-
dicator for resistance detection compared to mortality
percentage.
Bioassay results were expressed as mortality percent-

age and the susceptibility status of each population was
classified according to Davidson and Zahar [22], which
corresponds to incipient resistance for interpreting the
mosquito results on 4% DDT. Insects with 98-100% mor-
tality were classified as susceptible, those with mortality
less than 80% were classified as resistant, and those with
80-97% were classified as intermediate. Mortality rates
were corrected using Abbott’s formula [23] when control
mortality was between 5% and 20%.
The RR50 was calculated by dividing the KT50 value of

field strains with the corresponding KT50 value of the
susceptible strain. RR50 was scaled as follows: RR50 < 1
(susceptible), RR50 = 1 to 10 (low resistance), RR50 = 11
to 30 (moderate resistance), RR50 = 31 to 100 (high re-
sistance), and RR50 > 100 very high resistance [24].
Mortality percentages and enzyme levels were tested for

normality and variance homogeneity using Komolgorov-
Smirnov and Levene’s tests, respectively. Non-normal data
were arcsine log transformed to stabilize the variance.
Two sample t-test or Mann–Whitney non-parametric test
were applied to test for differences in the mortality be-
tween the Bora-Bora strain and respective field strains.
Statistical significance was determined at P < 0.05. The
Mann–Whitney non-parametric test was used to analyse
the effect of synergism on mortality. All analyses were
conducted using SPSS (PASW Statistics 19) software.

Results
Susceptibility status
Table 2 shows the diagnostic doses of each insecticide de-
termined from experiments using the Bora-Bora strain.
The toxicity levels of the five insecticides tested decreased
in the following order: deltamethrin > cypermethrin > piri-
miphos-methyl > permethrin > etofenprox.
Table 3 shows the toxicity of the different insecticides

against Ae. aegypti adults collected from seven locations
in Singapore. The RR50 values of these field strains to
deltamethrin were the highest among the insecticides
tested (44.02 to > 142.06-fold higher than control). RR50
ing the Bora-Bora strain

LC99 (95% CL) (%) Diagnostic dose (%)

0.074 (0.056 - 0.108) 0.148

0.283 (0.165 - 1.638) 0.566

3.098 (1.433 - 27.158) 6.196

0.007 (0.005 - 0.015) 0.014

0.106 (0.095 - 0.123) 0.212



Table 3 The toxicity of cypermethrin, permethrin, etofenprox, deltamethrin and pirimiphos-methyl against Ae. aegypti
adults collected from seven locations in Singapore

Insecticide Strain n KT50 (95% CL) (min) KT99 (95% CL) (min) Slope χ2 (df) RR50

Cypermethrin Bora-Bora 300 9.99 (9.66 – 10.30) 17.66 (16.64 – 19.03) 9.40 ± 0.60 1.27 (2) –

Ang Mo Kio 275 169.31 (138.13 – 238.08 ) 1297.44 (661.27 – 5187.65) 2.63 ± 0.15 6.03 (6) 16.94

Jurong East 297 137.04 (127.08 – 149.20) 1881.81 (1400.88 – 2703.23) 2.04 ± 0.10 1.04 (6) 13.71

Yishun 249 61.09 (55.94 – 66.32) 381.45 (310.43 – 496.22) 2.92 ± 0.12 1.59 (6) 6.11

Choa Chu Kang 185 58.80 (51.15 – 66.56) 319.60 (242.12 – 479.45) 3.16 ± 0.15 2.99 (6) 5.88

Clementi 230 114.64 (108.23 – 121.93) 761.42 (623.20 – 971.87) 2.82 ± 0.14 0.92 (6) 11.47

Pasir Ris 233 140.9 (113.14 – 201.01) 1099.35 (540.50 – 5522.01) 2.60 ± 0.15 7.79 (6) 14.10

Woodlands 241 37.58 (21.64 – 52.86) 513.49 (255.84 – 2632.36) 2.04 ± 0.09 13.78 (6) 3.76

Permethrin Bora-Bora 303 3.84 (3.27 – 4.37) 13.84 (10.96 – 19.96) 4.18 ± 0.18 4.04 (4) –

Ang Mo Kio 242 249.77 (193.03 – 375.99) 6551.79 (2650.48 – 30725.79) 1.64 ± 0.12 1.94 (6) 64.96

Jurong East 241 119.87 (111.36 – 130.04) 1458.47 (1096.47 – 2076.75) 2.14 ± 0.11 1.18 (6) 31.18

Yishun 247 153.13 (133.12 – 183.35) 2313.47 (1361.99 – 5009.64) 1.97 ± 0.12 1.59 (6) 39.83

Choa Chu Kang 240 131.55 (122.16 – 142.96) 1395.70 (1055.13 – 1975.95) 2.26 ± 0.12 0.79 (6) 34.21

Clementi 243 106.06 (91.27 – 126.51) 1251.56 (737.93 – 2900.56) 2.17 ± 0.11 3.21 (6) 27.58

Pasir Ris 230 204.79 (181.02 – 238.92) 3327.21 (2136.27 – 5968.84) 1.92 ± 0.13 1.42 (6) 53.26

Woodlands 224 109.01 (95.15 – 127.79) 1110.18 (690.86 – 2308.16) 2.30 ± 0.12 2.65 (6) 28.35

Etofenprox Bora-Bora 241 7.52 (6.89 – 8.15) 13.76 (11.89 – 17.64) 8.86 ± 0.43 4.36 (4) –

Ang Mo Kio 249 568.82 (314.24 – 2713.07) 17186.39 (3294.48 – 1596318.73) 1.57 ± 0.16 3.21 (6) 75.64

Jurong East 268 506.69 (380.34 – 761.06) 25359.74 (10505.36 – 90910.53) 1.36 ± 0.12 1.08 (6) 67.38

Yishun 257 221.21 (156.39 – 501.05) 3211.54 (1024.06 – 75816.37) 2.00 ± 0.14 7.55 (6) 29.42

Choa Chu Kang 248 313.21 (231.34 – 537.29) 5049.65 (1986.78 – 29308.23) 1.93 ± 0.16 2.28 (6) 41.65

Clementi 246 186.09 (150.86 – 260.53) 2094.00 (1017.04 – 7932.77) 2.21 ± 0.14 3.51 (6) 24.75

Pasir Ris 247 405.35 (244.78 – 1471.48) 10869.58 (2396.43 – 666897.06) 1.62 ± 0.15 4.21 (6) 53.9

Woodlands 238 380.72 (252.61 – 896.18) 8489.59 (2476.39 – 128146.80) 1.72 ± 0.16 2.79 (6) 50.63

Deltamethrin Bora-bora 299 9.51 (8.34 – 10.86) 17.15 (13.77 – 31.96) 9.08 ± 0.49 11.34(4) –

Ang Mo Kio 248 NO KD NO KD –

Jurong East 245 651.42 (442.97 – 1287.83) 8016.95 (3151.01 – 42766.59) 2.13 ± 0.31 0.54 (6) 68.48

Yishun 249 NO KD NO KD –

Choa Chu Kang 250 418.72 (295.23 – 821.19) 4908.35 (1900.67 – 32536.18) 2.17 ± 0.22 1.71 (6) 44.02

Clementi 249 1351.43 (643.69 – 8844.53) 23809.23 (4765.74 – 1458944.60) 1.86 ± 0.41 0.69 (6) 142.06

Pasir Ris 237 1301.18 (610.24 – 10278.39) 20376.87 (4004.39 – 1810855.45) 1.94 ± 0.46 0.38 (6) 136.78

Woodlands NA NA –

Pirimiphos- Bora-bora 304 107.10 (91.61 – 156.36) 284.96 (182.61 – 880.49) 5.47 ± 0.47 4.71 (8) –

methyl Ang Mo Kio 270 128.21 (124.83 – 131.69) 273.99 (255.06 – 298.55) 7.05 ± 0.34 0.79 (6) 1.19

Jurong East 267 107.99 (100.68 – 115.38) 235.36 (205.10 – 287.59) 6.87 ± 0.29 3.71 (6) 1.01

Yishun 271 145.10 (140.58 – 150.12) 358.06 (323.54 – 405.62) 5.93 ± 0.32 0.50 (6) 1.35

Choa Chu Kang 257 156.20 (129.37 – 219.52) 638.08 (366.42 – 2780.33) 3.80 ± 0.21 10.82(6) 1.46

Clementi 250 161.30 (138.33 – 202.96) 872.08 (531.85 – 2165.77) 3.17 ± 0.18 4.44 (6) 1.51

Pasir Ris 254 152.90 (145.93 – 161.28) 304.43 (264.53 – 376.96) 7.77 ± 0.48 1.95 (6) 1.43

Woodlands 246 133.39 (120.85 – 150.10) 519.20 (385.57 – 826.07) 3.94 ± 0.20 3.29 (6) 1.26

CL: Confidence limits, RR50: Resistance ratio values are based on KT50 levels of the field strain divided by KT50 levels of the reference strain (Bora-Bora). Ang Mo
Kio, Jurong East and Yishun are historically sensitive areas, whereas the others are from new sensitive areas. NO KD: Complete loss of knockdown effect. NA: No
data were shown due to insufficient number of mosquitoes collected from the location. Chi square (χ2) indicates the goodness of fit of the regression line [25].
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were moderate to high for permethrin (27.58 to 64.96-
fold) and etofenprox (24.75 to 75.64-fold) and low to
moderate for cypermethrin (3.76 to 16.94-fold). The low-
est was for pirimiphos-methyl (1.01 to 1.51-fold). Among
the different combination of mosquito populations and in-
secticides, the deltamethrin resistance of mosquitoes from
Ang Mo Kio and Yishun appeared to be the highest
(RR50 > 142.06-fold), as no knockdown mosquitoes were
observed during the 3 h exposure period. The two areas
were historically sensitive areas. The next highest com-
bination involved new dengue sensitive areas, Clementi
and Pasir Ris, with populations against deltamethrin,
displaying RR50 > 130-fold. The rest of the combinations
involving the pyrethroids tested ranged from RR50 3.76
to 75.64-fold. Interestingly, there is no significant differ-
ence in resistance among populations from historically
Table 4 Susceptibility of Ae. aegypti adults to different insect
synergists from various locations in Singapore

Strain Mean % mortality1 ± SE

Insecticide Bora-Bora Ang Mo Kio Jurong East Yishun

Total exposed (n) 1261 1239 1331 1175

Cypermethrin only 100 ± 0 1.27 ± 1.27 58.93 ± 8.92 29.50 ±

Cypermethrin + PBO 100 ± 0 1.62 ± 0.36 14.60 ± 5.06* 8.43 ±

Cypermethrin + DEF 100 ± 0 11.03 ± 1.70* 12.67 ± 2.08* 37.19 ±

Cypermethrin + TPP 100 ± 0 0.40 ± 0.40 3.50 ± 0.60* 2.42 ±

Cypermethrin + 3
synergists

4.54 ± 1.64 8.25 ± 0.94* 13.64 ±

Total exposed (n) 1250 1228 1182 1239

Permethrin only 100 ± 0 5.75 ± 0.98 11.59 ± 2.93 16.58 ±

Permethrin + PBO 100 ± 0 3.29 ± 2.21 15.99 ± 6.56 22.45 ±

Permethrin + DEF 100 ± 0 27.35 ± 5.03* 17.59 ± 3.25 29.21 ±

Permethrin + TPP 100 ± 0 1.22 ± 0.70* 1.60 ± 1.06* 1.21 ±

Permethrin + 3
synergists

100 ± 0 1.62 ± 0.81* 1.21 ± 0.70* 1.19 ±

Total exposed (n) 1240 1193 1245 1215

Etofenprox only 100 ± 0 12.96 ± 6.68 21.87 ± 18.96 26.04 ±

Etofenprox + PBO 100 ± 0 27.16 ± 8.50 23.90 ± 12.29 47.43 ±

Etofenprox + DEF 100 ± 0 31.58 ± 9.25 27.82 ± 11.22 55.49

Etofenprox + TPP 100 ± 0 7.07 ± 2.28 1.54 ± 1.01 2.08 ±

Etofenprox + 3
synergists

100 ± 0 12.15 ± 5.96 19.07 ± 10.92 18.84 ±

Total exposed (n) 1248 1290 1154 1089

Pirimiphos-methyl only 100 ± 0 100 ± 0 100 ± 0 99.25 ±

Pirimiphos-methyl + PBO 100 ± 0 95.40 ± 4.04 79.82 ± 10.09* 47.55 ±

Pirimiphos-methyl + DEF 100 ± 0 98.85 ± 0.66 98.80 ± 0.72 93.46 ±

Pirimiphos-methyl + TPP 100 ± 0 81.36 ± 7.52* 60.16 ± 11.86* 66.01 ±

Pirimiphos-methyl + 3
synergists

100 ± 0 100 ± 0 55.95 ± 10.72* 2.75 ±

1Mean% mortality followed by an asterisk symbol indicates significant difference co
Jurong East and Yishun are historically sensitive areas; others are new sensitive area
dengue sensitive areas and new dengue areas (MAN-
OVA test: F4,2 = 6.489, P = 0.138).
The mortality rates of field populations, subjected to

the diagnostic doses of insecticides, corresponded to the
RR50 results, with all populations displaying low mortality
to pyrethroids and high mortality to pirimiphos-methyl
(Table 4). The population most resistant to pyrethroids
(<13% mortality) was Ang Mo Kio, a historically sensitive
area. The population from this area also had the highest
RR50 values for all pyrethroids tested (Table 3). Overall,
the mortality rates of field mosquitoes exposed to cyper-
methrin, permethrin and etofenprox were between 1.27%
and 68.44%. Although mortality tests were not conducted
against deltamethrin due to the limited number of field
mosquitoes collected, low mortalities would be expected
based on the high RR50 values for this insecticide.
icides at diagnostic dose (LC99 × 2) and insecticides with

Choa Chu Kang Clementi Pasir Ris Woodlands

1126 1184 1198 1208

8.18 34.63 ± 6.03 15.20 ± 2.80 27.53 ± 1.61 68.44 ± 2.55

2.09 11.60 ± 5.40* 5.41 ± 1.46* 33.83 ± 2.65 32.09 ± 6.15*

3.08 27.34 ± 5.77 29.87 ± 3.29* 53.79 ± 4.61* 29.63 ± 9.90*

0.03* 0.83 ± 0.83* 2.14 ± 0.88* 16.79 ± 7.40 6.13 ± 3.97*

6.30 15.47 ± 6.24 2.93 ± 0.43* 31.51 ± 3.75 35.29 ± 10.56*

1252 1224 1219 1206

4.22 18.57 ± 3.44 27.39 ± 6.83 6.00 ± 1.32 33.88 ± 7.72

5.52 14.87 ± 0.61 15.14 ± 1.96 3.94 ± 1.97 7.24 ± 2.51*

4.47 16.51 ± 1.97 39.95 ± 14.67 25.61 ± 3.23* 38.47 ± 6.85

0.70* 0.78 ± 0.39* 3.16 ± 1.36* 1.20 ± 0.70* 2.02 ± 0.39*

1.19* 1.16 ± 0.01* 6.43 ± 3.21* 0.42 ± 0.42* 14.77 ± 3.67

1235 1185 1265 1144

19.23 16.47 ± 11.66 28.86 ± 6.95 14.40 ± 10.79 14.94 ± 13.05

9.19 20.71 ± 3.78 38.67 ± 12.55 22.32 ± 2.21 41.68 ± 11.48

± 0.53 41.83 ± 5.03 38.64 ± 9.94 32.35 ± 3.95 56.09 ± 6.46*

2.08 2.06 ± 0.43* 3.91 ± 1.04* 4.39 ± 1.42 6.10 ± 3.47

1.88 13.62 ± 5.09 15.01 ± 3.93 7.40 ± 1.41 20.71 ± 2.24

1242 1256 1256 1177

0.75 100 ± 0 95.98 ± 4.02 100 ± 0 98.41 ± 1.59

5.16* 95.78 ± 3.15 88.12 ± 8.37 98.86 ± 1.14 81.79 ± 10.03

5.95 97.00 ± 1.91 99.58 ± 0.42 99.59 ± 0.41 100 ± 0

10.99* 97.27 ± 1.71 2.27 ± 2.27* 67.96 ± 5.78* 64.92 ± 16.35

1.41* 2.43 ± 1.90* 50.34 ± 5.44* 8.75 ± 2.43* 28.12 ± 3.94*

mpared to the Bora-Bora strain (p < 0.05, independent t-test). Ang Mo Kio,
s. Number in bold denotes mortality higher than 50%.



Table 5 Mean (±SE) levels of altered acethylcholinesterase (AchE), non-specific esterases (α- and β-esterase),
glutathione S-transferase (GST) and monooxygenase (MFO) activities of Ae. aegypti adults collected from different
locations in Singapore

Strain n Mean enzyme activities1 (Mean2 ± SE)

AchE α-Esterase β-Esterase GST MFO

Bora-bora 93 30.13 ± 0.67 21.51 ± 0.70 23.61 ± 0.74 0.04 ± 0.00 0.13 ± 0.01

Ang Mo Kio 79 33.98 ± 0.44* 22.23 ± 0.56 23.96 ± 0.81 0.06 ± 0.00 0.02 ± 0.00*

Jurong East 94 32.55 ± 1.08 2.08 ± 1.80* 1.93 ± 1.69* 0.05 ± 0.00 0.53 ± 0.02*

Yishun 82 46.35 ± 0.97* 15.99 ± 0.42* 19.67 ± 0.57* 0.04 ± 0.00 0.22 ± 0.01*

Chua Chu Kang 81 38.31 ± 0.55* 7.85 ± 0.32* 10.60 ± 0.47* 0.05 ± 0.00 0.14 ± 0.00*

Clementi 44 34.25 ± 1.49* 17.78 ± 0.81* 19.09 ± 1.03* 1.99 ± 0.04* 0.13 ± 0.01

Pasir Ris 47 33.85 ± 0.66* 9.54 ± 0.44* 12.67 ± 0.55* 0.04 ± 0.00 0.01 ± 0.00*

Woodlands 32 27.41 ± 1.10* 13.75 ± 0.81* 14.72 ± 0.96* 0.04 ± 0.00 0.20 ± 0.01*
1Enzyme activities are expressed as the reaction rate of different substrates/min/mg protein. 2Means followed by the asterisk are significantly different compared
to the Bora-Bora strain (p < 0.05, two samples t-test or Mann–Whitney test). AchE: percentage insensitive acethylcholinesterase activity after propoxur inhibition.
α-esterase: nmole of 1-naphthol/min/mg protein, β-esterase: nmole of 1-naphthol/min./mg protein. GST: mMole of CDNB/min/mg protein. MFO: nmole equivalent
unit cyt P450/min/mg protein. The results in bold denotes activity that is more than two times above the control.

Figure 2 Altered acethylcholinesterase (AchE) activities in Ae. aegypti adult populations from Singapore.
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Effectiveness of synergists
No significant increase in mortality rate was detected in
most populations after synergist treatment. The excep-
tions are those from Ang Mo Kio, Clementi, and Pasir
Ris, which showed significantly higher mortalities after
the addition of DEF to cypermethrin and permethrin, and
those from Woodlands, showing a significant four-fold in-
crease in mortality when DEF was added in etofenprox
(Table 4). However, despite the statistical significance in
the enhancement, the synergist did not recover the tox-
icity of the pyrethroids, with only 3 data points marginally
exceeding 50% mean mortality. DEF treatment to all pyr-
ethroid assays led to a slight, but not significant increase
in the mortality of Ae. aegypti adults in most strains.
Counter-productively, in many populations, the “syner-
gist” antagonised the toxicity of pyrethroids. Most marked
is TPP which reduced the mortality rate rendered by all
insecticides. Reduction of mortality caused by cyperme-
thrin was as low as 42-fold (Choa Chu Kang population),
Figure 3 Esterase activities with α-naphthyl acetate in Ae. aegypti adu
permethrin as low as 23-fold (Choa Chu Kang population)
and etofenprox as low as 14-fold (Jurong East). Treatment
with any of the three synergists did not increase the mor-
tality of all Ae. aegypti strains to pirimiphos-methyl. In
summary, the synergists (PBO, DEF, and TPP) are not ef-
fective in enhancing the toxicity of insecticides against
local Ae. aegypti.

Biochemical assays
On average, adults from all locations except Woodlands
showed a very low frequency of altered AchE activity
based on the expected 30% propoxur inhibition of AchE
activity in susceptible individuals (Table 5) [19]. However,
individual Ae. aegypti from all locations except Woodlands
(P = 0.627), exhibited significantly increased altered AchE
activity (P < 0.05) (Figure 2).
There was no evidence of elevated EST activity in any of

the populations tested (Table 5, Figures 3 and 4). The popu-
lation from Clementi was the only one with elevated GST
lt populations from Singapore.



Figure 4 Esterase activities with β-naphthyl acetate in Ae. aegypti adult populations from Singapore.
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level (Figure 5). The populations from Yishun, Woodlands
and Jurong East exhibited significant increase in mean
MFO levels (P < 0.05) (Table 5), but the increase in MFO
activity was only detected at low frequency at the individual
level in Jurong East population (Figure 6).

Discussion
Susceptibility status
Aedes aegypti populations in Singapore have previously
been reported to be resistant to permethrin [26], and a
study in 1999 showed that the RR50 of field Ae. aegypti
against permethrin was 12.9-fold of susceptible strain
[27]. A study from 2004–2007 has also shown resistance
of Ae. aegypti to cypermethrin [28]. More recently, we re-
ported the resistance of Singapore Ae. aegypti larvae, to a
panel of pyrethroids [29]. Detection of resistance among
Ae. aegypti adult is thus of no surprise. The long term use
of pyrethroids for vector control, previous use of DDT
which has been found to contribute to today’s widespread
pyrethroid resistance and the use of pyrethroids in most
household insecticide products, such as aerosols and mos-
quito coil mats have rendered field selection pressure to-
wards the family of insecticides. This is not unique to
Singapore as pyrethroid resistance among Ae. aegypti has
been reported in many countries [30-34].
However, our study found that Ae. aegypti populations

from historical and new dengue sensitive areas displayed
no significant difference in their susceptibility to all in-
secticides tested. The results contradicted our hypothesis
that the resistance level in historical sensitive areas
would be higher than that in new sensitive areas because
of more prolonged insecticide exposure in the former.
Together with the previous findings of insecticide resist-
ance, these results suggest that the mosquitoes from the
newly sensitive areas could be due to migration of the
vector from the historically sensitive areas. It is consist-
ent with our observation that emergence of new dengue
areas in Singapore is due to the geographical expansion



Figure 5 Glutathione S- transferase (GST) activities in Ae. aegypti adult populations from Singapore.
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of Ae. aegypti on the island. Dispersal of already resist-
ant mosquitoes due to human movement or goods
movement could have contributed to the widespread
pyrethroid resistance in Ae. aegypti throughout the
country. This is in contrast to findings from Thailand
and Africa [35,36] where insecticide resistance appears
to be focal and heterogeneous at short distances in dif-
ferent regions.
Pyrethroids are broadly categorized into three groups

based on their structure and toxicology: type I, type II
and non-ester pyrethroid. Type II pyrethroids, which
contain a α-cyano group, are more toxic than type I py-
rethroids [37,38], and our study showed that type II py-
rethroids (cypermethrin and deltamethrin) had higher
insecticidal activity than the type I pyrethroid (permeth-
rin) (Table 2). Cross resistance among these pyrethroids,
due to shared mode of action [39,40] is well known. Aedes
aegypti in Bandung, Indonesia displayed cross resistance
between permethrin (type I pyrethroid), and deltamethrin
(type II) and was postulated to be due to these two types
of pyrethroids sharing similar chemical structure [41]. In
Singapore, resistance to etofenprox (a non-ester pyreth-
roid) was observed even though it has not been widely
used. For example, it represents just 0.17% of insecticides
used in fogging by the private pest control industry during
the period Jan 2009 to Sept 2011, contrasting with 56.9%
due to cypermethrin during the same period. Similarly,
Kasai et al. [42] reported that the high resistance of Culex
pipiens to etofenprox was due to cross resistance from
permethrin and phenothrin, as etofenprox is rarely used
in Japan. Helicoverpa armigera also exhibited cross re-
sistance, as it showed different levels of resistance to in-
secticides to which it had never been exposed [43]. The
cross resistance to insecticides with different chemical
structure, such as in the case of non-ester pyrethroid
(etofenprox) and type II pyrethroids (cypermethrin and
deltamethrin), suggest that these pyrethroids may target
similar binding sites [37].



Figure 6 Monooxygenases (MFO) activities in Ae. aegypti adult populations from Singapore.
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In contrast to the high level of pyrethroid resistance
detected, all populations of Ae. aegypti showed RR50 1.01
to 1.51-fold of resistance to pirimiphos-methyl (Table 3),
and this is similar to the 1998 study where the RR50 to
pirimiphos-methyl was only 1.5-fold [27]. This suggests
that the development of organophosphate resistance has
not worsened. Rotation of insecticide classes with different
modes of action has often been proposed as a strategy
to help reduce the selection pressure on the insecticide
[44]. However, the cross resistance among different
pyrethroids and the widespread resistance revealed by
this study suggests that an insecticide rotational strategy
would not be a feasible resistance management ap-
proach in Singapore.

Mechanism of resistance
The ineffectiveness of the synergists in alleviating pyreth-
roid resistance among the Singapore Ae. aegypti popula-
tion indicates the insignificant role of MFOs or other
detoxifying enzymes, in the resistance landscape of local
Ae. aegypti. Several previous studies have suggested that
PBO acts as an inhibitor of MFOs [45,46]. However, in
Singapore, although DEF increased the mortality rates of
four populations rendered by cypermethrin, permethrin
or etofenprox, only three data points marginally exceeded
50% mortality rate. This suggests that mechanisms other
than the overproduction of detoxifying enzymes, are re-
sponsible for the high pyrethroid resistance displayed by
local Ae. aegypti. The hypothesis is further supported by
results from the biochemical assays, where only two popu-
lations had any detoxifying enzyme increased more than
two times above the control population. It is interesting
that most of the populations had enzyme levels below that
of the Bora-Bora strain. It has been suggested that greater
effect of PBO in susceptible strains may occur because
of greater monooxygenases metabolism and higher sus-
ceptibility of monooxygenases detoxification in suscep-
tible strain [47].
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Nonetheless, the partial synergistic effects of DEF in
most populations suggest at least a minor role of EST and
GST. DEF is an inhibitor of EST and GST [48]. The syner-
gistic effect of DEF on Clementi population corresponds
to the higher GSTactivity of Clementi population (Table 5,
Figure 5). However, the lack of such corresponding results
in other populations that also displayed synergistic effect
of DEF, suggests the possible involvement of other un-
known enzymes that could work in synergy with DEF.
Elevated GST level is known to be associated with DDT

resistance [49]. The long-term use of DDT through indoor
residual spraying in Orissa State in India resulted in a high
GST level in DDT-resistant Anopheles culicifacies and
An. annularis [50]. GSTs often act as a secondary resist-
ance mechanism in conjunction with P450- or EST-based
resistance mechanisms. Aedes aegypti in Singapore is ex-
pected to have maintained its high resistance to DDT even
though use of DDT was banned in 1973. Ong et al. [51]
reported that this mosquito species was resistant to DDT
in 1980. The elevated GST level in the Clementi popula-
tion is indicative of DDT resistance in this population. To
confirm that DDT resistance is still prevalent among the
other field populations, we exposed some field strains to
4% DDT (WHO diagnostic dose). Low mortalities (10.06 -
29.12%, data not shown) were observed. This opens up
the possibility that the pyrethroid resistance we encounter
today could be a result of cross resistance with DDT.
However, as discussed above, the role of GST is limited as
demonstrated by non-elevation of the enzyme in most
population. The other known cross-resistance mechanism
involves the kdr mechanism [52-54]. Taken together
with the ineffectiveness of synergies, the role of kdr in
insecticide resistance in local Ae. aegypti is suspected,
and will be studied.
The antagonistic effect of “synergists” on the toxicity of

pyrethroids to some local populations of Ae. aegypti is puz-
zling. Most marked is TPP, which antagonised action of all
pyrethroids tested against all populations. Such antagonistic
effect has been reported in other studies [55,56]. Martin
et al. [57] also reported antagonism of toxicity after TPP
pre-treatment in Heliothis virescens, the tobacco budworm.
Pridgeon et al. [47] suggested that the increased deltameth-
rin resistance observed might be due to PBO reducing
cuticular penetration of deltamethrin. Alves et al. [58] also
reported on DEF reducing the toxicity of indoxacarb to
Ostrinia nubilalis, the European corn borer. There is a
dearth of knowledge on the antagonistic effect of chemicals,
and more studies are required to shed light on the mechan-
ism of synergism and antagonism. Nevertheless, our results
demonstrated the importance of local evaluation of insecti-
cides and synergists, as an inappropriate use of synergist
could exacerbate the poor performance due to resistance.
Altered AchE activity is known to confer organophos-

phate and carbamate resistance in mosquitoes [59,60].
However, the low frequency of altered AchE activity ob-
served in our study indicates that this mechanism is not
involved. This supports the bioassay result where low level
of pirimiphos-methyl resistance was detected in all loca-
tions (Table 3). Elevated levels of EST were correlated with
organophosphates and in some cases, pyrethroids. This
suggests that Ae. aegypti in Singapore are still susceptible
to organophosphates although low levels of pirimiphos-
methyl resistance were shown.
Our results suggest that multiple mechanisms may be

responsible for pyrethroid resistance in Ae. aegypti. Des-
pite the resistance displayed in laboratory assays, several
ad hoc field tests have demonstrated the effectiveness of
some of these pyrethroids. While control failure has not
been demonstrated in the field, an insecticide resistance
management plan must be developed, and insecticides
must be used judiciously.
Conclusions
Insecticide resistance is often a complex dynamic interplay
of several mechanisms. Laboratory investigation demon-
strated that pyrethroid resistance has developed among Ae.
aegypti populations in Singapore, though there is no evi-
dence of control failure when these insecticides are used.
Susceptibility to pirimiphos-methyl is maintained, but the
widespread resistance revealed by this study suggests that
an insecticide rotational strategy may not be a feasible re-
sistance management approach in Singapore. Source re-
duction via environmental management must remain as
the mainstay of Singapore vector control programme. Use
of insecticides should be judicious, particularly reserving it
for control of vector borne diseases.
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