
330 |     CPT Pharmacometrics Syst. Pharmacol. 2021;10:330–339.www.psp-journal.com

Received: 5 November 2020 | Revised: 16 February 2021 | Accepted: 5 March 2021

DOI: 10.1002/psp4.12613  

A R T I C L E

Conditional distribution modeling as an alternative method 
for covariates simulation: Comparison with joint multivariate 
normal and bootstrap techniques

Giovanni Smania |   E. Niclas Jonsson

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited and is not used for commercial purposes.
© 2021 Pharmethues AB. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics

Pharmetheus AB, Uppsala, Sweden

Correspondence
Giovanni Smania, Uppsala Science Park, 
Dag Hammarskjölds väg 36b, 75237 
Uppsala, Sweden.
Email: giovanni.smania@pharmetheus.
com

Funding information
This work was supported by Pharmetheus 
AB.

Abstract
Clinical trial simulation (CTS) is a valuable tool in drug development. To obtain re-
alistic scenarios, the subjects included in the CTS must be representative of the target 
population. Common ways of generating virtual subjects are based upon bootstrap 
(BS) procedures or multivariate normal distributions (MVNDs). Here, we investi-
gated the performance of an alternative method based on conditional distributions 
(CDs). Covariate data from a hypertension drug development program were used. 
The methods were evaluated based on the original data set (internal evaluation) and 
on their ability to reproduce an older, unobserved population (extrapolation). Similar 
results were obtained in the internal evaluation for summary statistics, yet BS was 
able to preserve the correlation structure of the empirical distribution, which was 
not adequately reproduced by MVND; CD was in between BS and MVND. BS does 
not allow to extrapolate to an unobserved population. When the data set used to in-
form the extrapolation was well approximated by an MVND, the results from CD 
and MVND were comparable. However, improved extrapolation performance was 
observed for CD when deviations from normality assumptions occurred. If CTS is 
used to simulate within the observed distribution, BS is the preferred method. When 
extrapolating to new populations, a parametric method like CD/MVND is needed. 
In case the empirical multivariate distribution is characterized by linearly related co-
variates and unimodal marginal distributions, MVND can be used because of the 
simpler statistical framework and well- established use; however, if uncertainty about 
the MVND assumptions exists, CD will increase the confidence in the simulations 
compared to MVND.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Common ways of generating virtual subjects to be used in clinical trial simulation 
(CTS) tasks are based upon bootstrap (BS) procedures or multivariate normal distri-
butions (MVNDs).
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INTRODUCTION

In several research fields that aim to study complex systems, 
mathematical modeling is routinely used to quantitatively de-
scribe the system, generate or test hypotheses, and explore sys-
tem behavior by means of model simulations. Drug discovery 
and development is one such field that has seen the application 
of modeling and simulation— or pharmacometrics— growing at 
a fast pace in the last decades.1 Arguably, the success of phar-
macometrics lies in its ability to integrate and synthesize evi-
dence collected from heterogenous sources throughout the drug 
development spectrum, ultimately providing a sound quantita-
tive input to the decision making process in pharmaceutical re-
search and development (R&D).2- 4

In the pharmacometrician’s toolkit, clinical trial simula-
tion (CTS) offers the possibility to mitigate the risk of study 
failure by prospectively exploring the performance of a given 
study design and/or of the decision making criteria.5 Among 
others, applications of CTS include proof- of- concept study 
design,6 outcome prediction in phase III,7 pediatric trial op-
timization,8,9 evaluation of non- adherence,10,11 and guidance 
in dose titration decisions.12 CTS can be broken down into 
three building blocks: a disease model, a drug model, and a 
trial model.13 The trial model requires the definition of a pa-
tient population through a set of characteristics, often termed 
covariates; in order to obtain realistic simulation scenarios, 
the set of covariates included in the CTS must be representa-
tive of the target population.

Common ways of generating covariate distributions for 
CTS are based upon nonparametric bootstrap (BS) proce-
dures or multivariate normal distributions (MVNDs).14,15 
While BS is a nonparametric method, MVND requires cer-
tain parametric assumptions to be met by the original data 

set at hand. The different nature of these two methods brings 
respective pros and cons: with BS it is not possible to ex-
trapolate outside of the observed distribution, but it preserves 
the relationships between covariates, thereby returning simu-
lated subjects that are physiologically plausible. Conversely, 
the parametric distribution underlying the MVND— under 
certain assumptions about the means and correlations for the 
simulated population— can be used to generate completely 
new individuals. However, even with appropriate assump-
tions, the unrestricted nature of the underlying multivariate 
distribution may still lead to unrealistic simulated subjects.

Multiple imputation16,17 is a technique used to handle 
complex missing data problems in statistical analysis, where 
multiple imputed data sets are analyzed separately, and in-
ference is made on the pooled results. Missing data are im-
puted by sampling from conditional distributions using a 
prespecified imputation model.18 A commonly used imputa-
tion model is predictive mean matching (PMM).19 For each 
missing entry, PMM forms a small set of candidate donors 
from all complete cases that have predicted values closest to 
the predicted value for the missing entry. One donor is ran-
domly drawn from the candidates, and the observed value of 
the donor is taken to replace the missing value. It follows that 
missing data are imputed with real values observed elsewhere 
in the data set, so imputations outside the observed data range 
will not occur. This feature makes sampling from conditional 
distributions (CDs) using PMM an appealing method for 
covariate simulations, because in principle it embraces the 
advantages of MVND and BS (i.e., it can retain physiolog-
ical plausibility while allowing to extrapolate outside of the 
observed multivariate distribution).

The objectives of this analysis were to investigate the operat-
ing characteristics of CD when used to simulate covariates dis-
tributions, and to compare them with those of BS and MVND.

WHAT QUESTION DID THIS STUDY ADDRESS?
What is the performance of an alternative method based on conditional distributions 
(CDs) compared with BS and MVND?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
If CTS is used to simulate within the range of the observed distribution, BS is the pre-
ferred method for covariates simulation. When the CTS objectives involve extrapola-
tions to new populations, a parametric method like CD or MVND is needed. As the 
MVND approach rests on relatively strong assumptions (i.e., linearly related covariates 
and unimodal distributions), CD is more robust when deviations from these assump-
tions occur.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Pharmacometricians will have at their disposal a new method for covariates simula-
tion, which is particularly favorable when the empirical covariate distribution cannot 
be approximated by an MVND.
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METHODS

Data

The data set used to build the simulations, hereafter referred 
to as the original data set, was obtained from a hypertension 
drug development program with data in 233 healthy sub-
jects (HSs) and 706 patients. The original data set contained 
the baseline values of the following covariates: age, weight 
(WT), serum creatinine (SCR), creatinine clearance (CRCL), 
sex, and race. The summary statistics of the covariates in the 
original data set are reported in Table 1. The histograms of 
the continuous covariates stratified by HSs versus patients 
and the scatterplot matrix of the log- transformed continuous 
covariates are shown in Figure 1a,b.

Covariate simulation methods

Bootstrap

The BS method consisted of sampling, with replacement, co-
variate vectors from the original data set.

Multivariate normal distribution

The MVND was implemented based on the framework pre-
sented in Tannenbaum et al15 that is briefly described. Before 
estimating the parameters of the MVND from the original 
data set, continuous covariates are log- transformed to con-
strain them to be positive; the covariate vectors simulated 
with the MVND are then exponentiated back to obtain the 
actual covariate values. As to categorical covariates, no pre-
transformation is used, and they are treated as if they were 
continuous variables. This implies that the MVND can gen-
erate nondiscrete values for categorical covariates, which 
then must be mapped back to their respective category based 
on a continuous critical value (see ref. 15 for more details). 
Two important assumptions of the MVND are that the co-
variates in the original data set follow the same known distri-
bution, and that they are linearly related to each other. A third 
assumption is that all the marginal distributions should not 
display clear multimodal trends. No truncation was applied 
to the covariates simulated with the MVND.

Conditional distribution

Simulations with CD were performed using the fully con-
ditional specification (FCS) algorithm (also known as mul-
tivariate imputation by chained equations) as implemented 
in the R package mice version 3.6.0.19 FCS is an iterative 

method in which missing data are imputed on a variable- 
by- variable basis. Let the covariate data set be represented 
by the matrix Y, FCS specifies a group of conditional den-
sities P(Yj

mis | Yj
obs, Y- j, ϕ), where Yj

mis and Yj
obs are the 

set of missing and observed values for the j- th covariate, 
respectively, Y- j are the values of all covariates in Y that 
are not the j- th one, and ϕ is the imputation model. Starting 
from simple random draws from the marginal distribution, 
imputation under FCS is done by iterating over the condi-
tionally specified imputation models (an illustrative exam-
ple using standard linear regression as imputation model 

T A B L E  1  Summary statistics of the covariates in the original data 
set

Total number of subjects 939

Continuous covariates

Age (years)

Mean 46.4

SD 12.4

Median 47.0

Range 18.0– 77.0

Weight, kg

Mean 88.5

SD 20.1

Median 86.6

Range 46.3– 172

Serum creatinine, µmol/L

Mean 78.5

SD 16.2

Median 78.7

Range 41.5– 133

Creatinine clearance, ml/min

Mean 124

SD 34.3

Median 120

Range 47.0– 282

Categorical covariates

Population, n (%)

Patients 706 (75.2)

Healthy subjects 233 (24.8)

Sex, n (%)

Males 534 (56.9)

Females 405 (43.1)

Race, n (%)

White 737 (78.5)

Black 179 (19.1)

Asian 19 (2.0)

American Indian 2 (0.2)

Other 2 (0.2)
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is shown in Figure S1). The complete FCS algorithm as 
implemented in the mice package is reported in Supporting 
information S1, further details can be found in refs. 16 and 
18.

The mice package offers the opportunity to choose 
from a selection of linear imputation models; here, the 
default methods were used, namely PMM19 and multino-
mial logistic regression for continuous and categorical co-
variates, respectively. PMM first calculates the predicted 
value of the target covariate according to the specified 
linear regression model, secondly forms a set of donors/
neighbors from the original data set constituted by the K 
closest values to the predicted one (K = 5 in the present 
analysis), and finally makes the actual prediction by ran-
domly drawing one value from the set of donors. Thus, the 
value of the simulated covariate is ultimately drawn from 
the original data set.

The CD simulations were performed as imputation of 
data sets where all covariates were assumed to be missing, 
leveraging the original data to train each univariate impu-
tation model (Figure S1). By doing so, the probability of 
a certain covariate being missing does not depend on the 
unobserved values of that (or other) covariate(s), that is, the 
missing covariates are said to be missing at random (MAR); 
this in turn implies that the missing data mechanism is ig-
norable, a condition that can be handled by the FCS algo-
rithm.16,18 An ad hoc R function was developed and used to 
automate covariates simulation with CD (Supporting infor-
mation S2).

Simulations set up and methods comparison

Thirty replicates of the same size as the original data set were 
simulated using BS, MVND, and CD. CRCL was not directly 
simulated but derived from the simulated values of WT, 
SCR, and sex using the Cockcroft- Gault20 formula, similarly 
to what was done in the original data set.

In a first step, mean, standard deviation (SD), median, 
range, and variance- covariance matrix for continuous covari-
ates and proportions for categorical covariates were calculated 
for each of the 30 simulated replicates. Second, for each repli-
cate r, the relative prediction error between the statistic of the 
simulated data set (Psim,r) and the original statistic (Porg) was 
computed as rPEr (%) = (Psim,r –  Porg)/Porg*100. Finally, rel-
ative bias (rBias) and root mean squared error (rRMSE) were 
derived as 1

N

∑N

r= 1
rPE

r
 and 

�

1

N

∑N

r= 1

�

rPE
r

�2, respectively.
The comparisons described above were carried out 

under three different scenarios. Scenario A used the entire 
original data set to inform the BS, MVND, and CD simu-
lations (internal evaluation). In scenario B, with the aim 
of investigating the extrapolation performance of the meth-
ods, the original data set was divided into a training and a 
test data set, where only the training data set was used to 
inform the simulations, whereas the test data set was used 
to assess the predictive performance of the methods (exter-
nal evaluation, Porg in this case is the statistics computed 
in the test data set). The training data set was defined as 
all subjects in the original data set younger than 55 years 
of age, mimicking a CTS exercise executed to investigate 

F I G U R E  1  Histograms of continuous covariates colored by patients versus healthy subjects (a) and correlation between pairs of log- 
transformed continuous covariates (b). The solid line is a loess regressor. Cr, creatinine
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the features of a clinical trial performed in an older, unob-
served population. Scenario C was the same as scenario B 
but excluding HS from the training data set (the histograms 
of the continuous covariates stratified by sex in the training 
and test data sets for scenarios B and C are displayed in 
Figure S2). By definition, the BS does not allow to extrap-
olate outside of the empirical distribution, hence scenarios 
B and C were tested for CD and MVND only. In Scenarios 
B and C, the MVND simulations for age were obtained by 
truncating the distribution in the range 55– 77  years. The 
age values simulated by the MVND were then used to seed 
the CD simulations, that is, the age values were not imputed 
but assumed to be known (see example C in Supporting in-
formation S2). Accordingly, only the covariance terms for 
age were included in the evaluation, whereas the other age 
statistics were not. It should be noted that in the CD simu-
lations under scenarios B and C the MAR assumption still 

holds true, as the probability of the missing data depends on 
the observed data (i.e., the probability of a covariate being 
missing is higher in older subjects compared with younger 
ones).

RESULTS

Scenario A

Accuracy (rBias) and precision (rRMSE) of the continuous 
statistics are shown in Figure 2a,b. The mean and median of 
the original data set were maintained in the simulated pop-
ulation for all the methods. Likewise, SD and range were 
well- estimated by BS and CD, whereas MVND resulted in 
larger rBias and rRMSE for the range of all covariates and 
for the SD of age. Figure 2c shows that the overall operating 

F I G U R E  2  Relative bias and RMSE for summary statistics of continuous (a and b) and categorical (c) covariates in scenario A (cells where the 
absolute value of relative Bias/RMSE is greater than 30% are grayed out). BS, bootstrap; CD, conditional distribution; CRCL, creatinine clearance; 
MVND, multivariate normal distribution; RMSE, root mean squared error; SCR, serum creatinine; WT, weight
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characteristics for the simulation of categorical covariates 
were similar across the three methods. BS was able to pre-
serve the correlation structure of the empirical distribution, 
which was instead not adequately reproduced by MVND; 
CD was in between BS and MVND (Figure 3a). This in turn 
resulted in the lowest (BS) and highest (MVND) rBias and 
rRMSE in the elements of the variance- covariance matrix 
(Figure 3b,c).

Scenario B

Using CD for the simulation of an older patient population 
led to lower rBias and rRMSE in the summary statistics of 
the continuous covariates, compared to MVND (Figure 4a,b). 
Figure 4c shows that the prediction of the proportion of men 
and women in the extrapolated data set was more accurate 
and precise for MVND versus CD, whereas similar perfor-
mance was obtained for race.

Scenario C

When the HS data were removed from the training data set, 
no clear differences were observed between CD and MVND: 
some continuous covariates were better predicted by MVND 
(e.g., serum creatinine) and some others by CD (e.g., WT; 

Figure 5a,b). As displayed in Figure 5c, sex was still more 
accurate and precise for MVND versus CD.

DISCUSSION

To maximize the predictability of a CTS exercise, plausi-
ble covariate values— representative of the target patient 
population— must be included in the trial model. Previous 
studies have investigated the operating characteristics of 
MVND as a tool to generate virtual populations,15 and com-
pared them with BS techniques.14 In the present work, we 
introduced an alternative approach to covariate simulations 
that borrow from the methodology used in multiple imputa-
tion of incomplete data sets in statistical analysis.16,17 In ad-
dition, we have also explored the extrapolation performance 
of the methods in predicting the summary statistics of an 
older, unobserved patient population.

In the internal evaluation (scenario A), the three methods 
adequately reproduced the summary statistics of the contin-
uous covariates present in the original data set (Figure 2a,b). 
The results indicated that, for some covariates like age 
and SCR, dispersion parameters were not well- predicted 
by MVND, which in turn led to the generation of implau-
sible virtual subjects (e.g., 150  years old). Truncating the 
simulated covariates to more realistic values can help mit-
igate this problem; however, this was not assessed in the 

F I G U R E  3  Visual predictive check of the relationship between pairs of continuous covariates (a): the black line represents a loess regressor 
through the original data set, whereas the shaded area depicts the 80% confidence interval of the loess regressor fitted to each of the 30 replicates. 
Relative Bias (b) and RMSE (c) for the variance- covariance matrix of the continuous covariates (cells where the absolute value of relative Bias/
RMSE is greater than 30% are grayed out). Scenario A. BS, bootstrap; CD, conditional distribution; CRCL, creatinine clearance; MVND, 
multivariate normal distribution; RMSE, root mean squared error; SCR, serum creatinine; WT, weight
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present analysis primarily because the cutoff values should 
be selected on a case- by- case basis, whereas the present work 
aimed at maximizing the generalizability of the results. In 
terms of categorical covariates, no clear differences among 
the operating characteristics of the three methods stood out; 
poorly represented categories, like “other” and “American 
Indian” for race, were characterized by large rBias and 
rRMSE (Figure 2c).

Because the relationship between some pairs of log- 
transformed covariates deviated significantly from linear-
ity (see for example age~WT correlation in Figure  1b), 
MVND provided more inaccurate and imprecise predic-
tions of the covariance terms compared with BS and CD 
(Figure 3b,c). As expected, BS could reproduce the origi-
nal relationship between covariates regardless of its shape 
(Figure 3a), whereas CD appeared to be more robust than 
MVND to deviations from the linearity assumptions. It 
should be noted that the original data set was character-
ized by a substantial overlap in the covariate distributions 

between HSs and patients (Figure 1); in case relevant dif-
ferences between these distributions are observed, BS and 
MVND should account for that by using stratification and 
mixture modeling, respectively.

In scenario B, the aim was to evaluate the extrapolation 
capabilities of MVND and CD by assessing their predictive 
performance on a test data set composed by subjects older 
than 55 years of age, when the simulations were informed 
by a training data set from younger subjects. Similar 
to scenario A, the results suggested that, in general, CD 
achieved higher accuracy and precision levels than MVND 
for continuous covariates (Figure  4a,b). Although com-
parable performance was observed for the prediction of 
the race categories, the predicted proportion of men and 
women was more biased and imprecise for CD compared 
to MVND. However, a previous study comparing MVND 
and CD approaches for multiple imputations found that 
CD is more accurate than MVND whenever the data in-
clude categorical variables.21 Figure S2 indicates that— in 

F I G U R E  4  Relative Bias and RMSE for summary statistics of continuous (a) and categorical (c) covariates in scenario B (cells where the 
absolute value of relative Bias/RMSE is greater than 30% are grayed out). Relative Bias and RMSE for the variance- covariance matrix of the 
continuous covariates (b) in scenario B (cells where the absolute value of relative Bias/RMSE is greater than 100% are grayed out). There were no 
subjects with “race = other” in the training data set, therefore in subfigure C rBias and rRMSE were computed using the absolute difference instead 
of the relative one for this category. CD, conditional distribution; CRCL, creatinine clearance; MVND, multivariate normal distribution; RMSE, 
root mean squared error; SCR, serum creatinine; WT, weight
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the training data set— women have a generally lower WT 
than men, whereas in the test data set the WT distribution 
in male subjects is shifted toward that of female subjects, 
and the two overlap into a unimodal distribution. It is rea-
sonable to assume that, because WT is a relatively strong 
predictor for sex in the training data set, CD predicted a 
higher proportion of women (and lower proportion of men) 
because the mean WT in the test data set is lower than the 
one in the training data set. Instead, MVND led to better 
performance because the sex proportion is similar between 
the two data sets, although it should be noted that MVND 
can poorly perform when the marginal distributions are 
characterized by strong bimodalities.15

When the HS data were removed from the training data 
set (scenario C), the nonlinearities in the correlation be-
tween age and other covariates were diminished (purple line 
in Figure 1b). As a result, the extrapolation performance of 
MVND improved compared to scenario B and, although 
the CD operating characteristics also did, no large differ-
ences were observed between the two methods in terms of 

continuous covariates (Figure 4a,b). The rBias and rRMSE in 
the sex covariate were still lower for MVND versus CD, yet 
the aforementioned discussion on scenario B concerning the 
different WT distribution between men and women applies to 
scenario C as well (Figure S2).

In general, CD was more robust to departures of the data 
from normality assumptions. The reason seems to lie more 
on the PMM method used to predict the new covariate value 
rather than in the different statistical background between the 
two methods (in MVND the data are modeled as a sample 
from a joint multivariate normal distribution, whereas in CD 
each variable is modeled conditionally on all the others). In 
fact, PMM slightly downweighs the model prediction by pick-
ing up a covariate value in the original data set that is very 
close to the predicted one; nevertheless, it should be noted 
that if strong nonlinear relations exist in the original data set, 
the consequent misspecification in the underlying predictive 
model could result in poor CD performance.22 Tannenbaum 
et al.15 suggest to carry out additional methods prior to cre-
ating the MVND in order to correct for nonlinear relations 

F I G U R E  5  Relative Bias and RMSE for summary statistics of continuous (a) and categorical (c) covariates in scenario C (cells where the 
absolute value of relative Bias/RMSE is greater than 30% are grayed out). Relative Bias and RMSE for the variance- covariance matrix of the 
continuous covariates (b) in scenario C (cells where the absolute value of relative Bias/RMSE is greater than 100% are grayed out). CD, conditional 
distribution; CRCL, creatinine clearance; MVND, multivariate normal distribution; RMSE, root mean squared error; SCR, serum creatinine; WT, 
weight
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between continuous covariates, but this was not performed in 
the present implementation (apart from log- transformation). 
Although this could have improved the MVND results, espe-
cially in terms of the variance- covariance matrix, it is likely 
that CD would have also benefitted from such pretransforma-
tions given that it is still based on linear prediction models. 
Likewise, truncation of MVND simulations to plausible val-
ues might also have positively impacted the MVND operat-
ing characteristics. On the other hand, it can be noticed that 
whereas CD simulates ready- to- use covariates (Supporting 
information S2), MVND can require additional postprocess-
ing of its input as well as output data, which, in turn, requires 
extra efforts and assumptions to be made.

The different results of the MVND between scenarios 
B and C can be attributed primarily to the distribution of 
age in HS, which is approximately uniform between 18 
and 45  years. As shown in Figure  1a, the HS data dis-
tort the overall distribution of age, which is instead well 
approximated by a normal distribution in patients alone. 
Presumably, this is also the reason for the MVND issues 
in reproducing dispersion metrics under scenario A. This 
suggests that study- specific nuisance covariates, such as 
HS versus patients, should be handled carefully before em-
barking in a CTS effort. For example, in order to mimic the 
data generation process, the MVND approach could have 
been applied separately for patients and HSs; however, at-
tention needs to be paid when applying such stratification 
as it may decrease the precision in the means and covari-
ances of the two MVNDs, thereby increasing the uncer-
tainty in the corresponding predictions.

BS was excluded from scenarios B and C because, by defi-
nition, it does not allow to extrapolate outside of the empirical 
distribution. This limitation can be overcome if observational 
data on the target indication are available, for example, from 
routine care databases used to identify patients for enrollment 
in clinical trials. However, whereas for common indications 
like hypertension this might easily be achieved, large patient 
registries for less frequent diseases are often not available.

CD performed with the mice package requires the speci-
fication of some options, such as the number of donors K or 
the type of prediction model to use. All the default options 
were used in this analysis, yet the sensitivity of the results 
to the options choice should be further investigated. An in-
teresting feature of mice that was not explored in the present 
work is that it potentially enables simulation of time- varying 
covariates, which cannot be done with an MVND approach. 
Furthermore, extrapolation to other clinical contexts and gen-
eralizability of the results obtained in this work should be 
further explored.

The simulation of covariates, together with a disease 
and a drug model, represent the minimum working compo-
nents that enable the generation of an in silico response to 
treatment for a group of patients. Thus, besides providing a 

tool for prospective investigations of study design features, 
CTS represents an appealing methodology for the creation 
of synthetic controls in clinical trials. Synthetic controls are 
formally defined as statistical methods that can be used to 
evaluate the comparative effectiveness of an intervention 
using external control data.23 Although synthetic controls 
are usually based on collected real evidence,24 the use of 
predictive statistical models to simulate virtual responses 
to standard- of- care treatments has recently been proposed 
as a way to generate synthetic controls.25 In the case of rare 
diseases and small populations in general (e.g., pediatrics), 
where the use of control groups is often hampered by feasibil-
ity and ethical hurdles, simulated synthetic controls represent 
a promising alternative, as also indicated by their increased 
regulatory acceptance.26

To conclude, the present analysis revealed that if 
CTS is used to simulate within the range of the observed 
distribution— for example, when studies in the target popu-
lation are already available from other sources— BS can be 
considered as the preferred method for covariate simulation, 
particularly because it is able to guarantee the physiological 
plausibility of the simulated covariates. On the other hand, if 
the CTS objectives involve extrapolation to new populations, 
a parametric method like CD or MVND is needed. In case 
the empirical multivariate distribution used to inform the 
extrapolation is characterized by linearly related covariates 
and unimodal marginal distributions, CD and MVND have 
comparable performance, and the use of MVND may be fa-
vored in light of its simpler statistical framework and well- 
established use. However, if uncertainty about the MVND 
hypotheses exists, CD allows to partly relax these hypothe-
ses, thereby increasing the confidence in the simulation out-
comes compared to MVND.
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