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Abstract
Flow cytometry and its technological possibilities have greatly advanced in the
past decade as analysis tool for single cell properties and population distributions
of different cell types in bioreactors. Along theway, some solutions for automated
real-time flow cytometry (ART-FCM) were developed for monitoring of bioreac-
tor processes without operator interference over extended periods with variable
sampling frequency.However, there is still great potential forART-FCM to evolve
and possibly become a standard application in bioprocess monitoring and pro-
cess control. This review first addresses different components of an ART-FCM,
including the sampling device, the sample-processing unit, the unit for sample
delivery to the flow cytometer and the settings formeasurement of pre-processed
samples. Also, available algorithms are presented for automated data analysis
of multi-parameter fluorescence datasets derived from ART-FCM experiments.
Furthermore, challenges are discussed for integration of fluorescence-activated
cell sorting into an ART-FCM setup for isolation and separation of interesting
subpopulations that can be further characterized by for instance omics-methods.
As the application of ART-FCM is especially of interest for bioreactor process
monitoring, including investigation of population heterogeneity and automated
process control, a summary of already existing setups for these purposes is given.
Additionally, the general future potential of ART-FCM is addressed.
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1 INTRODUCTION

In the past decade, flow cytometry (FCM) has proven to be
an invaluable tool in clinical diagnostic as well as research
[1]. It is a powerful high-throughput method for rapid
measurement of fluorescence characteristics of cells with

Abbreviations: ART-FCM, automated real-time flow cytometry; FACS,
fluorescence activated cell sorting; FC, flow cytometer
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single-cell resolution while at the same time collecting
information about the parent population the cells are
randomly sampled from. This feature makes FCM the
workhorse of single-cell analysis [2, 3]. Especially, FCM
is advantageous, when the characteristics of a significant
amount of single cells are evaluated in several consecutive
samples following a bioprocess. Furthermore, this method
is generally faster than omics-methods, particularly
when temporal variations are of interest [4]. For detailed
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information about the function of FCM, the reader is
referred to existing literature (for instance [3, 5–7]).
Nowadays advanced flow cytometers (FCs) allow to

quantify up to 50 parameters for millions of cells at a speed
of around 1000 events per second [8]. Thus, single cells in
a bioprocess expressing fluorescent proteins as reporters
for different cellular characteristics or alternatively single
cells stained with one or several fluorescent dyes can be
monitored simultaneously [8–18]. Also, the combination
of reporter strain and dyes or cell size characteristics is
applied [18, 19]. Its ability to measure single cell character-
isticsmakes FCMalso a suitable tool tomonitor population
heterogeneity in bioreactors as well as to investigate the
cells’ physiological state under process-related conditions
[2, 7]. Additionally, FCM has become an essential tool for
investigating population dynamics in mixed cultures and
quantitative studies of microbial communities differenti-
ating different cell types based on cell size, morphology
or fluorescence properties [20]. As a consequence, multi-
dimensional datasets are recorded. These can be analyzed
applying advanced algorithms adapted from research areas
where FCM is already a standard analytical tool [8, 21–25].
Otherwise simple statistical tools can be applied to exploit
the underlying cellular expression pattern in consecutive
bioprocess samples [26].
Even though the data analysismethods for FCMsamples

taken from bioreactors are far from being on the level of
instrument advances, automated procedures for sampling
from the bioreactor and sample preparation which would
supplement this versatile and fast method, are surprisingly
largely unexploited [27, 28]. Especially, when considering
the application of FCM for automated process control, bio-
process monitoring and optimization, the analysis is apart
from some examples [1, 28–32] mostly done off-line or at-
line [33] to the bioprocess. The main reason was suspected
to be that a complex interface between the bioreactor and
the FC is needed [28]. In contrast, in fields, like water ana-
lytics, online process monitoring with FCM is routinely
applied [34–36].
Indeed, integration of onlinemeasurement would, apart

from following the trend of digitalization, have several
advantages [37]. A process could be “continuously” mon-
itored without intense cost in labor and time, filling
gaps between manual sampling intervals and generating
detailed pictures of changes in cell population distribu-
tions with temporal resolution [27, 38]. Furthermore, an
automated procedure would be more precise than manual
sample handling. Additionally, time can be saved as tradi-
tionally several consecutive steps inmanual sample prepa-
ration have to be performed prior to FCM measurement
[38, 39]. Also, depending on the measurement capacity,
processmonitoring can be performed on two levels, reveal-
ing rapid changes of single cells, which can be challenging

to follow manually and changes on bigger time scale with
regular sampling over several days which makes FCM a
flexible tool for bioprocesses with different organisms or
process goals. Then, this method can also be applied for
process control [2, 28] and optimization as the metabolic
state and growth of the cells in the bioreactor can be rapidly
assessed [40]. Afterwards, process conditions can be feed-
back regulated to be favorable for the majority of cells or to
enrich cells with advantageous characteristics for the tar-
geted process goal [41–43].
Before reviewing the parts, state-of-art, advances and

challenges in introducing an automated FCMmethod into
a bioprocess, the name of this method should be defined,
as wording is used inconsistently. In literature terms like
“online,” “automated” or “real-time” FCM are found that
do not always caption the automated method described
above. Instead, sometimes the at-line or off-line measure-
ment of consecutive samples is meant, during which the
FC is not directly coupled to the bioreactor. “Online” or
“continuous” FCMmight not be accurate because samples
are taken in a range of several minutes. Consequently, the
picture is slightly shifted compared to what happens in the
bioprocess at the moment of data visualization. For this
reason, in the following the term automated real-time flow
cytometry (ART-FCM) will be used.

2 COMPONENTS OF AN ART-FCM

ART-FCM for automated monitoring requires additional
parts compared to conventional at-line or off-line FCM.
The first automated systems for real-time assessment of
the dynamics in the physiological state of cells, applied
flow injection analysis coupled to FCM [35, 44, 45] and
were often simple compared to modern systems (summa-
rized in Table 1). However, the general setup still com-
promises the same basic units, sample preparation (sam-
pling device and sample processing) and analysis (sample
delivery to the FC, the FC and the (automated) data anal-
ysis) (Figure 1). Sometimes also specialized algorithms are
applied that store samples in a specific format or do the
pre-treatment for subsequent automated data analysis and
potentially feedback control of the experimental device.
However, this part is so far rarely established [28, 46].

2.1 Sampling device

In ART-FCMs, the sample is mostly withdrawn from a
bioreactor by means of an automatically controlled peri-
staltic pump, optionally filtered and transferred into sam-
ple processing units of different kind [27, 28, 34–36, 47–
49, 50]. In that way, automated sampling can be per-
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TABLE 1 Overview of automated real-time flow cytometers and their components that were built and employed in published studies
sorted by research area where the respective system was first deployed

References Flow cytometer/FACS Components
Sampling from
external device

Staining/
dilution

Temperature
controlled

Automated
data analysis

Sampling
frequency

Systems developed for water analytics
[34], [36], [49], [72] BD Accuri C6 X X X (X) 1-15 min
[50], [57] CytoBuoy X – – X 5 min
Systems developed for bioprocess monitoring
[38], [39] Beckman Coulter Cell Lab

Quanta SC
X X X – 24 h

[28], [29], [46] BD Accuri C6 X X X – 15-60 min
[54] Partec CyFlow Space X X X – 3-4 min
[1], [53], [55], [56] BD FACSCalibur, Guava easyCyte X X X (X) 15 min
[31] Ortho Cytofluorograf IIs X X X (X) 3-4 min
[27] BD Accuri C6 X X X – <1 min
Systems with autosampler/pipetting roboter
[66] BD FACScan X X (X) X 20 min
Other systems
[62] Coulter Elite X X – – <1 min
[61] BD FACS Analyzer X X X – <1 min
[51] BD FACS Analyzer X X – – 2-5 min

References are listed in alphabetical order.

F IGURE 1 Overview of components of an automated
real-time flow cytometer and its application possibilities in
bioreactor processes. The system can be divided into two general
units: the sample preparation comprising the sampling device and
the sample processing step(s) (green background) and the sample
analysis that includes the flow cytometer itself including sample
delivery and the (automated) data analysis (blue background). Both
units are interconnected as they represent consecutive steps

formed every 3–15 min including 2 min measuring time
followed by 1 min rinsing and preparation for the next
sample [48, 51]. If the sample is stained and subsequently
incubated, sampling with ultra-high (1 min) and high
(15-20 min) temporal resolution to investigate short-term

microbial dynamics from up to three bioreactors for peri-
ods over 24 h, respectively, up to 2 weeks is possible [28,
34, 36, 48, 52]. Different systems are used for high and
ultra-high temporal resolution of sampling, simplifying
the steps for sample processing when following short-term
microbial dynamics [27, 34, 35, 48]. Advantages of this
system are that it can be run dis- or continuously with
user defined frequency, is technologically simple and can
flexibly be connected to various sample processing units.
Disadvantageous is, however, that the system is prone to
clogging because no cleaning procedure is implemented.
This might also lead to carryover between subsequent
samples.
Another system for automated sampling from bioreac-

tors is a sample loop that is reconnected to the bioreactor
via a peristaltic pump [1, 30, 31, 53], which continuously
withdraws sample. In the loop, the sample passes through
an optional degassing or de-foaming unit to prevent dis-
ruption of the operation of the sampling device by trapped
air bubbles [54]. Depending on if it is time to sample,
the sample is either rapidly re-circulated to the bioreactor,
minimizing; however, not avoiding, possible influences on
cell physiology due to unequal conditions in the sampling
loop and the bioreactor, or fed into ameasurement line or a
micro-chamber for further processing [53–56]. With a loop
with degassing unit, that is additionally flushed after each
sample, the minimum sampling interval was determined
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to be 5 min, which is long compared to other systems [57].
As the above described system, this system can flexibly be
combined with sample processing units, while allowing
continuous sampling with user defined frequency.
Another sampling device, originally developed for rapid

sampling in large numbers and cell inactivation for analy-
sis of intracellular components in continuous or fed-batch
processes with Escherichia coli and Saccharomyces cere-
visiae [39, 58–61], was also adapted for ART-FCM of Chi-
nese hamster ovary (CHO) cell cultures [38, 39]. Employ-
ing the device, samples were taken in less than 0.2 s dur-
ing up to 2.5 days or every 30 s to 5 h for experiments
up to 1 week, opening up broad application possibilities.
Additionally, the device is fitted to standard port dimen-
sions of laboratory scale bioreactors and can therefore be
flexibly connected. For sampling, a programmable valve
automatically opens after fixed time intervals [38, 39, 62,
63]. Then, the sample is either directly withdrawn [62] or
the sampling pipe firstly flushed, which avoids, together
with the automatic cleaning between subsequent samples,
carryover between samples and lowers the contamination
risk [38, 39, 60, 63]. However, additional flushing and rapid
sampling can lead to volume variations in the bioreactor,
which in the endmight have an influence on process phys-
iology.
In another setup, samples for ART-FCM are taken from

cultures grown in micro titer plates of 400–600 μL work-
ing volume inside a robotic platform using an automated
pipetting device [64–66]. Samples are transferred to new
plates for optional dilution with buffer before the whole
plate is moved into the FC. In this way, 10–100 μL sample
of up to 96 cultures can be withdrawn every 10–20 min for
around 15 h. Consequently, this setup does not only allow
high-throughput, but also a high degree of parallelization.
To account for unavoidable volume loss due to sampling,
each vial has to be regularly refilled with fresh medium
[64]. Nevertheless, this system is only suitable for short
term experiments and highly technologically demanding
compared to other sampling devices.
Therefore in conclusion, the three presented simple sys-

tems seem better suited for bioprocess monitoring, also
considering the investment costs. Comparing them, pos-
sible influences on cell physiology found when applying
the second system should be avoided. Therefore a system
appearsmost reasonable that combines the standard biore-
actor port compatibility and possibility to clean of the third
system with the flexibility of the first system.

2.2 Sampling processing

After sampling, the sample is mostly not directly trans-
ferred to the FC but further processed, for instance diluted

with sheath fluid or buffer, stained or mixed with a react-
ing agent. For this purpose, specific interfaces have been
developed and partly commercialized [2, 34].
In simple systems, working by the in-line mixing princi-

ple, fluids for dilution or reacting agents of different kind
are introduced through a controllable multi-way valve into
the sample line [10, 28, 36, 38–39, 44, 40, 51, 63, 66]. Instan-
taneous inline mixing of sample and reagent is enabled
by equipping the reaction line with mixing or vortexing
devices or by injection of sterile air [35, 61, 67]. Afterwards
the sample is incubated by continuously flowing through
an often temperature controlled line of defined length and
volume, which allows to precisely define the contact time
[34, 35, 48, 68]. Considering incubation for the dye to react,
a continuously withdrawn sample could be stained every
5–15 min with SYBR Green for evaluation of DNA/RNA
content [34, 36, 38, 39, 48]. Dilution can also be performed
in these systems [10, 28] adjusting the flow rates of the sam-
pling pump and a pump for addition of sheath fluid to yield
user-defined dilution factors. A disadvantage of this sys-
tem is, that it is impossible to perform sample processing
tasks in parallel. In addition, depending on the tasks, the
long reaction line prolongs the processing time, even if all
parts are placed in close proximity. Moreover, this system
needs precise characterization, calibration of the dilution
system and strict harmonization of the action of all parts
to ensure a robust staining and measurement procedure.
Due to its complexity, the tube system should be checked
for possibilities of clogging, fouling or sedimentation
of cells.
Other systems include an air-bubble free, stirred micro-

chamber that can be flexibly applied for performance of
diverse tasks such as dilution, fixation, staining, mixing
and washing [1, 31, 51, 54, 68]. A chamber facilitates mix-
ing in down to 1–2 s in a predictable manner [31]. More-
over, addition of liquid of different kind is controlled by
connecting the micro-chamber to a multi-way valve [31,
51, 62] delivering distinct liquid volumes with reproducible
timing [51, 68]. In this way, unwanted side-reactions are
avoided as separate flow lines for sample, reagents and car-
rier solution can be implemented increasing the accuracy
of the performed reactions [31, 68].
A special feature of these systems is, that it is possi-

ble to easily determine cell concentrations in the incuba-
tion line [1]. However, for concentrated cell samples above
2.0 × 106 cells mL−1, accuracy decreases as it is impossible
to distinguish every single cell.
Micro-chambers can also be employed for dilution of

samples by addition of buffer or sheath fluid with defined
flow rates until the cell concentration drops to a desired
value that is approximated by the previous sample or
specific number of events in the FC [1, 30, 54]. There is
a risk of excessive increase in dilution factor by outlier
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samples, which were shown to have a detrimental effect
on the counts in the FC throughout the remainder of an
experiment. Therefore, a limit for dilution factor increase
between subsequent samples should be defined [1].
Another simple, inexpensive mixing chamber was built

of a disposable plastic cuvette directly placed at the inlet of
the FC [69]. The chamber is pre-pressurized, temperature
controlled and magnetically stirred. Up to five tubes for
liquid addition from different reservoirs can be connected
to the port head. Due to short distances, the time delay
between sample preparation and measurement is reduced
to a few seconds enabling measurement with high tempo-
ral resolution. Even though this system covers the same
features as more robust micro-chambers, it bears a risk of
fatigue of material, so that it is reasonably applied only in
short term experiments.
Another simple system employed a home-built temper-

ature controlled coaxial jet flow mixing device consisting
of two capillaries. The sample is introduced through the
inner locatable capillary, while the outer capillary is fixed
and contains reagent.When sample and reagent get in con-
tact they mix instantaneously due to different shear stress
profiles inside the capillaries. Displacement of the inner
capillary allows for variable contact times between sample
and reagent that both flow with constant motion [61]. This
system is limited to performance of a single task: mixing.
Moreover, for accurate results, intensive characterization
and calibration is needed,making it unfavorable compared
to other devices presented here.
Comparing the described devices, a setup with non-

disposable micro-chamber seems most flexible to perform
diverse tasks and therefore best suited when building an
ART-FCM.

2.3 Delivery of the sample

After processing, the sample has to be delivered and loaded
into the FC. Thereby the first challenge is to establish
a connection between FC and sample processing device,
as they have potentially quite different requirements con-
cerning pressure, material and stability [51, 68].
In simple cases, the sample uptake nozzle head of the

FC is attached to a tube with a stem at one side to which
the tubing of a sample line is directly attached [1, 38, 39,
62, 65]. Samples are then pumped to the FC, limiting carry-
over between samples as liquid can onlymove in one direc-
tion. Often, the passage is further restricted by the action
of a remote controlled valve [1, 28–30, 54, 55, 70, 71]. The
sheath fluid is driven by the pressure regulation system of
the FC. For this purpose, the line that normally pressur-
izes the injection tube of the FC is connected to the sheath
fluid reservoir. With this simple setup the normal action

of the FC is not disrupted, however there is a high risk of
technical failure, especially considering leakage.
As every FC is equipped with a flow cell for loading

samples into the instrument, tubing can also directly be
attached to the flow cell [31, 34, 35, 48, 50, 51, 57, 68, 72]. A
valve, which is only opened when a measurement is about
to take place, then separates the flow cell from the sample
line. After measurement, the sample is removed to a waste
container, allowing inline cleaning prior to measurement
of the next sample. At the same time, sheath fluid is auto-
matically refilled so that the pressurized system of the FC
is not influenced [1, 30, 36, 73]. As above, there is a risk
of technical failure and also clogging of tubes might be a
problem.
In a special case, the flow cell of the FC was exchanged

by a coaxial flow mixer which was connected to the FC via
a modified sample nozzle head as new sample introduc-
tion nozzle [61]. A similar system, using a plastic flow cell
directly placed at the injection port, is pre-pressurized by
the pressure line of the FC to ensure compatibility with the
flow requirements inside the FC [69]. These systems allow
measurement with high temporal resolution, but they are
less flexible to be connected to different FCs and the plastic
cuvette seems to be less durable.
Some systems, inwhich samples are transferred from for

instance micro titer plates [66], use an auto-sampler with
a robotic arm as interface to the FC. As mentioned ear-
lier, this system is only suitable for short term experiments,
technologically demanding and involves high costs. Con-
sequently, a setup where the tubing is directly attached to
the flow cell of the FC and that includes cleaning after each
measurement seems best suited.

2.4 Measurement of sample/sampling
process control

Normally, systems are fully automated so that the action
of injectors, valves, pumps and the stirrer of the mixing
chamber are controlled by custom-made LabView, C++ or
Matlab routines. These often run on a personal computer
equipped with a data acquisition card on which also the
data acquired by the FC internal software are processed [1,
31, 34–36, 46, 48, 51, 54, 60, 63, 64, 73]. The computer that
coordinates the complete systems operation can be oper-
ated via remote access allowing unlimited data access and
transmission rates with high location flexibility [1, 50].
Mostly, automated measurement is triggered by loading

the sample into the FC [34–36, 48, 73] while at the same
time sensors embedded in each piece of the system report
their state to coordinate the measurement procedure [64].
The initiation of the procedure can be coupled to con-
straints for instance, that measurement can first happen
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after full cleaning of all lines to avoid cross-contamination
between successive samples or appropriate dilution of the
sample [10, 28].
After measurement, feedback on cell numbers can be

given to the respective parts of the ART-FCM for auto-
mated calculation of an appropriate dilution factor for the
subsequent sample [1, 54, 56]. Additionally, for instance the
growth rate of the culture as well as other parameters can
be determined and visualized automatically as the experi-
ment progresses [54].
Also sheath fluid is automatically, continuously replen-

ished ensuring that the system can be operated self-
sustained for several days without interruption or main-
tenance [1, 34, 35, 48]. Consequently, bioprocesses can be
monitored without supervision for up to 14 days, sampling
every 1-60 min depending on the organism, the mode of
operation and the system configuration, revealing FCM
data with high temporal resolution [1, 10, 28, 29, 31, 40,
46, 52, 61, 70, 72]. The gap between subsequent samples
is dependent on which tasks have to be performed next to
the actual measurement of the sample including flushing,
staining or dilution, sample transfer as well as data trans-
fer and analysis [46, 50, 57]. To avoid contaminations, ART-
FCM systems are at least daily rinsed with detergent con-
taining hypochlorite [34, 35, 38, 48–50] and all connecting
parts are cleaned in between different experiments [46].
The FCMmeasurement mostly uses a blue 488 nm laser

with a voltage of 10–100 mW and data collection with
one or more band respectively long pass filters of dif-
ferent wavelengths (typical filters: green: 520–533 ± 20–
30 nm, orange: 585 ± 40 nm, red: 610 ± 30 nm and deep
red:<670 nm) depending on howmany fluorescence prop-
erties are accessed in parallel [27, 31, 35, 36, 38, 39, 54, 55,
66, 72, 73]. Also collection of side scatter (SSC) and forward
scatter (FSC) revealing information on cell morphology
and size is common [29, 36, 50, 54, 56, 57, 73]. In advanced
experiments, further lasers are applied [27].
Measurement is normally done for 30–90 s at a fixed flow

rate of 16–66 μL min−1 for samples from bioreactors using
either the unlimited run function of the FC or automated
activation for each sampling. The threshold value for sam-
ple recognition and discrimination from background noise
of the instrument or the medium is mostly set in one flu-
orescence or scattering channel [10, 27, 28, 34, 35, 46, 48,
52, 64, 72]. Depending on the organism to be measured,
predefined linear respectively logarithmic amplification is
used [27, 31, 36, 38, 39, 50, 54, 57, 71, 74]. Electronic gates
are used to discriminate specific subpopulations in all col-
lecting channels, for instance cells with positive and nega-
tive fluorescence level [27, 36, 38, 39, 48, 72, 73]. Depending
on the measurement accuracy targeted, 20,000-300,000
events for bacteria and yeasts, and 5.000-30.000 events for
mammalian cells, respectively, [38, 39, 70] of one sample

replicate are collected at rates of 50–1,000 events per sec-
ond [10, 27, 46, 52, 54, 74]. For this purpose, cells are diluted
accordingly, to avoid signal distortion by high sample con-
centrations [29].
When spectral overlap of fluorescence properties occurs

in multi-color experiments, automatic compensation,
offered by most FCM software tools, can be applied using
the first samples of the culture before the experiment is
initiated [30, 38, 39, 75–77]. Afterwards, all instrument set-
tings are kept unchanged to achieve comparable data [34,
35, 48, 72].
After measurement, the recorded data are collected by

proprietary software of the FC or custom-made routines
and stored as list mode data files such as fcs or csv [1, 34–
36, 46, 48, 73]. Specialized software or scripts are used for
subsequent automated real-time data transfer, storage and
analysis [27, 36, 50, 57, 60, 66, 72, 73].

2.5 Automated data analysis

To exploit the full potential of ART-FCM, the implemen-
tation of automated data treatment methods to display
data in real-time and visualize temporal shifts of specific
parameters is wishful. Furthermore, automated data anal-
ysis can safe a tremendous amount of time as it is more
efficient than manual, off-line evaluation of samples [78].
Automated methods might be adapted from immunologi-
cal studies because these experiments also generate large
multi-dimensional data sets with temporal resolution [22,
78, 79]. Furthermore, recently supervised and unsuper-
vised algorithms for data visualization, quality control,
automated gating as well as classification and identifica-
tion of cellular populations have been developed (for a
summary of R-based algorithms and their function see
Table 2). These were also topic of some review articles [8,
22, 23, 78, 80]. However, they have not yet made it into
mainstream due to intrinsic complexity and lack of com-
prehensive and easy-to use [78, 81].
Analysis of FCM data mainly takes place in R or

MATLAB. Whereas R is more common and algorithms
and plotting tools are more advanced (see Table 2), as it is
historically used for analysis of immunological samples,
statistical files are often generated in MATLAB [82, 83].
For both tools standardized functions to load FC data as
FCS files exist. For MATLAB the fcs_read and fcs_readfcs
algorithms are popular [19, 26, 52, 84, 85]. For R, the
Bioconductor platform exists, that hosts the largest collec-
tion of open source FCM software covering data analysis
and visualization of FCM data [86]. It also includes the
flowCore package with functionality to import FCS-files.
Another R-based webserver, Single CEll NEtwork Recon-
struction sYstem (SCENERY), provides options for data
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TABLE 2 Overview of R-based algorithms for automated data treatment that could be adapted for an automated real-time flow
cytometry setup

Method Description Reference
Data quality
flowAI Cleans flow cytometry files from anomalies during measurement procedure [87]
Data visualization
flowFit quantitative analysis of cell proliferation in tracking dye-based experiments after gating [88]
flowViz plots flow cytometry data in different layers avoiding information loss [89]
ggCyto Algorithms based transformation of data and axes and visualization according to specific

structures
[86]

SCENERY Web server featuring several standard and advanced cytometry data analysis methods [81]
Automated gating
Supervised
flowPeaks Gating of high-dimensional data, identification of irregular shape clusters [96]
flowDensity Gating analogous to a manual gating strategy based on data density clouds [79]
OpenCyto Hierarchical automated gating [91]
DeepCyTOF Deep learning algorithm for automated gating [92]
GateFinder Gating by stepwise creating two-dimensional convex gates of best fit [93]
Semi-Unsupervised
flowLearn Gating combining flowDensity with a deep learning algorithm [94]
NetFCM Gating combining clustering and principal component analysis [95]
Unsupervised
flowMeans Gating based on K-means [98]
SPADE Gating based on hierarchical clustering [100]
Citrus Gating based on hierarchical clustering [101]
flowPeaks Gating based on K-means and finite mixture modeling [96]
FLAME Gating based on finite mixture modeling [97]
Hypergate Gating via a best fit hyperrectangle [99]
Automated identification and classification
CHIC Grey scale images are automatically processed and batch-wise compared [108]
CyBar Following manual gating, a mask compromising all gates of all samples is compared

within a batch
[107]

FlowFP Uses probability distributions functions to equal sized bins that are combined to a
template

[104]

Dalmatian Plot Black and white images of manually gated samples automatically processed via images
analysis

[106]

(pre-)processing, visualization, statistical analysis and
modelling [81].

2.5.1 Quality control and data visualization

Prior to detailed analysis, acquired data should be qual-
ity controlled for unwanted events to avoid interference
and improve reliability of automated data analysis. For
this purpose, automated algorithms exist, like flowAI
[87], which can automatically detect and remove anoma-
lies during the measurement procedure in the FC. This

includes instability of signal acquisition as well as outliers
and margin events at the limits of the dynamic range [87].
First step of an automated data analysis procedure could

be generation of histogram or scatter plots of events in rela-
tion to a particular channel or multiple channels stacked
offset with timely resolution and display them in real-time
[8, 33, 46, 54, 64]. In R, specialized packages for data visu-
alization exist, for instance ggCyto [86], flowFit [88] and
flowViz [8, 89] (see Table 2). However, taking full advan-
tage of the underlying information in the data is often pre-
vented by complexity of the analysis with the gating step
as major bottleneck [8].
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2.5.2 Automated gating

Automated gating can objectively define subpopulations,
account for population overlap due to measurement
uncertainty and replaces subjective, time-consuming and
inaccurate manual gating [21–23, 78, 80, 90]. Available
methods for automated gating were critically assessed
and found to be sufficiently mature to be reliably applied
[21]. Some methods even enabled to discover cellular
populations that were unexpected or non-evident to exper-
imenters [80]. However, they are not yet well accepted and
known [78].
Automated gating is performed based on supervised

or unsupervised mathematical modelling of fluorescence
intensity distributions of different cellular characteris-
tics, so far exclusively applying R-based algorithms (see
Table 2). Supervised algorithms need a training data set
defining classes respectively populations that each cell
event belongs to [8]. The algorithmwill learn this informa-
tion during training stage and later apply it to assign unla-
beled events to one pre-defined class. Examples for these
algorithms are flowDensity [79], OpenCyto [91], deep-
CyTOF [92] and GateFinder [93].
The semi-supervised algorithm flowLearn [94] uses a

few manually gated samples to fast and accurately predict
gates on other related samples through density alignments.
Another semi-supervised approach, NetFCM, applies a
combination of clustering and principal component anal-
ysis to mimic manual gating and quantify differences
between samples [95].
Unsupervised algorithms function without user input.

Mostly they define clusters based on similarity of events,
meaning clusters contain events that are more similar
than events of another cluster [8]. Clusters can be identi-
fied model-based, applying for instance a Gaussian mix-
ture model [24], like the flowPeaks algorithm [96] and
the software tool FLAME [97], or non-model-based using
flowMeans or Hypergate [98, 99] (see Table 2). Further
examples are Spanning-tree Progression Analysis of Den-
sity normalized Events (SPADE) [100] and Citrus [8, 101]
that both identify cell populations based on hierarchical
clustering. Other tools for automated gating apply prob-
ability state modelling (PSM), which bears great future
potential as it works operator independent, includes qual-
ity control and exhibits a high level of objectivity, speed and
precision [90, 102].

2.5.3 Statistical assessment of
(sub)-populations

After gating, (sub-)populations can be statistically assessed
to objectively describe temporal changes in their shape

and intensity. Common are determination of mean fluo-
rescence intensity respectively normalized mean, mode,
median and the coefficient of variance, which can be
related to noise in gene expression for fluorescence
expressed together with cellular markers [26, 27, 52, 82,
103]. Width at baseline level, skewness and the slope of the
cumulative distribution function plot can further quantify
the shape of fluorescence distributions [26]. Where signif-
icant subpopulations appear, its percentage can be com-
puted [19]. Calculations can be performed by MATLAB
and R-routines and the results automatically displayed in
real-time [26, 46, 54, 64]. Also a summary of the statistical
assessment can be generated [1, 10, 28, 64, 66].

2.5.4 Identification of microbial diversity in
cell communities

Multi-parameter cytometric histograms combined in one
data set represent individual, unique fingerprints ofmicro-
bial communities at certain time points under defined
environmental conditions [20, 25, 72]. Therefore, cyto-
metric fingerprinting is emerging as powerful, high-
throughput tool to robustly analyze bacterial populations
and monitor microbial diversity across phenotypical char-
acteristics [25, 104, 105]. It reveals results faster than the
corresponding molecular biological tools. Consequently, it
bears great potential for real-time in-situ monitoring of
microbial diversity with ART-FCM [82, 83]. In short, the
method compromises analysis of distributions of different
physiological traits that explicitly characterize certain phe-
notypes [82].
Next to manual methods [72], several automated tools

for cytometric fingerprinting have been developed, like the
semi-automated method Dalmatian Plot [106] and Cyto-
metric Barcoding (CyBar) [107], and the automated meth-
ods Cytometric Histogram Image Comparison (CHIC)
[108] and flowFP [25, 109] (see Table 2). These meth-
ods were found suitable to monitor structural changes
in microbial communities comparing sensitivity, required
experience of the operator, time demand and software
requirements [25]. Manual gating steps could potentially
be replaced by methods for automated gating introduced
above. Anothermethod [110] allows to estimate phenotype
specific diversity metrics of the cytometric fingerprint and
was applied to discriminate among 29 Lactobacillus strains
and different growth phases of a microbial culture [49].

2.6 Fluorescence-activated cell sorting

Fluorescence-activated cell sorting (FACS) is a technique
enabling sorting within the FC, thus offering possibilities
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for further analysis of (sub-)populations of microbial cells
with specific properties of interest [111]. In combination
with high-throughput screening, given by the FC, it can
be utilized in versatile fields of research, however, tradi-
tionally, FACS is often used in diagnostic applications [112].
Due to its suitability for single-cell sorting, it also allows
isolation of rare cells such as stem cells, bacterial species
or circulating tumor cells [113–115]. Moreover, FACS can be
utilized for the screening and selection from large pools of
variants as during directed evolution. Due to the ability of
some systems for non-destructive sorting, variants of inter-
est can also be isolated. This provides intact cells for further
rounds of screening, making FACS an attractive platform
for iterative optimization of biomolecules [116–120].
Furthermore, in combination with single-cell omics,

currently being one hot research topic, however still very
labor intensive, FACS could play a significant role in
the future [121, 122]. Sorting of subpopulations prior to
omics analysis enables ultrasensitivemeasurements. Thus,
stochastic average masked signals of heterogeneous popu-
lations can be avoided. Consequently, the level of biological
noises could be controlled and clear correlations could be
established [123–127].
Another approach to monitor single-cell physiology

is the utilization of fluorescent reporter strains. When
their fluorescence is analyzed by FCM, whole popula-
tions in bioprocesses can be screened regarding specific
phenotypes [83]. ART-FCM analysis could in the future
be combined with FACS [128, 129] to an enhanced bio-
process monitoring system. It would not only enable
the automated real-time analysis of subpopulation for-
mation throughout a process. Also isolation and sub-
sequent enrichment of advantageous subpopulations for
detailed characterization would be possible providing
deeper insights into the sources of population heterogene-
ity.

2.6.1 Implementation of FACS into
ART-FCM

Integration of FACS into ART-FCM (ART-FCM/FACS) is
generally feasible because FACS systems and FCs share the
same basic setup [130]. In comparison to FCs, however, the
liquid jet, inwhich cells are singularized via hydrodynamic
focusing, is in most FACS setups broken down to single
cell encapsulating droplets. These droplets get electrically
charged by voltage pulses and subsequently deflected by an
electrical field underneath the flow cell. Yet so far, sorting
in tubes, micro-titer plates and even agar plates is possible
[131–133].
In fact, the cell-sorting procedure requires a nozzle,

deflection plates, an output collector and cameras to

ensure correct sorting. All these components are installed
underneath the flow cell leading to no conflict with FCM
measurement [134, 135]. Considering existing deflection
techniques using electric or magnetic fields [136, 137], this
results in a variety of systems for simultaneous single-cell
analysis and sorting. For insights into the FACS principle,
the review of Cossarizza et al. is recommended [111].
ART-FCM/FACS would allow simultaneous instrument

preparations prior to measurements. However, additional
quality checks are mandatory for stable sorting over
extended time periods. Among them is the regular mea-
surement of the drop delay. By feeding the system with
commercialized beads, it is possible to adjust the noz-
zle amplitude automatically ensuring regular sized droplet
formation. Furthermore, correct sorting into the output
collector, which is visually checked doing test sorts into dif-
ferent positions, is important. To be capable of sorting rare
subpopulations during a bioprocess, it is crucial to define
precise gating thresholds. When subpopulations are eas-
ily distinguishable, manual gating can be straightforward.
However, with subpopulations that only differ marginally,
methods for automated gating mentioned above should be
applied. Recently an approach [138] for automated gating
by machine learning, entitled CellSort, which could possi-
bly be adapted for ART-FCM/FACS, was published. Cell-
Sort is based on a support vector machine (SVM). Vec-
tors were created out of a historical FCM dataset and used
to train the SVM generating 5000 randomized data points
of positive and negative populations. Performance of the
SVM was validated achieving a true positive rate of over
60% and a false positive rate below 5% [138].
Additionally, several aspects need to be considered

for stable and robust sorting with ART-FCM/FACS
throughout a bioprocess. First, it is only possible without
movements of physical objects. Even micro shifts of the
flow cell, deflection plates or output collectors lead to
errors in automatic handling, which could result in a
premature shutdown of the device. Second, physical prop-
erties, like temperature and pressure, of the sheath fluid
should be kept constant as it was previously shown that
alteration during measurements lead to poorer yields and
sort purities [139, 140]. Therefore, tempering of sheath fluid
is necessary, by for example cooling with Peltier elements
[140]. Additionally, controlling the interior instrument
conditions, like temperature and humidity, would support
sorting stability. Thirdly, an output collector should allow
collection of multiple samples. For automated real-time
monitoring during bioprocesses for at least 24 h,micro titer
plates seem suitable. A 96-well plate for instance would
allow sampling in 15 min intervals for 24 h. If the sorting
procedure is precise enough, even 384 well plates could be
applied, either allowing faster intervals or sampling over
longer time periods [141]. Fourth, storage inside the output
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collector should be possible. This implies cooling of the
sorted cells to preserve their current metabolic activity:
the cooler, the slower the physiological changes inside the
cell [142]. This can be realized by cooling of the collector
implementing customized sample holders respectively
adapt them from automated liquid handling platforms.
This would even allow cooling of samples at sub-zero
temperatures, thus, increase long-term durability of cells
[143]. Dependent on the cell treatment afterwards, liquid
solutions such as media, cryo-protective agents or lysis
buffer could be added prior to or after sorting by the action
of a robotic liquid handling system. Like that, storage con-
ditions of the cells are enhanced compared to storage in
pure sheath fluid [144–146] and even sub-cultivation is pos-
sible. This would necessitate sterile sorting which could
be realized by providing an aseptic working area as in
commercial systems like BD Influx [147, 148].

2.6.2 Potential challenges for establishment
of an ART-FCM with FACS

Although the implementation of ART-FCM/FACS seems
straightforward, plenty of challenges remain. Among them
is the temperature setting for the sorting procedure, which
is advantageous both for keeping sheath fluid properties
constant and providing ideal sample storage conditions.
However, tempering the whole FC interior appears inap-
propriate and currently no device with cooling of the
sorting route is commercially available, probably due to
technological complexity and high investment costs. And
last, it is unclear which temperature prevents cell dam-
age prior to sorting. Considering sample storage, lower
ones are favorable. However, there are potentially neg-
ative impacts on components of the ART-FCM/FACS,
for instance freezing of components. Consequently, parti-
tioned cooling seems more practical. Similarly to sheath
fluid tanks, output collectors could be cooled by Peltier ele-
ments [143].
Another major issue is sorting stability. Thereby, clog-

ging of the nozzle, which normally needs to be cleaned
prior to each sort, is a bottleneck. Therefore, strategies are
necessary for specific cleaning in place intervals. Further-
more, filter units should be implemented fitted to the noz-
zle diameter in order to remove coarsed particles [147, 149].
Finally, FACS systems tend to be very bulky [112]. This

hinders flexible movement and limits the applicability for
bioreactor processes at different locations. Thus, miniatur-
ization of FACS respectively ART-FCM/FACS should be
taken into account. One interesting approach could be the
usage of so-called μFACSwhich comprise sorting of events
on a microchip [112, 150, 151].

3 AUTOMATED REAL-TIME FLOW
CYTOMETRY FOR BIOREACTOR
PROCESS ANALYSIS

So far ART-FCM has only rarely been applied for analy-
sis of bioreactor processes. However, the future potential
is immense as FCM is already the workhorse of microbial
single cell analysis and its applicability in industrial bio-
processes has been demonstrated [2]. It would circumvent
extensive amount of sample handling when seeking for
detailed monitoring of cell physiological characteristics in
a bioprocess with high temporal resolution [1, 30, 38–40].
Consequently, the logic technological progression is full
automation of all analysis steps. Furthermore, dynamic
evolution ofmicrobial stress resistance and adaption is still
poorly described, which however could be done in this
setup [2]. Additionally, the data sets derived through ART-
FCM could establish baseline data for cultivation systems,
as well as allow sensitive recognition of daily variations
and specific events that would likely be missed or miss-
characterized by infrequent sampling [34–36].Many obser-
vations are also not resolvable at population level [152].
Importantly, results are available in real-time enabling
informed decision taking during a running process [7].

3.1 Monitoring of physiological state of
cells

As a prerequisite for robust process performance, it is
essential to follow single cell physiology during a bioreac-
tor process including the percentage of viable cells. Most
commonly viability is assessed applying exclusion dyes,
such as propidium idodide (PI) or fluorescein isothio-
cyanate (FITC), that stain nucleic acids in cells whose
membrane is destructed [10, 28, 30, 34, 38–40, 48, 53, 55].
Using ART-FCM, PI-staining was applied in batch and
continuous cultures of S. cerevisiae and E. coli to assess
changes in viability distributions measuring every 15 min
for over 40 h [1, 28, 30]. Thereby, the dye concentra-
tion and the optimal contact time between dye and cells
were established to be critical parameters for reproducible
staining results. PI staining was also utilized to investi-
gate the effect of acetate in lignocellulosic hydrolysates,
which are feedstocks for industrial biofuel productionwith
S. cerevisiae [53]. ART-FCM measurements revealed that
elevated acetate concentrations led to decreased specific
growth rate, accumulation of cells in G1 phase of the cell
cycle and increased cell size.
Frequently, a dual viability assessment combining PI

with the nucleic acid stain SYBR Green is applied in ART-
FCM setups [27, 34–36, 48]. This assay was successfully
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applied in short-term and long-term processes analyzing
every 5 min during 60 h as well as every 15 min for up
to 70 days, respectively [34, 35]. It allowed sensitive detec-
tion of bacteria over a broad concentration range tracking
both gradual and dramatic changes in natural water sam-
ples, in samples from a drinkingwater pilot plant and from
pure bacterial cultures [36, 48, 73]. Some studies solely
applied SYBR Green to discriminate bacteria from back-
ground [46, 49] or dual staining with PI and FITC labeled
Annexin-V to investigate apoptosis and necrosis in CHO
cell cultures [38]. With FITC alone cell size changes trig-
gered by ethanol and temperature dependence of constitu-
tively expressed GFP in yeast fed-batch processes could be
evaluated [55, 153].
Additionally, the lipid stain Nile red or BODIPY 493/503

for visualization of storage compounds like poly(R)-3-
hydroxybutyric acid in S. cerevisiae and Cupriavidus neca-
tor or the DNA content specific stain mithramycin A for
evaluation of cell cycle progression in S. cerevisiae have
been employed in ART-FCM setups [31, 71].

3.2 Monitoring of cell abundance

In some applications it is interesting to identify abundant
cell types in a bioreactor process revealing the fingerprint
of culture dynamics [82]. Examples are algae cultures that
are run under non-sterile conditions or mixed cultures, in
which the ratio between different organisms is unknown.
To identify microbial cells for instance SYBR Green is
applied [36, 73]. The highly sensitive method originates
from monitoring of microbial growth in water treatment
plants, where changes in water quality are crucial [36, 48,
49, 73].
Also natural fluorescence emitted by photosynthetic pig-

ments in algae cultures or auto-fluorescence can be moni-
tored in bioreactor processes [50, 57]. Especially, large cul-
tures of microalgae would benefit from on-linemonitoring
to achieve process control [32]. Analysis of FSC and SSC of
Synechococcus phytoplankton cultures as well as pigment
fluorescence in their natural environment applying ART-
FCM revealed a detailed picture of abundance variations
of phytoplankton that could not be covered otherwise [57,
63].

3.3 Monitoring of process performance

For robust and high-yielding bioreactor processes, it is
essential, to monitor process performance concerning
product formation, growth and robustness of produc-
tion hosts. Some studies already applied ART-FCM, more
recently measuring fluorescence from genetically modi-

fied microorganisms. Mostly fluorescence of reporter pro-
teins is recorded that are expressed together with cellu-
lar properties of interest for instance cell growth, stress
response or product formation [10, 28, 54, 55]. However, if
the product is fluorescent itself, themeasurement is highly
facilitated [63]. Considering monitoring of product forma-
tion dynamics with ART-FCM, often GFP expression is
used as a reference [31, 54]. The distribution of GFP for-
mation was broad for E. coli cells including non-producer
and cells that produced significantly larger amounts than
the average cells. Similar results were found in S. cerevisiae
cultures [1, 31, 54] as well as that constitutive expression
of GFP is highly temperature dependent leading to oscil-
lations [153]. ART-FCM was also a rapid method to test
promoter strength, plasmid stability and culture variabil-
ity [30] demonstrating that small genetic changes could
result in large variations in product formation. Expres-
sion of GFP tagged human membrane protein monitored
with ART-FCM in cultivations with Pichia pastoris [54]
could aid in selection of highly productive, stable strains.
Similarly, mammalian cell lines were screened for high-
producing cells [41] as well as more robust and acetate
tolerant strains for high-yielding ethanol production by S.
cerevisiae from lignocellulosic hydrolysates, which contain
acetate in growth inhibiting concentrations, could be cho-
sen [53, 56, 154].
ART-FCM can also be employed to study temporal

changes in fluorescence of cells following an event of inter-
est, for instance induction of the SOS response or growth
initiation of stationary phase in E. coli cultures [27]. In
these experiments, a trigger, e.g. ciprofloxacin to induce
the SOS response, is added and the cells response collected
during a fixed time period. This demonstrates the broad
applicability of ART-FCM and its ability to collect detailed,
time-resolved information on complex processes.
Next to product formation, growth and thereby biomass

generation is of interest for ensuring efficient bioreactor
processes. The entire growth curve of E. coli could be
followed with ART-FCM visualizing that a state of bal-
anced growth is never reached [31]. Without transforming
production hosts with a specific plasmid, cellular growth
rates can be measured via ART-FCM combining bromod-
eoxyuridine and PI-staining to determine the proportion of
cells synthesizingDNA, and the total DNAcontent, respec-
tively, [40].

4 AUTOMATED REAL-TIME FLOW
CYTOMETRY FOR INVESTIGATION OF
POPULATIONHETEROGENEITY

Population heterogeneity refers to the unequal behavior of
cells originating from isogenic cultures due to cell cycle
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progression, environmental influences or genetic differ-
ences [2, 33]. It is known to be omnipresent and recog-
nized as major source of issues during development and
optimization of bioreactor processes [28, 33]. Apart from
few examples, currently at-line FCM is used for analysis
of heterogeneities in bioprocesses, often afterwards scal-
ing down single cell variability data to averaged values [33].
Since population heterogeneity is highly dynamic exhibit-
ing strong temporal shifts, applying ART-FCM, especially
in combination with automated data treatment, would
significantly improve resolution of the collected multi-
dimensional data [30, 33].
Many experiments investigating population heterogene-

ity apply reporter strains to follow population dynamics
[33]. In these strains, fluorescent proteins are expressed
together with a physiological characteristic of interest so
that its evolution can be followed on single-cell level.
Applying E. coli and S. cerevisiae reporter strains constitu-
tively expressing GFP together with PI staining and FSC
measurement, dynamics in single cell growth, viability and
cell size in batch cultures in a stirred-tank bioreactor (STR)
could be monitored by ART-FCM [1, 30, 31]. Two subpop-
ulations (active vs. less active cells) appeared, especially
at the onset of stationary phase. The reason was probably
decreased nutrient availability and a shift in metabolism
which partially caused loss in cellular activity. Comparing
the expression of different GFP variants in the same setup
[30], three distinct subpopulations for GFP fluorescence,
whose ratio changed according to growth phase, and sig-
nificant population heterogeneity was found.
Other studies with ART-FCM examined heterogeneity

in GFP formation by an exponentially growing E. coli pop-
ulation, [31] respectively, production of GFP tagged human
membrane protein from an alcohol oxidase promoter dur-
ing Pichia pastoris cultivations in a loop bioreactor [54].
Initially, the populations were, apart from a minor frac-
tion of “leaky” un-induced cells, non-fluorescent. After
induction with IPTG respectively methanol, fluorescence
increased, apart from a subpopulation that stayed non-
fluorescent. In addition, a subpopulation of high produc-
ing cells that could express more protein of interest within
shorter time, probably due to a higher copy number, was
found. Towards the end of the process, the majority of
cells were unable to further increase expression levels,
because they were fully loaded with peroxisomes. These
findings might help in the selection of high producing, sta-
ble strains, especially when combining with FACS.
A destabilized GFP version expressed together with the

fis promoter, that is sensitive to fluctuations in substrate
availability,was applied tomonitor populationheterogene-
ity in GFP synthesis of E. coli with ART-FCM [28]. It
was tracked during batch and chemostat phase (D = 0.14
h−1) and repeated glucose pulses. During batch phase,

GFP fluorescence was correlated to growth rate, whereas
in chemostat mode, fluorescence rose unexpectedly. This
phenomenon suggests complex physiological regulation
mechanisms during bioreactor processes.
The consequences of gradients appearing due to loss

in mixing efficiency during up-scaling, were investigated
with anE. coli reporter strain expressingGFP togetherwith
rpoS, which is associated with the general stress response
[10]. GFP expression was studied during fed-batch pro-
cesses in a STR and a scale-down bioreactor (STR coupled
to a plug flow reactor) simulating extracellular perturba-
tions in substrate concentration and dissolved oxygen level
of varying magnitude. It increased during transition from
batch to fed-batch phase, where after it dropped due to
dilution effects. In the scale-down reactor, two subpopula-
tions were observed in response to extracellular perturba-
tions. Thereby, intensity of segregation, as well as the time
point of appearance could be related to bioreactor mixing
efficiency.
Another chemostat (D = 0.1 h−1) study revealed that

upon nutrient limitation, populations of E. coli and P.
putida tend to diversify into subpopulations of non-
permeable and permeable cells, which was monitored
by automated PI staining [46]. Moreover, against com-
mon believes, continuous evolution of the subpopulation
ratio in steady state was observed with a stronger effect
in P. putida than in E. coli. In the same setup, various
physiological phenomena that influence cell growth and
shape and lipid accumulation in Yarrowia lipolytica cul-
tures were identified following heterogeneities in SSC and
FSC, respectively, staining with Nile red [29].
ART-FCM could also monitor heterogeneities during

scale-up of fed-batch processes of CHO cells [152]. To
simulate passaging, the culture medium was regularly
refreshed, which led to significant variation in prolifera-
tion rate. Following changes in FSC and SSC, revealed an
increase in the non-viable subpopulation in early station-
ary phase. Interestingly, mean cell size of the viable pop-
ulation decreased significantly after inoculation and the
first rounds of medium exchange, possibly due to osmotic
effects, however, not during subsequent passages.

5 AUTOMATED REAL-TIME FLOW
CYTOMETRY FOR AUTOMATED
PROCESS CONTROL

When ART-FCM allows detailed monitoring of physio-
logical changes during bioreactor processes accompanied
by automated data analysis, the next step is to establish
automated process control. One application is the cytostat
[55], where the ART-FCM is used for feedback control of
cell density in a CSTR based on determination of the cell



272 HEINS et al.

concentration distribution. By means of a control algo-
rithm, the feed and elution rate is increasedwhen themea-
sured cell concentration surpasses a user-defined set point.
Consequently, the culture can be maintained at steady
state even at such low cell concentrations that themedium
composition is only negligibly changed, making the cell
environment precisely defined by the feed composition.
The cytostat concept has been applied in several studies
evaluating the effect of nutrients, toxic compounds or by-
products on cell growth [55]. For instance, physiological
evaluation was performed based on scattering characteris-
tics of S. cerevisiae revealing ethanol as themajor trigger for
cell size increase at critical growth rates [55]. Furthermore,
more acetate tolerant S. cerevisiae strains with improved
production capacities for bioethanol from lignocellulosic
hydrolysates were isolated in less than 5 days [53]. The har-
vest time point was recognized by significant increase in
dilution rate on a medium supplemented with acetate.
To advance the cytostat concept, it has been suggested

to combine it with genetically encoded reporter strains to
enable selection of improved strains based on more com-
plex phenotypic characteristics [37]. Thereby Visualizing
Evolution in Real-Time (VERT) [155, 156] could be adapted,
a method to map industrially relevant adaptive pheno-
types in microbial populations expanding the knowledge
on relevant parameters for strain engineering. VERT has
been applied for identification of n-butanol tolerant E. coli
phenotypes by visualizing relative proportions of different
fluorescently-labelled cells [156]. It could further be com-
bined with genome shuffling to enhance desired pheno-
types or overexpression and deletion studies to reveal the
origin of the observed phenotypes and elucidate the under-
lying tolerancemechanism. The best mutants could be iso-
lated applying ART-FCM/FACS.
ART-FCM was also successfully used for automated

scale-up of CHO fed-batch cultures as well as reliable and
reproducible control of the onset of feed addition reach-
ing higher total cell count than respective manual meth-
ods [152]. The trigger to initiate feed addition and passage
of cells to a larger vessel was an at least four times increase
of the non-viable subpopulation in a culture as this could
predict the onset of stationary phase.
Analyzing specific and more complex phenotypes espe-

cially based on multi-parameter fluorescence should be
combined with advanced methods for automated data
analysis for instance for automated gating (see subsection
automated data analysis and reviewed in [23, 78, 157]).
Especially, if the ART-FCM would be further advanced by
integration of FACS. Consequently, the determination of
new and process-case-specific online parameters is of pri-
mary importance to use the full potential of ART-FCM in
dedicated feedback control loops [28]. Then also the con-
trol strategy has to be advanced, for instance based on
detailed process models. These process models can learn

from current measurements, improve and forecast process
physiology as input formodel-based process control [8]. To
our knowledge so far no coupling between ART-FCM and
advanced model-based process control has been realized.
However, existing model-based process control strategies
and soft sensors could be adapted (for instance [158, 159,
160]).
One simple, model-based process control applying ART-

FCM, termed segregostat, was recently realized [46]. It
controls the degree of phenotypic diversification of E. coli
and P. putida populations in CSTR cultures. This novel
concept was demonstrated by monitoring membrane per-
meability in continuous cultures at D = 0.1 h−1. Upon
nutrient limitation, these cultures tend to diversify into dis-
tinct phenotypes, which can be used to trigger automated
addition of glucose pulses to maintain a defined degree of
diversification. This study sets the foundation for design
of advanced process strategies for controlling dynamics in
single cell physiology [46].

6 CONCLUDING REMARKS

FCM and the underlying technological possibilities have
greatly advanced in the past decade. ART-FCM enables
long-term measurements without missing any important
events in bioprocesses and uncovers temporal phenomena
that were likely unknown and should be investigated in
greater detail [34, 35]. Also more frequent measurements
can be performed at a user defined frequency, indepen-
dent of availability of personnel. Additionally, compared
to other methods like omics, that are only partially avail-
able on single cell level, multi parameter measurements
can easily be established without extended effort of labor
and time.
Despite these advantages, ART-FCM is still rarely

applied for bioreactor process monitoring, control and
optimization on a laboratory scale and has never been
applied in industrial scale. One reason might be that only
parts of the ART-FCM setup are commercially available
and might require do-it-yourself solutions [20]. Further-
more, the regular user is hindered by the difficulty to prop-
erly interface the FC with the process equipment and inte-
grate automated algorithms, soft sensors or processmodels
to handle the resulting multi-parameter datasets in real-
time [8, 28]. However, if existing algorithms for automated
gating and statistical assessments of (sub-)populations in
mono- and mixed cultures find their way into FCM anal-
ysis as well as digitalization proceeds, this will probably
also lead to implementation in automated setups. Then
presumably more bioreactor process control applications
also in combination with advanced soft sensors will arise,
as these are highly dependent on real-time data analysis.
They will enable on-time feedback regulation of classic
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process parameters to control microbial physiology. Con-
sequently, once installed, an ART-FCMwill raise the mea-
surement tool FCM to a new level in bioreactor process
monitoring (see Figure 1 for a summary of application pos-
sibilities).
Moreover, the integration of a possibility to sort during

ART-FCM could further extend bioreactor process moni-
toring, as it will allow to isolate events of interest for fur-
ther analysis. Consequently, the demand for deeper inves-
tigation of population heterogeneities in bioreactor pro-
cesses with reporter strains [84], can be fulfilled. How-
ever, to our knowledge, such a system does not exist yet.
One key factor, hindering the implementation is the miss-
ing temperature control within commercialized devices
to keep the physical properties of fluids constant and to
allow short-term storage of sorted events. In long-term per-
spective, automated sample processing after cell sorting
is highly interesting. It would additionally to monitoring
cellular dynamics, allow insights, for instance on the pro-
teome of single cells, which would also be a significant
step to understand themechanisms behind populationhet-
erogeneity. However, an automated liquid handling plat-
form, if not a complete laboratory automation, would be
necessary to process sorted cells in real-time, which is not
expected to be availablewithin the next few years [161, 162].
Lately, growing awareness of advantages associatedwith

miniaturization of analytical devices is pushing forward
the progress in designing compact microfluidic devices
[163]. The current state of single-cell analysis involving
microfluidics has been reviewed [20, 163–165]. In this con-
text novel highly efficient microfluidics based FCs [153,
166, 167], microfluidic FIA systems [168] and microflu-
idic fluorescence-activated droplet sorter [117, 169] are
emerging. As comparability with conventional FCM stud-
ies could be shown [165, 170], these devices bear great
future potential as ART-FCMon a chip. In this context par-
allelization might become more relevant, as samples from
different bioreactors or different locations inside a bioreac-
tor setup could be analyzed simultaneously.
Many aspects mentioned here might also be adapted to

other experimental setupswhere also fast and reproducible
real-time monitoring of process parameters that are fluo-
rescent is of interest. In conclusion, ART-FCM will most
probably greatly advance in the next years.
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