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Abstract: The cellular microenvironment composition and changes therein play an extremely im-
portant role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a
majority of the tumor stroma, significantly contribute to the development of the tumor microenviron-
ment. These alterations within the ECM and formation of the tumor microenvironment ultimately
lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules
such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and
play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and
become cancerous, if the ECM does not support these neoplastic cells, further development, invasion,
and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM
components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is
also affected by the ECM and many studies have been conducted to unravel the complex association
between the two. Here we summarize the importance of several ECM components in colorectal
cancer as well as their potential roles as biomarkers.

Keywords: colorectal cancer; extracellular matrix; collagen; metalloproteinase; thrombospondin

1. Introduction

During everyday physiologic cellular division, cancer cells can be repeatedly pro-
duced [1,2]; however, homeostasis is usually preserved by a healthy microenvironment,
which prevents these cells from dividing further. However, with the development of a
tumor microenvironment (TME) consisting of tumor vasculature, connective tissue, and
infiltrating immune cells [3], cancer cells can then infiltrate, disseminate, and ultimately
become metastatic [4]. The extracellular matrix (ECM) is formed by numerous proteins,
among which proteoglycan, collagen, and laminin are the main components. They provide
structural support to cells, regulate cell signaling, and ultimately provide a functional
platform for cell phenotypes [5,6]. Additionally, numerous types of cell surface receptors
translate signals contained in the matrix and create dynamic interactions between the ma-
trix and cells [6,7]. ECM, which constitutes a majority of the tumor stroma, is also known
to play a leading role in the progression of various cancers, including colorectal cancer
(CRC), and therefore promotes an environment allowing for metastasis [8]. Elevated depo-
sition of ECM proteins in the tumor microenvironment increases the stiffness of the ECM,
affecting cellular functions such as proliferation, adhesion, migration, and invasion [9,10].
Various components construct the ECM, such as collagen, elastin, laminin, fibronectin, and
modulators such as metalloproteinase (MMP) that cleave the ECM components and play
a central role in tissue remodeling [11]. Studies have shown that these ECM components
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have a significant role in both promoting the progression or metastasis of CRC and have
potential clinical relevance as biomarkers [12] and therapeutic targets [3].

Collagen is a major component of the ECM and can increase tumor proliferation
when normal structures are destroyed [13,14]. Tumor proliferation changes the function of
collagen and is dependent on increased collagen expression [15]. After collagen remodeling,
domains containing numerous hidden carcinogens within the now exposed collagen were
identified, which subsequently promoted tumor metastasis [16]. Collagen remodeling is
induced by collagenases, and representative collagenases are the MMP and lysine oxidase
(LOX) families [17]. MMP and LOX promote collagen degradation and cross-linking,
respectively [18,19]. Recently, we found increased levels of THBS4, an ECM protein, is
highly associated with PDGFRβ expression in tumor tissues when compared to normal
tissues of colon cancer patients [20].

Lately, there have been several reports regarding the importance of the tumor microen-
vironment, including that of the ECM, for therapeutic and diagnostic biomarkers [12,21];
however, the use of ECM biomarkers in CRCs has yet to be reviewed. Herein, we summa-
rized several vital ECM proteins and representative enzymes responsible for development,
remodeling, rearrangement, and manipulation of cellular functions such as MMPs, ADAMs,
and LOXs, and their roles in both CRC development and progression. We also introduced
the THBS family, which has potential as novel biomarkers.

2. Collagen

Collagen can be altered by cancer cells to regulate in situ neoplasia, invasion, and
ultimately dissemination of metastatic disease [22]. Collagen works in the TME to reduce
the production of chemokines, which lead to inhibition of the anti-tumor immune response.
Chen et al., reported that type 1 collagen regulates IL-18, and the cancer is allowed to grow
more rapidly [23]. As the tumor progresses, it is accompanied by abnormal remodeling
of collagen [24–26], which primarily leads to excessive accumulation, altered proportions,
and arrangement of collagen [27–29]. Liang et al. analyzed the association between the
collagen related genes and the incidence and prognosis of CRC using biometric databases
and demonstrated that the overall survival (OS) time was worse in patients with upreg-
ulated expression of the gene combination for collagen and collagenase. Based on these
results, they reported that the coding genes COL1A1-2, COL3A1, COL4A3, COL4A6, and
MMP2 could be used as biomarkers to predict the prognosis of patients with CRC [17].
Additionally, collagen deposition is characteristic of CRC, and collagen types I, VI, VII,
VIII, X, XI, and XVIII were accumulated in CRC samples [30–36].

Zhang et al. demonstrated that the COL1A1 expression was significantly upregulated
in CRC tissues and cell lines with both wild type and mutant KRAS [37]. Further, increased
COL1A1 expression in CRC was significantly associated with serosal invasion, lymphatic
involvement, and hematogenous metastasis [37]. Moreover, it was found that COL1A1
regulates the WNT/PCP pathway to promote metastasis in CRC and that inhibition of
COL1A1 can suppress CRC cell migration [38].

Type 1 collagen was found to be increased in tumor tissues compared to normal
tissues, and its mRNA was increased in the blood of CRC patients compared to healthy
individuals [39,40]. Additionally, expression of collagen type I, III, and IV turnover prod-
ucts were significantly increased in the serum of patients with CRC, especially in the later
stages [41,42]. Moreover, type I and type IV collagen were upregulated in the urine [43,44]
and plasma [45] of patients with colorectal liver metastasis (CLM), respectively. These
results suggest that not only type I, but also type III and IV collagen may have clinical
relevance in CRC. Further, the circulating type IV collagen levels were strongly increased
in the presence of CLM [46]. In addition, it has been indicated that the α1 and α2 chains
of type IV collagen are major components seen in the desmoplastic reaction of CLM [46].
Patients with CLM were found to have an 81% and 56% increase in the levels of circulating
COLIV and CEA, respectively, at the time of diagnosis [45]. It can therefore be concluded
that COLIV is a promising tumor marker for CLM and may possibly be used to detect post-
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operative CLM recurrence. Additionally, the combination of COLIV and CEA is superior
to either of the markers alone in detecting CLM [45].

Moreover, among the formation of collagen type III (PRO-C3), VI (PRO-C6), and
degradation of collagen type VI (C6M and C6Mα3), PRO-C3 was the most effective in
predicting the survival outcome of metastatic colorectal cancer (mCRC) patients regardless
of other risk factors [47]. In another study, specific fragments of degraded type I, III, and IV
collagen and type III collagen formation in serum showed that stage IV metastatic patients
could be distinguished from all other stages [42]. Type 1 collagen in tumor tissues promotes
EMT (epithelial mesenchymal transition) in CRC cells, and this process was induced by
activation of PI3K/AKT/snail signaling pathway conducted by integrin α2β1 [48]. These
results demonstrated that collagen can promote tumor growth and distant metastasis in
CRC patients via the pathway. Type 1 collagen also downregulates E-cadherin and β-
catenin and promotes the expression of stem cell markers CD133 and BMI1 [49]. This study
suggests that the interaction between CRC cells and type 1 collagen results in EMT-like
changes, loss of differentiation, and increased expression of stem cell markers.

COLXIA1 was found in sporadic colorectal cancer that expresses high levels of
COLXIA1 mRNA, whereas there was no expression in normal tissue [50]. The authors
suggest that COLXIA1 overexpression may be related to the APC/β-catenin pathway,
which is dysregulated in most sporadic colorectal cancers as well as familial adenomatous
polyposis [51].

COL12A1 is involved in the development of CRC in transcriptomic analysis [52].
Also, COL12A1 expression was negatively correlated with the methylation levels of the
COL12A1 promoter, and hypermethylation of the gene was found in low-stage tumors and
negative node metastasis [53]. Patients with higher COL12A1 expression were negatively
associated with disease-free survival (DFS), indicating that COL12A1 is a poor prognostic
indicator for CRC [53].

There are increased levels of the C-terminal end of type XVI collagen in the serum of
CRC patients [54]. In addition, type XVI collagen is upregulated by transforming growth
factor-β (TGF-β) [55]; high levels of TGF-β are associated with metastasis and a poor
outcome in CRC patients [55,56]. An increase in collagen XVII expression was significantly
associated with a higher TNM stage in colorectal carcinoma [57]. It is also associated with
infiltrative growth patterns and tumor budding, lymph node involvement, and distant
metastasis [57]. Additionally, collagen XVII gene expression is upregulated in a STAT3
dependent manner and stabilizes laminin-5 (laminin-322) [58,59]. It has been demonstrated
that upregulated collagen XVII-laminin-5 mediates anoikis resistance, which plays an
essential role in determining tumor initiation and metastasis in cancer stem cells [58].

Taken together, collagens promote the development and progression of CRC in various
ways and provide both novel clinical treatment directions and have potential as biomarkers
to aid in staging, monitoring the progression of the disease, analyzing the response to
treatment, and monitoring for the recurrence of CRC.

3. Laminin

Laminins are large multimeric basement membrane proteins with functional units
constructed through the assembly of one α, one β, and one γ isoform [60]. Laminin
is involved in tumor angiogenesis, cell infiltration, metastasis, cytokines and proteases
leading to tumor progression and drug resistance [61,62]. Several studies have reported
the association between CRC and laminin chains and its potential as a biomarker of
CRC [61,63,64].

Laminin-5 (Laminin-332) is a heterotrimer composed of α3, β3, and γ2 chains that
are essential for epithelial cell migration and basement membrane attachment [59]. In the
univariate and multivariate analyses of the laminin-332 γ2 chain for CRC patient survival,
the prognosis was markedly reduced in patients with an increased number of immune
positive tumor cells [63]. Additionally, the γ2 chain synergistically contributes to the
formation of budding tumor cells with MMP-2, and the level of γ2 chain expression in
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the submucosal and subserosal invasive fronts was an independent prognostic factor [65].
Laminin γ2 was significantly correlated with poorer clinical outcomes such as disease-
specific, recurrence-free, disease-free, and OS in CRC [66]. Further, stable overexpression of
laminin γ2 promoted proliferation, migration, and invasion of CRC cells [66]. In addition,
β3 chain expression was a poor prognostic factor for CRC, and laminin-332 was associated
with chemical resistance to 5-FU-based chemotherapy [67].

Laminin β-1 is a glycoprotein that is not known to be secreted by colon cancer cells [68].
However, the level of laminin β-1 was significantly higher in the serum samples of CRC
patients compared to the healthy controls [68–71]. Also, according to a ROC analysis,
laminin β-1 performed better than CEA in distinguishing control subjects versus CRC
patients [68]. Moreover, the use of laminin β-1 in combination with CEA further improved
the diagnostic efficacy [68].

Abnormal methylation at the target CpG sites of Laminin α2 (LAMA2) was observed
at a high frequency in CRC tumor tissues and less frequently in normal tissues adjacent
to the tumor, revealing that it is also a potential biomarker [72]. Qin et al. showed that
high Laminin 521 expression is a frequent feature of metastatic dissemination in CRC and
promotes cell invasion and self-renewal. Furthermore, they demonstrated the ability to
promote self-renewal of Biolaminin 521 LN (LN521) through the engagement of integrins
α3β1 and α6β1 and activation of STAT3 signaling [64]. In addition, changes in laminin
expression have been reported in various inflammatory diseases. Several studies have
reported Laminin α4, α5, α6β1, α3β1, α7, and β2 are upregulated TNF-α, MIP-1β, IL-1β,
IL-6, and IL-8 [73–76].

Some laminins suggest a possible prognostic approach of CRC progression and metas-
tasis, although some studies have only been performed using chains of laminin [61,69,77].
In addition, the expression and role of laminin in CRC may be useful for the development
of novel biomarkers, as well as a potential target of novel treatment modalities.

4. Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase
(TIMPs) have been known to play a role in the process of tumor invasion, progression, and
metastasis of CRC [78]. Accordingly, many researchers have been unraveling the potential
of a variety of MMPs and TIMPs as potential biomarkers of CRC [79–83]. Here we describe
the value of MMP as a biomarker in CRC based on these studies.

MMP-1 is expressed in various cells, including fibroblasts, hepatocytes, and tumor
cells, and the level of expression is consistently high even without evident stimulation [84].
MMP-1 is described in a variety of advanced cancers [85–87], and colon cancer is no
exception [88]. Upon analysis of the serum MMP-1 activity before surgical resection in
75 patients with CRC [78,89], it was clear that MMP-1 activity may predict the future pro-
gression of malignant cells. These results indicate that MMP-1, activated in primary lesions
and found in serum, may be helpful for the clinical diagnosis of CRC [90]. Expression
of MMP-1 and MMP-7 was elevated in patients with primary colorectal cancer with or
without liver metastasis [91,92]. These results indicated that the activity of these proteases
is pivotal for metastasis, and positive MMP-1 expression in primary colorectal tumor
tissue was a significant predictor of liver metastasis [79,84,88,93]. They speculated that the
prognostic impact of protein marker expression in terms of intrahepatic recurrence would
be insignificant [79]. Additionally, MMP-1 is independently associated with cancer-specific
survival (CSS) in patients with CRC, and MMP-1 expression in tumor-free mucosa can be
used to help guide providers in the identification of patients with colorectal cancer who
may require additional systemic chemotherapy or more intensive adjuvant treatments in
addition to curative resection [93].

MMP-2 and MMP-9 are known as type IV collagenases and are associated with CRC
progression, angiogenesis, and metastasis [94]. These proteins can be found in serum and
feces and may have potential as biomarkers as they can distinguish between CRC patients
and healthy controls [95]. MMP-2 and MMP-9 were increased in the serum of colorectal
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cancer patients, and their diagnostic sensitivity was higher than that of other biomarkers
currently used in clinical practice, such as CEA and CA19-9 [95]. However, serum MMP-
9 showed results that could not be considered beneficial for the diagnosis of advanced
neoplasia in the CRC family-risk population screening [96]. Also, levels of MMP-9 were
measured in stool samples from 125 colon cancer patients and showed that MMP-9 may be
a promising noninvasive marker of CRC [97]. Increased expression of MMP-2 and MMP-9
in normal tumor-free mucosa adjacent to colorectal tumors was independently associated
with poor prognosis in colorectal cancer patients [98]. Additionally, it has been found that
TIMP-2 can regulate MMP-9 to predict the prognosis of patients with CRC [82]. Wang et al.
demonstrated that TIMP-2 inhibits cell invasion and migration by regulating MMP-9 at the
mRNA or protein level and may be more effective than TIMP-2 or MMP-9 alone to predict
the prognosis of patients with CRC [82].

MMP-7 also exhibits proteolytic activity on components of the extracellular matrix, is
often overexpressed in human cancer tissues and is associated with cancer progression [91].
Overexpression of MMP-7 is observed in ~80% of CRC [99], and serum levels of MMP-7
are associated with cancer progression and decreased survival in advanced CRC [100].
Also, MMP-7 promotes cancer invasion through proteolytic cleavage of ECM proteins
and by activating other MMPs, including proMMP-2 and proMMP-9 [91]. Despite these
characteristics of MMP-7 in cancer, clinical use of MMP-7 inhibitors has been disappointing
due to its poor therapeutic effect and side effects [101]. However, the association between
MMP-7 tissue expression and prognosis in colorectal cancer was evaluated, and it was
shown that MMP-7 expression has the potential to be a prognostic marker for a poor 5-year
outcome in colorectal cancer [92]. Additionally, serum levels of TIMP-1 and MMP-7 were
significantly higher in CRC patients than in healthy controls [80]. These two factors were
more sensitive than CA19-9 [80], suggesting that they could be effective biomarkers in
patients with metastatic CRC with good sensitivity. Their data show that TIMP-1 and
MMP-7 correlate with liver involvement in CRC patients. Additionally, these entry levels
are prognostic factors that correlate with OS [80]. Similarly, as a result of performing a
meta-analysis on MMP-7, it was demonstrated that overexpression of MMP-7 is associated
with poor OS, poor DFS, and reduced 5-year survival rate in CRC patients [102].

MMP-13 is also associated with the development and progression of colon cancer [83,103].
As a result of evaluating MMP-13 mRNA expression in cancer tissues of CRC patients by
the membrane array method, the stage of cancer progression is significantly associated
with MMP-13 overexpression, and it was confirmed that patients with MMP-13 overex-
pression had a 7.989-times higher risk of recurrence after surgical resection compared
with patients without MMP-13 overexpression [104]. Therefore, these MMP-13 studies
show that MMP-13 has significant potential as a CRC prognostic marker with several
reports that high levels of MMP-13 are associated with liver metastasis, poor prognosis,
and early recurrence [83,103]. Additionally, the immunoreactive score (IRS) of MMP-13
was suitable for evaluating the pathologic grade of precancerous and cancerous colorectal
lesions, showing that MMP-13 can be applied to stratification of prognosis as an excellent
marker of CRC [105].

MMP-14 has been reported to promote invasion and metastasis in several cancers,
and several studies have been conducted as a biomarker candidate in colorectal cancer as
well. The mRNA and protein levels of MMP-14 were increased in CRC tissues compared
to normal tissues, and patients with higher expression had lower 5-year DFS and OS
than those with lower expression [106]. Another study reported increased expression
of α5β1-integrin and MMP-14 in patients with poor histological differentiation, lymph
node metastasis, and high clinical stage of CRC [107]. Interestingly, MMP-14 and α5β1-
integrin have the common functions of activating MMP-2 [108–111] and stimulating tumor
angiogenesis [112,113]. However, there is also a study in which no correlation was observed
between MMP-14 expression and the prognosis of CRC [114]. Collectively, these studies
suggest that MMP-14 may be a biomarker in CRC, but further studies are needed.
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Numerous studies have proven the outstanding value and utility of MMP in CRC.
These studies suggest that MMPs contribute to the progression and metastasis of CRC
and lead to a poor prognosis. Naturally, it is still insufficient to determine that this is an
ideal biomarker. Further research is warranted to test the efficacy of MMP as a biomarker
for CRC.

5. LOX

The lysyl oxidase (LOX) family is a member of secreted copper-dependent amine oxi-
dases that play an essential role in mediating ECM remodeling and cross-linking of collagen
and elastin [115]. The LOX family is composed of LOX and four LOX-like proteins (LOXL1,
LOXL2, LOXL3, and LOXL4) [116], which catalyze the conversion of lysine residues into
highly reactive aldehydes and mediate cell adhesion, invasion, and motility [117].

Baker et al. [118] revealed that LOX was significantly elevated in tumor tissues, and
the increase was more significant in metastatic tumors, suggesting its role in tumor pro-
gression. In vitro and in vivo models showed LOX stimulates endothelial cell division and
drives tumor angiogenesis through the activation of the Akt-VEGF pathway in CRC [119].
P-selectin-mediated platelet aggregation increases LOX expression, causing tumor ECM
remodeling and stiffening, thereby promoting the progression of CRC [115]. Intracellu-
lar LOX is significantly associated with poor survival and a prognostic biomarker for
lung/hepatic metastasis of colon cancer [120]. However, Csiszar et al. demonstrated
that LOX mRNA expression was reduced in CRC patients, indicating that LOX had the
tumor-inhibiting effect [121]. LOXL1 acts as a critical tumor suppressor in regulating
tumor growth, invasion, and metastasis by inhibiting the activity of yes-associated protein
(YAP) [122]. LOXL2 is involved in the occurrence of CRC invasion and metastasis and
can be an independent prognostic biomarker [123–125]. Moreover, LOXL2 knockdown
attenuates the proliferation and migration of CRC cells and induces cell cycle arrest and
apoptosis in vivo and in vitro [126].

Additionally, in a meta-analysis study, Zhang et al. [127] revealed that increased
LOXL2 expression was obviously associated with worse clinical outcomes and might serve
as a prognostic biomarker in digestive system cancer. Palmieri et al. [128] found that the
expression of LOXL4 in neutrophils was a potential surrogate biomarker for the subtype of
colorectal cancer with liver metastasis.

In summary, the LOX family is associated with the regulation of colon cancer cell
proliferation, migration, invasion, and metastasis and might be a potentially effective
molecular marker for diagnosis and treatment of CRC.

6. ADAM

A disintegrin and metalloproteinase (ADAM) is the metzincin proteolytic enzyme
superfamily of zinc-based metalloproteinase, which regulates the shedding of membrane-
bound proteins, cytokines, growth factors, ligands, and receptors [129].

ADAM8 is overexpressed in CRC tissues and is associated with worse OS and DFS,
which can serve as a prognostic biomarker for CRC patients [130]. miR-20b reduces 5-FU
resistance and induces apoptosis of colon cancer cells by suppressing ADAM9/EGFR [131].
ADAM12 overexpression enhances CRC proliferation and inhibits cell apoptosis, which
is related to cancer staging, distant metastasis, and poor prognosis [132]. In addition,
Wang et al. [133] found that ADAM12 showed promoter hyper-methylation and lower
expression in CRC tissues compared to adjacent normal tissues. Recent studies have also
suggested that ADAM15 is overexpressed in several types of cancer and is involved in
metastatic tumor progression [134–140]. In CRC, Claudin-1 expression was increased
through the ADAM15 pathway and was associated with the progression of CRC and
metastasis [134,141]. However, Toquet et al., reported that ADAM15 expression is de-
creased in advanced colon cancer and this reduction is associated with metastasis and
shorter overall survival [142]. Compared with normal colonic mucosa, ADAM17 is overex-
pressed in primary and metastatic CRC tissues, and a selective ADAM17 inhibitor leads to
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concentration-dependent decreases in cell proliferation and activity [143]. Chemotherapy
activates ADAM17 expression, leading to growth factor shedding, growth factor receptor
activation, and drug resistance in CRC [144]. Pharmacological inhibition or siRNA silencing
of ADAM17 activity, combined with chemotherapy, has potential therapeutic benefits for
CRC patients [144–149]. Wang et al. [150] suggested that Nox1 promoted CRC metastasis
through the regulation of ADAM17 stability. ADAM17 can serve as a prognostic biomarker
for advanced CRC, contributing to the development of new therapies focused on reducing
tumor metastasis [81]. ADAM transcription is activated by the Wnt signaling pathway and
can lead to the recruitment of epigenetic complexes that promote CRC metastasis [151].
2-Deoxy-D-glucose and siRNA suppresses the activation of ADAM10 and ADAM17, down-
regulates mesenchymal properties, reduces the secretion of EMT-associated cytokine, and
renders the tumor susceptible to anti-cancer drug treatment [152–154].

Collectively, ADAM may serve as a promising biomarker and therapeutic target for
CRC patients, and further investigation is needed.

7. Proteoglycan

Proteoglycans (PGs) are composite molecules in which the protein core is covalently
linked to glycosaminoglycans chains (GAGs). Major GAGs include heparan sulfate, chon-
droitin sulfate, dermatan sulfate, hyaluronan, and keratan sulfate. According to cell
location, all PGs can be divided into intracellular, pericellular, ECM proper, and extracellu-
lar PGs. PGs have an essential role in maintaining ECM structure and are related to cancer
pathogenesis [155].

Each malignant tumor has a unique PG profile, which is closely related to its biological
behavior and differentiation. Chondroitin sulfate proteoglycan serglycin is a poor prog-
nostic biomarker, which acts as an essential downstream target of HIF-1α to promote CRC
metastasis [156]. Serglycin is a unique intracellular PG that is constitutively expressed and
secreted at high levels in the culture medium of aggressive colon cancer cells [157].

Loss of heparin sulfate proteoglycan syndecan-1 (Sdc-1) expression is related to his-
tological differentiation and clinical staging in CRC patients [158]. Sdc-1 is involved
in chemotherapy resistance through the EGFR pathway and may be a new prognostic
biomarker for CRC [159]. Depletion of Sdc-1 is associated with activation of integrins
and focal adhesion kinases, which then generate signals for enhanced aggressiveness and
cancer stem cell properties [160]. In addition, sdc-1 suppresses cell growth and migration
via blocking Ras/Raf/MEK/ERK and JAK1/STAT3 pathways in human CRC cells [161].
Syndecan-2 (Sdc-2) exerts carcinogenic effects through the activation of the EMT and
MAPK pathways, as well as the interaction with the ECM that is produced by stromal
fibroblasts in CRC [162,163]. Moreover, fecal Sdc-2 methylation levels measured by linear
target enrichment (LTE)-quantitative methylation-specific real-time PCR can be used as a
biomarker for noninvasive detection of CRC patients [164–166].

SLRPs, a family of proteoglycans that share a common leucine-rich-repeat proteogly-
cans with strongly involved in modulating the tissue hydration and assembly of fibrillary
collagen, including biglycan, decorin, fibromodulin, and lumican, can affect fibril growth
rate, size, morphology, and content. As an SLRPs family, biglycan is significantly higher
in CRC tissues than that of corresponding normal tissues, which is related to poor tumor
differentiation, lymph node metastasis, and distant metastasis [167]. In addition, biglycan
can directly increase VEGFA expression in colon cancer cells, thereby promoting tumor
angiogenesis and cancer growth [168]. Another member of the SLRPs family, decorin, can
inhibit EMT and CRC metastasis through interaction with E-cadherin [169,170]. Finally,
Radwanska et al. found that enhanced lumican expression and its presence in ECM have
an impact on colon cancer cell migration through up-regulation of gelsolin and filamentous
actin reorganization [171]. Lumican inhibits SNAIL-induced melanoma cell migration
in vitro and vivo specifically by blocking MMP-14 activity [172]. Furthermore, the expres-
sion of lumican is increased during colorectal adenoma-to-carcinoma progression and able
to predict good clinical outcomes for stage II and III colon cancer, [173,174]. There is a
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key role of PG in the pathogenesis of CRC, and elucidating the changes in PG expression,
structure, and location may provide insights for the development of innovative biomarkers
as well as selective and more effective therapies.

8. Thrombospondin

Thrombospondin (THBS) family, a member of secreted Ca2+-binding ECM glycopro-
teins that share a highly conserved C-terminal region, are composed of five homologous
members and can be divided into two groups [175]. Group B (THBS3, THBS4, and THBS5)
has fewer domains than group A (THBS1 and THBS2) and is involved in embryonic devel-
opment [176,177] and in skeletal growth [178]. However, group A has unique N-terminal
domains and is more related to cardiovascular development [177,179]. THBS serve impor-
tant roles in numerous physical and pathological processes, such as cell differentiation,
proliferation, migration, fibroblast apoptosis, vascular homeostasis, immunity, and wound
healing [180] as well as glucose and insulin metabolism [181].

Additionally, THBS have long been associated with the regulation of angiogenesis
and cancer by regulating multiple physiological processes that determine cancer growth
and spreading (angiogenesis, inflammation, metabolic changes, and other properties of
the ECM) [181]. Despite several studies that have reported the relationship between THBS
expression and cancer development in different types of cancers [182–184], only a few
studies have researched thrombospondins in colorectal cancers. THBS1 was the first
member to be identified among the thrombospondin family and has been mostly studied
focusing on the development and metastasis in several cancers including colorectal cancer
as an anti-angiogenic factor in the tumor microenvironment [180,183–188].

There have been several reports that there is a protective role of THBS1 in the anti-
angiogenic and anti-tumorigenesis in colorectal cancer [182]. For example, THBS1 is
mainly expressed in fibroblasts in the tumor stroma and there is better prognosis with
activation of TGFβ-1 in CRC [186]. In another study, THBS1 was found to be highly
expressed in the normal colonic mucosa, but was progressively lost depending on the
adenoma size and even completely absent in the epithelial component of carcinomas [183].
This suggests that Wnt signaling, rather than K-ras, has a role in repression of THBS1
gene expression [185]. Under a low (5%) fat diet, ApcMin/+:THBS1−/− mice showed
lower survival and higher tumor multiplicities in the small and large intestine relative to
ApcMin/+ mice [187]. Additionally, inhibition of THBS1 by miR-194 promoted angiogenesis
and tumor growth of colonic carcinoma xenografts [189]. Conversely, THBS1 showed a
significant correlation with poor survival in resected colorectal liver metastases [188].

However, the expression pattern of THBS1 and THBS2 and their roles in CRC have
provided several controversial results. Tokunaga et al. showed that THBS2 in CRC
expressed a significantly lower incidence of hepatic metastasis, whereas THBS1 expression
had no apparent correlation [190]. Differing from these results, Yosida et al. reported
that THBS2, regarded as an angiostatic factor, was significantly increased in CRC but not
THBS1 [191]. In the opposite way to THBS1 regulation by miR-194, THBS2 has a binding
domain in its 3′-untranslated region for miR-203a-3p, and downregulation of THBS2 by
miR203a-3p inhibits CRC progression and metastasis [192]. There were also ambiguous
results in terms of THBS2 expression such that low THBS2 expression reflected poor
prognostic factors [193], while there was no correlation with improvement in metastatic
colorectal cancer [194].

The role of THBS3 and THBS5 in the regulation of cancer growth has only been studied
once with respect to THBS3 in osteosarcoma [195]. However, THBS4 has been suggested
as a valuable gene and regulator and has been found to target several cancers including,
breast [196,197], gastric [198,199], and hepatocellular carcinoma [200].

Most studies have shown higher THBS4 gene expression in gastric cancer [201], breast
lobular carcinomas [197], diffuse type of gastric adenocarcinoma [198], HCC [202], and
cancerous ovarian and renal cultures [203]. The remarkable activation of THBS4 expression
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in tumors is most likely regulated through the interactions of invading tumor cells with
stromal fibroblasts in the local microenvironment [196].

Recently, it was found that there are increased levels of THBS4 in colorectal cancer
patients and it is highly associated with PDGFRβ expression in tumor tissues compared to
normal tissues [20]. Further, the expression level of THBS4 was also significantly increased
with increased expression of PDGFRβ, despite no significant changes in mRNA [20]. This
may implicate post-translational modification of THBS4. Additionally, TGF-β and PDGF-D
were involved in this pathway and promoted the proliferation, migration, and adhesion of
a colonic fibroblast, and fibroblasts can actively diffuse around and inside a neoplastic mass
favored by the action of these factors [204,205]. Although one controversial study suggested
that THBS4 may act as a tumor suppressor gene in colorectal cancer [206], considering all
of the results in the other types of cancer [185,196,199,201], higher expression of THBS4
is more likely associated with tumor development. However, how transcriptional and
post-transcriptional levels of THBS4 are regulated in by interactions of tumor cells and
stromal fibroblasts involved remain elusive.

According to the THBS4 expression data in the colon adenocarcinoma (COAD) in
the Cancer Genome Atlas (TCGA), although it showed THBS4 is not a prognostic marker
in COAD, there seems to be a strong relationship between stage of disease, expression
levels and/or survival rate and survival rate is significantly lower in the higher expression
individuals [207]. Interestingly, there also seems to be a gender difference in the relationship
between THBS4 expression and survival rate because females showed a significantly lower
survival rate than males [207].

Collectively, THBS family is associated with the development and progression of
colorectal cancers. Further studies on THBS are required to explore possible diagnostic and
therapeutic approaches in CRC.

9. Conclusions

Many molecular markers are associated with the occurrence, progression, and prog-
nosis of carcinoma. There are seven ECM biomarkers for CRC as shown in Table 1. Ad-
ditionally, Figure 1 summarizes the differential expression of ECM biomarkers in CRC.
Elevated ECM proteins in the tumor microenvironment increase the stiffness of the ECM,
affecting cellular functions such as proliferation, adhesion, migration, tissue remodeling,
and regulation of immune system [9–11,208].



Int. J. Mol. Sci. 2021, 22, 9185 10 of 21

Table 1. Extracellular matrix biomarkers in cancer.

Name Function Gene Name Expression (Verse Normal Tissue/Cells) Tumor Type Reference

Collagen Cell adhesion

COL1A1, COL3A2, COL4A3,
COL4A6,
PRO-C3,
PRO-C6,

C6M, C6Mα3,
ColXIA1,
COL12A1

Upregulated

Tumor stroma,
lung tumor,

thyroid cancer,
colorectal cancer,

osteosarcoma,
breast cancer,

hepatocellular carcinoma, ovarian cancer

[17,37–42,47,52,53,209]

Laminin
Tumor angiogenesis, cell
infiltration, metastasis,

drug resistance

LAMA2,
Laminin β-1, Laminin γ2 Upregulated Colorectal cancer, pancreatic

adenocarcinoma, lung adenocarcinoma [60,63,65,210]

Matrix Metalloproteinase
(MMP)

tumor invasion,
progression, metastasis

MMP-1, MMP-2,
MMP-7, MMP-9,

MMP-13, TIMP-1,
TIMP-2

Upregulated Colorectal cancer, gastric cancer, breast
cancer, lung tumor [83–85,91,95,97]

Lysyl oxidase (LOX) ECM remodeling, tumor growth LOXL1, LOXL2, LOXL3 LOXL4 Upregulated Hepatocellular
cancer, colorectal cancer, lung tumor [211,212]

A disintegrin and
metalloproteinase (ADAM)

Regulation of cytokines and
growth factors,

cell proliferation

ADAM-8,
ADAM-10,
ADAM-12,
ADAM-15

Upregulated: ADAM-8, ADAM-12,
ADAM-15 (lung tumor, pancreatic cancer)

Downregulated:
ADAM-10, ADAM-15 (Colorectal cancer)

Colorectal cancer, lung tumor,
pancreatic cancer

[129,133,142,144,145,148,
151,152,213]

Proteoglycan (PG)

Enhancement of cell viability, cell
proliferation, invasion,

metastasis, regulation of cytokine,
cell adhesion and

migration, angiogenesis

Serglycin, Glypican (GPC)-1,
GPC-4, GPC-5,

Syndecan (SDC)-1, SDC-2,
SDC-3, SDC-4, HSPG2

Upregulated: Serglycin, GPC-1, GPC-4,
SDC-1 (Pancreatic cancer, breast cancer),

SDC-2, SDC-3, HSPG2
Downregulated: SDC-1 (Colorectal

cancer), SDC-4, GPC-5,

Nasopharyngeal
cancer, glioblastoma,

hepatocellular
cancer, colorectal cancer,

pancreatic cancer

[155,160,161,214–218]

Thrombospondin (THBS)

Cell proliferation,
carcinogenesis,

fibroblast apoptosis,
vascular homeostasis

THBS1, THBS2,
THBS3, THBS4,

THBS5
Upregulated

Lung tumor,
thyroid cancer,

colorectal cancer,
osteosarcoma,
breast cancer,

hepatocellular carcinoma

[176,179–
193,195,196,198–202,206]
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Figure 1. A simplified diagram of extracellular matrix biomarkers differentially expressed in col-
orectal cancer and normal tissue. MMP, Matrix Metalloproteinase; THBS, Thrombospondin; ADAM,
A disintegrin and metalloproteinase; LOX, Lysyl oxidase. Adapted from “Melanoma Staging” and
“Tumor Cell Metastasis”, by BioRender.com (2020). Retrieved from https://app.biorender.com/
biorender-templates (accessed on 22 July 2021).

Collagen has important implications in the structural growth of tissue and regulates
molecular signaling processes. A variety of tumors have been shown to overexpress
collagen and its proteolytic components have been linked to increased invasiveness of
tumors [41,84]. For example, collagen type I, III, and IV are upregulated by increased
expression of TGF-β and this increase is associated with metastasis in CRC [27,55]. MMP-2
and MMP-9 are known as type IV collagenase and are increased in CRC patients and are
associated with colorectal cancer progression [95]. MMPs are key promoters of cancer
progression, CRC migration, and metastasis in CRC. MMP activity is regulated by TIMPs;
hence dysregulated MMP–TIMP expression may favor proteolysis, thereby contributing
to an environment catalyzing metastasis [175,219]. Many ECM remodeling enzymes
including MMPs and LOX family oxidases are expressed during malignant transformation,
progression, and metastasis of CRC [116]; increased MMPs and LOX expression in CRC
correlate with advanced disease progression and a poor prognosis [40,93,94,97–99,104].

ADAM, PGs, and THBS are responsible for the regulation of cell differentiation,
proliferation, migration, and fibroblast apoptosis [129,155,180]. Overexpression of ADAM
in CRC enhances cell proliferation and inhibits apoptosis, which is related to cancer
staging, distant metastasis, and poor prognosis [132]. However, in some reports, decreased
expression of ADAM was observed in different types of carcinomas. For example, even
though one study suggested that ADAM15 is decreased in CRC [142], there are several
other studies that found there is an increase in expression of ADAM15 in several types of
cancer [134–139]. However, one study has identified an increase in the downstream gene
of ADAM15 in CRC [134]. It is suggested that the role of ADAM15 in cancer progression
is tissue-specific. Although most studies have shown higher THBS gene expression in
different types of cancer, the exact mechanism linking the THBS family to these cancers is
not known.

Given the various roles of ECM biomarkers in the tumorigenesis of CRC and other
cancers, it is a promising target for pharmaceutical intervention. Increased expression
of ECM biomarkers is associated with tumor invasion, metastasis, and a poor clinical

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates


Int. J. Mol. Sci. 2021, 22, 9185 12 of 21

outcome for cancer patients [8]. Furthermore, while many studies have demonstrated
overexpression of ECM proteins, it is not known how they may regulate tumor invasion and
metastasis. Further, cells expressing high levels of ECM proteins have an increased capacity
to proliferate, invade, and metastasize as a consequence of this increased expression. This
suggests that inhibition of ECM proteins may provide a novel and effective treatment
option for patients with CRC to prevent metastatic progression. Moreover, future therapies
targeting the ECM also have potential use in prevention of precancerous lesion progression
based on the profound role of the ECM in tumor development, progression, and ultimately
metastasis. In turn, further elucidation of these intricate mechanisms within various cancers
likely has profound implications; especially in the personalized medicine realm with tumor
specific targeted therapies leading to vastly more efficacious treatments.
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