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The amygdala has emerged as a key player in the emotional response to pain and pain
modulation. The lateral and capsular regions of the central nucleus of the amygdala
(CeA) represent the “nociceptive amygdala” due to their high content of neurons that
process pain-related information. These CeA divisions are the targets of the spino-
parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin
gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular
CeA neurons have previously been observed in pain models, and synaptic plasticity in
these areas has been linked to pain-related behavior. CGRP has been demonstrated
to play an important role in peripheral and spinal mechanisms, and in pain-related
amygdala plasticity in male rats in an acute arthritis pain model. However, the role of
CGRP in chronic neuropathic pain-related amygdala function and behaviors remains
to be determined for both male and female rats. Here we tested the hypothesis that
the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that
blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP
mRNA expression levels in the CeA of male rats were upregulated at the acute stage
of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had
significantly higher CGRP and CGRP receptor component expression at the chronic
stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic
neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression
tests) in both sexes but showed female-predominant effects on emotional-affective
responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP
8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in
brain slices from chronic neuropathic pain rats. Together, these findings may suggest
that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala
activity and contribute to sensory aspects in both sexes but to emotional-affective pain
responses predominantly in females. The sexually dimorphic function of CGRP in the
amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic
pain relief, particularly in females in chronic pain conditions.
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INTRODUCTION

Interactions between sensory, emotional-affective, and cognitive
dimensions comprise the highly complex, intense pain
experience. The intricate interplay of each of these pain
components presents a challenge to identifying effective
therapeutic strategies for chronic pain relief, as many therapeutic
options are associated with variable efficacy and undesirable
side effects (Attal, 2019; Bates et al., 2019). One barrier to
the discovery of effective treatment options is the lack of full
understanding of mechanisms and targets that are involved in
a chronic pain state, particularly with regard to potential sex
differences. It is estimated that chronic pain impacts 20% of the
global population each year (Breivik et al., 2013; Fayaz et al.,
2016; Dahlhamer et al., 2018), with females greatly outnumbering
males as chronic pain patients (Ruau et al., 2012). However,
many currently available analgesics have limited effectiveness
in female patients due to the targeting of male-specific pain
processing mechanisms (Mogil, 2020; Shansky and Murphy,
2021). Therefore, there is an urgent need to identify sex-specific
targets that can lead to the development of improved therapeutic
options for pain treatment in male and female patients.

The amygdala is a limbic brain structure that has been
revealed to play a critical role in the emotional-affective
dimension of pain and pain modulation (Veinante et al.,
2013; Neugebauer, 2015, 2020; Neugebauer et al., 2020).
The amygdala attaches emotional significance to sensory
information from various pain states (Neugebauer et al.,
2004; Thompson and Neugebauer, 2017) and connects to
descending pain modulatory system structures and other
nervous system structures involved in behavioral, emotional,
and cognitive functions (Becker and Carrasquillo, 2019; Hua
et al., 2020; Liu et al., 2021; Weera et al., 2021). The
amygdala is comprised of functionally and anatomically distinct
nuclei. The central nucleus of the amygdala (CeA) serves
as the primary amygdala output center, and its lateral and
capsular divisions receive nociceptive information through
the spino-parabrachio-amygdaloid pain pathway (Gauriau and
Bernard, 2002; Thompson and Neugebauer, 2017; Kato et al.,
2018; Neugebauer, 2020). As neurons in the lateral and
capsular regions predominately respond to noxious stimuli
(Bernard et al., 1992; Neugebauer and Weidong, 2002), these
divisions are often said to comprise the ‘‘nociceptive amygdala’’
(Neugebauer et al., 2004).

Calcitonin gene-related peptide (CGRP) is a 37 amino acid
peptide that binds to the G-protein-coupled CGRP1 receptor
to activate adenylyl cyclase and protein kinase A (PKA; Russo,
2015). The CGRP1 receptor is composed of three predominant
subunits: the seven-transmembrane calcitonin-like receptor
(CLR) protein; a receptor activity modifying protein (Ramp1),
which is critical for the specificity of CGRP binding and cell
surface receptor expression; and the CGRP receptor component
protein (RCP), which facilitates coupling to cAMP signaling
(Poyner et al., 2002; Barwell et al., 2013; Dickerson, 2013;
Russo, 2015; Iyengar et al., 2017; Neugebauer et al., 2020).
In the amygdala, CGRP serves as an important molecular
marker of the lateral and capsular regions of the CeA due to

the CGRP-immunoreactive terminals of fibers from the lateral
parabrachial nucleus that synapse in these areas (Kruger et al.,
1988; Shimada et al., 1989; Dobolyi et al., 2005; D’Hanis et al.,
2007; Palmiter, 2018). CGRP modulates synaptic input from the
parabrachial nucleus to the CeA (Han et al., 2005, 2015; Okutsu
et al., 2017; Shinohara et al., 2017) and plays a critical role in
synaptic plasticity in the CeA in an arthritis pain model (Han
et al., 2005). CeA cell types targeted by CGRP input from the
parabrachial area include neurons expressing protein kinase C
delta or corticotropin releasing factor (CRF; Neugebauer et al.,
2020). We have previously shown that the administration of
a selective CGRP1 receptor antagonist (CGRP 8-37) into the
CeA can inhibit pain behaviors in an acute arthritis model (Han
et al., 2005), suggesting that CGRP-mediated mechanisms may
influence pain-related amygdala function. However, the role of
CGRP in CeA pain mechanisms and sex differences in a chronic
neuropathic pain state remains to be determined.

The purpose of this study was to examine the role of CGRP
in neuropathic pain-related CeA function and behaviors with
regard to sex and stage of neuropathic pain development.
We characterized mRNA expression profiles of CGRP and
CGRP1 receptor components in adult male and female rats at the
acute and chronic phases of the rat spinal nerve ligation (SNL)
model of neuropathic pain. We also subjected adult male and
female neuropathic rats to behavioral tests before and after the
blockade of the CGRP1 receptor in the CeA, andwe examined the
effects of this blockade on CeA-CRF neuronal cell activity. Our
previous work implicated CeA-CRF neurons in pain modulation
(Mazzitelli et al., 2021, 2022). Our findings point to a previously
unexplored, sexually dimorphic role of CGRP in neuropathic
pain-related processing within the CeA.

MATERIALS AND METHODS

Animals
Adultmale and female Sprague-Dawley rats (150–300 g, 12 weeks
of age at time of testing) were group-housed in a temperature-
controlled room under a 12 h day/night cycle with unrestricted
access to food and water. On each experimental day, rats were
transferred from the animal facility and allowed to acclimate to
the laboratory for at least 1 h prior to testing. All experimental
procedures were approved by the Institutional Animal Care
and Use Committee (IACUC, protocol #14006) of Texas Tech
University Health Sciences Center (TTUHSC) and conformed to
the guidelines of the International Association for the Study of
Pain (IASP) and of the National Institutes of Health (NIH).

Experimental Protocol
mRNA expression levels of CGRP and two of the
CGRP1 receptor components, CLR and Ramp1, were measured
(see Section ‘‘qRT-PCR’’) in the right CeA of rats in the
acute and chronic phases of neuropathic pain (see Section
‘‘Neuropathic Pain Model’’). The effects of the selective
CGRP1 receptor peptide antagonist (CGRP 8-37) compared
to artificial cerebrospinal fluid (ACSF) vehicle control were
tested in chronic neuropathic rats in behavioral (see Section
‘‘Behaviors’’) and multiphoton calcium imaging (see Section
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‘‘Calcium Imaging’’) experiments. For behavioral experiments,
a guide cannula was implanted (see Section ‘‘Drug Application
in Awake Animals’’) 1 week before stereotaxic drug application
into the CeA by microdialysis. Behavioral assays were performed
at 20 min during continued drug (or vehicle) administration. For
calcium imaging experiments, CGRP 8-37 or ACSF was applied
directly to the brain slice via gravity-driven superfusion. The
right CeA was targeted in all molecular, behavioral, and calcium
imaging experiments, as evidence suggests right-hemispheric
lateralization of pain processing and modulation (Carrasquillo
and Gereau IV, 2008; Ji and Neugebauer, 2009; Gonçalves and
Dickenson, 2012; Simons et al., 2014; Nation et al., 2018; Phelps
et al., 2019; Allen et al., 2021).

Neuropathic Pain Model
The well-established spinal nerve ligation (SNL) model of
neuropathic pain (Ho Kim and Mo Chung, 1992) was used
to create a stable and long-lasting peripheral neuropathy.
Rats were anesthetized with isoflurane (2%–3%; precision
vaporizer, Harvard Apparatus, Holliston, MA, USA) and
underwent surgery in which the left L5 spinal nerve was
exposed and tightly ligated using 6–0 sterile silk. In the
sham-operated control group, the spinal nerve was exposed but
not ligated.

qRT-PCR
At either the acute phase (1 week post-SNL) or chronic
phase (4 weeks post-SNL) of neuropathic pain (see Section
‘‘Neuropathic Pain Model’’), rats were euthanized by
decapitation. Brains were rapidly extracted and oxygenated
in ice-cold sucrose-based physiological solution (87 NaCl,
75 sucrose, 25 glucose, 5 KCl, 21 MgCl2, 0.5 CaCl2, and
1.25 NaH2PO4). Coronal brain slices (1,000 µm) containing
the CeA were prepared using a Vibratome (VT1200S, Leica
Biosystems, Nussloch, Germany) as described previously
(Thompson et al., 2018; Navratilova et al., 2019; Hein
et al., 2021; Mazzitelli et al., 2021). The right CeA was
dissected from freshly harvested slices for mRNA analysis.
RNA was extracted using the MagMAX-96 Total RNA
Isolation Kit (Life Technologies, Carlsbad, CA, USA)
and quantified on a NanoDrop 8000 spectrophotometer
(Thermo Fisher Scientific, Rockford, IL, USA). Total RNA
was reverse transcribed using the High-Capacity cDNA
Reverse Transcription Kit with RNase Inhibitor (Thermo
Fisher Scientific), and then Taqman Fast Advanced Master
Mix (Thermo Fisher Scientific) was used to perform
quantitative reverse transcription polymerase chain reactions
(qRT-PCR). Applied Biosystems Taqman Gene Expression
Assays included (CGRP; Calca; Rn01511353_g1), CLR (Calcrl;
Rn00562334_m1), Ramp1 (Ramp1; Rn01427056_m1), β-actin
(Actb; Rn00667869_m1), Rpl3 (Rpl3; Rn01505100_g1), and
Rpl29 (Rpl29; Rn00820801_g1). Reactions containing 5 ng
of cDNA were performed in triplicate using the CFX384
Real-Time System (BioRad, Hercules, CA, USA). Relative
expression was determined using the 2−∆∆Ct method with
samples normalized to the geometric mean of β-actin, Rpl3, and
Rpl29, as this normalization strategy utilized the three genes

with the most stable expression in a rat neuropathic pain model
(Wan et al., 2010).

Drug Application in Awake Animals
Stereotaxic drug administration into the CeA by microdialysis
was performed 4 weeks after SNL surgery as described before
(Kiritoshi et al., 2016; Kim et al., 2017; Thompson et al.,
2018; Mazzitelli and Neugebauer, 2019; Hein et al., 2021).
Rats were anesthetized with isoflurane (2%–3%; precision
vaporizer, Harvard Apparatus) and a small unilateral
craniotomy was performed. Using a stereotaxic apparatus
(David Kopf Instruments, Tujunga, CA, USA), a guide cannula
(CMA/Microdialysis, Solna, Sweden) was inserted into the CeA
using the following coordinates (Paxinos and Watson, 1998):
2.5 mm caudal to the bregma, 4.0 mm lateral to the midline,
and 7.5 mm deep. The cannula was fixed to the skull using
dental acrylic (Plastic One, Roanoke, VA, USA), and local
anesthetic (Lidocaine) and antibiotic ointment (Bacitracin) were
applied to reduce inflammation and prevent infection. Rats
were allowed to recover from cannula implantation for 1 week
prior to experimental testing. On the day of the experiment, a
microdialysis probe (CMA/Microdialysis 12) protruding 1 mm
from the guide cannula was inserted and connected to an
infusion pump (Harvard Apparatus) with polyethylene tubing.
A selective CGRP1 receptor antagonist (CGRP 8-37; TOCRIS,
Minneapolis, MN, USA) was diluted in ACSF (in mM: 117 NaCl,
4.7 KCl, 1.2 NaH2PO4, 2.5 CaCl2, 1.2 MgCl2, 25 NaHCO3,
and 11 glucose) to the final concentration (100 µM), which
is 100-fold greater than the target concentration in the tissue
to account for the concentration gradient across the dialysis
membrane and diffusion in brain tissue. CGRP 8-37 (100 µM)
or ACSF was administered at 5 µl/min for at least 20 min prior
to behavioral testing to establish equilibrium in the tissue.

Behaviors
Mechanosensitivity
Mechanical withdrawal thresholds were measured using a
plantar electronic von Frey anesthesiometer (IITC Life Sciences,
Woodland Hills, CA, USA) with the tip applied perpendicularly
to the base of the 3rd toe of the left hind paw as described
before (Mazzitelli et al., 2022). The tip was applied with
increasing force until a flexion reflex was provoked, which
was automatically recorded as the paw withdrawal threshold
(in grams). Three measurements were recorded and averaged.
As the least invasive test, this was always performed prior
to any other behavioral assay. Mechanosensitivity was also
measured using a paw compression test on the affected hindlimb
in the recording system that was also used for vocalization
measurements. For that, rats were briefly anesthetized with
isoflurane (2%–3%; precision vaporizer, Harvard Apparatus)
and placed slightly restrained in a customized holding chamber
that allowed hindlimb access (U.S. Patent 7,213,538). Hindlimb
withdrawal thresholds weremeasured after 30min of habituation
to the holding chamber by using a calibrated forceps with a
force transducer (see Section ‘‘Emotional-Affective Responses’’)
to compress the left hindpaw with gradually increasing intensity
until a reflex response was evoked, as described in our previous
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studies (Hein et al., 2021; Presto et al., 2021). The withdrawal
threshold, defined as the force required to evoke a reflex
response, was calculated using the average value from three trials.
The combination of mechanosensitivity tests was used to address
both the static (von Frey test; mediated by sensitized peripheral
nociceptors) and dynamic (paw compression test; mediated by
primary afferent inputs from deep tissue into the central nervous
system) components of mechanical hyperalgesia (Koltzenburg
et al., 1992; Ochoa and Yarnitsky, 1993; La and Chung, 2017).

Emotional-Affective Responses
Emotional-affective responses were assessed by measuring
vocalizations in the ultrasonic (25 ± 4 kHz) range, as
described in our previous studies (Ji et al., 2018; Mazzitelli
and Neugebauer, 2019; Hein et al., 2021; Mazzitelli et al.,
2021; Presto et al., 2021). Rats were briefly anesthetized with
isoflurane (2%–3%; precision vaporizer, Harvard Apparatus)
and placed in the custom-designed recording chamber for
stable recordings of vocalizations evoked by noxious stimulation.
After the rat recovered from anesthesia and was habituated to
the recording chamber for 30 min, the hindlimb withdrawal
thresholds were evaluated in the paw pressure test (see Section
‘‘Mechanosensitivity’’) before the calibrated forceps with a force
transducer was used for vocalization assays. Vocalizations were
evoked by a brief (10 s) noxious (500 g/6 mm2) stimulus applied
to the left hind paw. These vocalizations were automatically
detected for 1 min using a full-spectrum USB microphone (max
sampling rate: 384 kHz), and the ultrasonic component of the
vocalizations following the onset of the mechanical stimulus
was analyzed using UltraVox 3.2 software (Noldus Information
Technology, Leesburg, VA, USA). At the conclusion of each
experiment, the durations (in ms) of each individual ultrasonic
call were summed for each 1-min recording period to give the
total duration of ultrasonic vocalizations for each rat.

Anxiety-Like Behavior
The open field test (OFT) was used to measure exploratory
behavior in the peripheral and central zones of an open arena
(70 cm × 70 cm) with acrylic walls (height, 45 cm). Rat
movements were recorded for 15 min using a computerized
video tracking and analysis system (EthoVision XT 11 software,
Noldus Information Technology) as described previously (Ji
et al., 2018; Hein et al., 2021; Presto et al., 2021). Time spent
in the center of the arena was calculated during the first 5 min
of each experimental trial. Avoidance of the center of the arena
is interpreted as anxiety-like behavior (Prut and Belzung, 2003;
Seibenhener and Wooten, 2015).

Calcium Imaging
Rats were anesthetized with isoflurane (2%–3%; precision
vaporizer, Harvard Apparatus) and a stereotaxic frame (David
Kopf Instruments) was used to inject AAV5-Syn-Flex-GCaMP7 s
into the right CeA 5–6 weeks before brain slices were obtained
to allow viral vector-mediated expression of a fluorescent
calcium sensor. SNL surgery was performed 4 weeks before
brain slices were obtained (chronic neuropathic pain stage).
On the day of the experiment, coronal brain slices (400 µm)
were quickly removed and immersed in oxygenated ACSF at

35◦C for at least 1 h before being transferred to the recording
chamber and superfused with ACSF (∼2 ml/min) as described
previously (Hein et al., 2021). One or two brain slices per
animal were used. A multiphoton system (Intelligent Imaging
Innovations, Inc., 3i, Denver, CO, USA) equipped with a
VIVOTM2-Photon 200 Microscopy Workstation was utilized
to record calcium transients evoked in CeA-CRF neurons by
electrical stimulation (1.5 mA, 0.6 ms) of the dorsomedial fiber
tract containing presumed axons from the parabrachial area
(Neugebauer et al., 2003; Ikeda et al., 2007). CeA-CRF neurons
receive CGRP input from the parabrachial nucleus (Neugebauer
et al., 2020) and modulate pain behaviors (Mazzitelli et al.,
2021, 2022). The 2-photon excitation light was generated by
a mode-locked Ti: Sapphire laser (920 nm; model Mai-Tai
DeepSee, Spectra-Physics, Santa Clara, CA, USA). A 20×/1.0 NA
water-immersion lens (Zeiss, Germany) was used for neuronal
cluster imaging. Images were acquired at a rate of 0.85 frames/s
with a resolution of 512 × 512 pixels, which corresponded
to an image plane of 350 × 350 µm. The CeA-CRF neurons
that responded to electrical stimulus were selected for further
analysis. Fluorescent activity and background (∆F/F0) were
analyzed using SlideBook 6 (3i, Denver, CO, USA). CeA-CRF
neuronal responses were recorded 10 min before and 20 min
during CGRP 8-37 application (1µM), followed by washout with
ACSF for 40 min. Neuronal responses could also be blocked
by the application of an AMPA/kainate receptor antagonist (6-
cyano-7-nitroquinoxaline-2,3-dione, CNQX; 20 µM dissolved
in ACSF), consistent with a glutamatergic synaptic drive onto
CeA-CRF neurons.

Statistical Analysis
Statistical significance was accepted at the level P < 0.05. All
averaged values are presented as means ± SEM. GraphPad
Prism 9.0 software (Graph-Pad Software, San Diego, CA, USA)
was used for all statistical analyses. For qRT-PCR experiments,
two-way ANOVA with Tukey post-hoc tests were used for
multiple comparisons since sample sizes for each group were
equal. For behavioral experiments, two-way ANOVA (repeated
measures if appropriate) with Bonferroni post-hoc tests was used
for multiple comparisons. As behavioral experiments consisted
of groups with unequal sample sizes, Bonferroni post-hoc tests
were used due to the effect of unequal sample sizes on Tukey’s
post-hoc method (Smith, 1971; Shingala and Rajyaguru, 2015).
For calcium imaging experiments, paired t-tests were used
for the comparison of calcium transients data sets before
and during drug application, which had Gaussian distribution
and similar variance as indicated. Repeated measures one-way
ANOVA with Dunnett post-hoc tests were used for time course
analysis of calcium transients compared to predrug ACSF vehicle
administration at 10 min, as the Dunnett post-hoc method is
used to test multiple experimental groups against a single control
group (Dunnett, 1955; McHugh, 2011).

RESULTS

Previous anatomical data have demonstrated that CGRP is an
important molecular marker of the CeLCand the parabrachial
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nucleus is the exclusive source of CGRP to the CeA (Schwaber
et al., 1988; Honkaniemi et al., 1990; Dobolyi et al., 2005; Lu
et al., 2015; Chen et al., 2018; Huang et al., 2021). We have
previously shown that CGRP in the amygdala can exacerbate
nocifensive and behavioral responses in normal rats (Han
et al., 2010), and selective CGRP1 receptor antagonists can
reverse pain-related plasticity in male rats in an arthritis pain
model (Han et al., 2005). In this study, we investigated the
role of CGRP in neuropathic pain-related amygdala function
and behaviors in both sexes. We tested the hypothesis that
the CGRP1 receptor is involved in neuropathic pain-related
amygdala activity, and that blockade of this receptor in the
amygdala could inhibit neuropathic pain behaviors in male and
female rats.

Expression Levels of CGRP and
CGRP1 Receptor Components in the CeA
in Neuropathic Pain
We first examined mRNA expression levels of CGRP in the
right CeA at the 1-week acute stage and 4-week chronic stage of
the SNL model of neuropathic pain (see Section ‘‘Neuropathic
Pain Model’’). We found that SNL significantly increased CGRP
mRNA expression in the CeA of male rats (n = 6) compared to
sham (n = 6) at the acute phase (P < 0.05, F3,20 = 5.608, two-way
ANOVAwith Tukey post-hoc tests; Figure 1A), but no significant
differences in CGRP expression levels were seen between female
SNL (n = 6) and female sham (n = 6) rats at this stage. In
fact, female SNL rats had significantly lower CGRP expression
than male SNL rats at the acute phase (P < 0.05, F3,20 = 7.127,
two-way ANOVA with Tukey post-hoc tests; Figure 1A). We
also examined mRNA expression levels in the CeA of two
CGRP1 receptor components, CLR and Ramp1 (McLatchie
et al., 1998; Dickerson, 2013; Edvinsson and Warfvinge, 2013;
Edvinsson et al., 2020). No significant differences in CLR or
Ramp1 expression were found in the SNL model at the acute
phase for males or females.

Interestingly, the opposite pattern of CGRP mRNA
expression was seen at the chronic 4-week stage of neuropathic
pain. Female SNL rats (n = 6) had significantly upregulated
CGRP expression in the CeA compared to sham (n = 6; P < 0.05,
F3,20 = 9.053, two-way ANOVA with Tukey post-hoc tests;
Figure 1B), while there were no significant differences in
CGRP expression levels between male SNL (n = 6) and male
sham (n = 6) rats. CGRP mRNA expression was significantly
higher in female SNL rats than male SNL rats at the chronic
phase (P < 0.01, F3,20 = 6.779, two-way ANOVA with Tukey
post-hoc tests; Figure 1B). For both CGRP receptor components,
female SNL rats also had significantly upregulated mRNA
expression in the CeA compared to that of female sham rats
(CLR: P < 0.05, F3,20 = 11.24, two-way ANOVA with Tukey
post-hoc tests; Ramp1: P < 0.05, F3,20 = 11.59, two-way ANOVA
with Tukey post-hoc tests; Figure 1B) as well as significantly
higher expression compared to male SNL rats (CLR: P < 0.01,
F3,20 = 7.259, two-way ANOVA with Tukey post-hoc tests;
Ramp1: P < 0.01, F3,20 = 7.681; Figure 1B). There were no
significant differences in expression levels of either CLR or

Ramp1 between male SNL and male sham rats during the
chronic phase.

Effects of CGRP1 Receptor Blockade in
the CeA on Chronic Neuropathic Pain
Behaviors
To investigate the role of CGRP in the CeA in chronic
neuropathic pain-related behavior, we administered a
selective CGRP1 receptor antagonist (CGRP 8-37, 100 µM
in microdialysis probe) into the CeA of male and female rats
4 weeks after SNL surgery (see Section ‘‘Drug Application in
Awake Animals’’). The concentration of CGRP 8-37 in the
microdialysis probe was 100-fold higher than the intended target
concentration in the brain tissue to account for the concentration
gradient across the dialysis membrane and diffusion in the brain
tissue (Mazzitelli and Neugebauer, 2019; Hein et al., 2021).

We first examined mechanical sensitivity using an electronic
von Frey anesthesiometer (see Section ‘‘Mechanosensitivity’’).
CGRP 8-37 administration significantly increased the hindlimb
withdrawal thresholds in both male (n = 12, P < 0.001) and
female (n = 24, P < 0.0001) SNL rats compared to ACSF
vehicle (see Figure 2A). There was a significant effect of
CGRP1 receptor blockade (P < 0.0001, F1,29 = 58.56) but
not sex (P = 0.5587, F1,29 = 0.3500) in the Von Frey test.
Similarly, CGRP 8-37 administration into the CeA significantly
decreased mechanical sensitivity in the paw compression test
(reflex response evoked by gradually increasing the intensity of
left hindpaw compression with a calibrated forceps, see Section
‘‘Mechanosensitivity’’) in both male (P < 0.01) and female
(P< 0.0001) SNL rats compared to ACSF vehicle (see Figure 2B).
There was a significant effect of CGRP1 receptor blockade
(P< 0.0001, F1,29 = 49.63) but not sex (P = 0.6238, F1,29 = 0.2459)
on withdrawal thresholds using the paw compression test. For
the statistical analyses of mechanical withdrawal thresholds in
both the von Frey and paw compression tests, repeated measures
two-way ANOVA with Bonferroni post-hoc tests was used (see
Section ‘‘Statistical Analysis’’).

We then examined emotional responses by measuring
ultrasonic vocalizations in response to a noxious stimulus on
the left hindpaw (see Section ‘‘Emotional-Affective Responses’’).
CGRP 8-37 administration significantly decreased the total
duration of ultrasonic vocalizations in female SNL rats (n = 24,
P < 0.0001, F3, 29 = 8.226; see Figure 2C), but not in male
SNL rats (n = 12) compared to ACSF vehicle. For the statistical
analysis of ultrasonic vocalization durations in males and
females, repeated-measures two-way ANOVA with Bonferroni
post-hoc tests was used (see Section ‘‘Statistical Analysis’’).

Finally, we examined anxiety-like behaviors by measuring the
time spent in the center zone of the OFT (see Section ‘‘Anxiety-
Like Behavior’’). Female SNL rats that received CGRP 8-37 in
the CeA (n = 24) spent significantly more time in the center
of the OFT compared to female SNL rats that received ACSF
vehicle (n = 24, P < 0.01, F3,65 = 6.369; Figure 2D). In contrast,
CGRP 8-37 administration into CeA had no significant effect
in male SNL rats (n = 12) compared to ACSF vehicle (n = 12).
Importantly, no significant differences in locomotor activity were
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FIGURE 1 | mRNA expression levels of CGRP and CGRP1 receptor components in the spinal nerve ligation (SNL) model of neuropathic pain. At both the acute
(1 week) (A) and chronic (4 week) (B) phases of the SNL model, brains were extracted and the CeA dissected out for mRNA analysis. qRT-PCR analysis of mRNA
expression levels for CGRP and two CGRP1 receptor components (calcitonin receptor-like receptor, CLR; receptor activity-modifying protein 1, Ramp1) was
performed on CeA tissue at both time points. Data were normalized to the male sham group in both the acute and chronic phases. (A) CGRP mRNA expression in
the acute phase was upregulated only in male SNL rats (n = 6). Female SNL rats (n = 6) had significantly lower CGRP expression than male SNL rats. No significant
changes of CGRP1 receptor component expression were found. (B) CGRP mRNA expression in the chronic phase was significantly upregulated in female (n = 6) but
not male (n = 6) SNL rats. CLR and Ramp1 receptor components were also upregulated only in female SNL rats. Gene expression fold change was calculated using
the delta-delta Ct method, geometric mean of β-actin, Rpl3, and Rpl29 used as internal marker. Two-way ANOVA with Tukey post-hoc tests was used as sample
sizes were equal for each group (see Section “Statistical Analysis”). Bar histograms show mean ± SEM. *P < 0.05, compared to male sham; +, ++ P < 0.05,
0.01 compared to male SNL. See “Results” (“Expression Levels of CGRP and CGRP1 Receptor Components in the CeA in Neuropathic Pain”) Section for details of
the statistical analysis.

observed between the ACSF-treated group and the CGRP 8-37-
treated group (male, P > 0.9999; female, P = 0.9878), indicating
that the differences in anxiety-like behavior were not due to
an increase in spontaneous activity. For the statistical analysis
of center duration in the OFT for males and females, two-way
ANOVA with Bonferroni post-hoc tests was used (see Section
‘‘Statistical Analysis’’).

Effects of CGRP1 Receptor Blockade in
the CeA on CeA-CRF Neuronal Activity in
Chronic Neuropathic Pain
To determine the neuronal effects of CGRP 8-37 in the
amygdala as a potential basis of the inhibitory behavioral effects
described in Section ‘‘Effects of CGRP1 Receptor Blockade in
the CeA on Chronic Neuropathic Pain Behaviors’’, we measured
synaptically-evoked calcium signals in CeA-CRF neurons, which
receive CGRP input from the parabrachial area and can
modulate pain (Neugebauer et al., 2020; Mazzitelli et al., 2021,

2022), before and after drug application (Figure 3). Calcium
transients were evoked in CRF neurons expressing a fluorescent
calcium indicator (GCaMP7s) by electrical stimulation (1.5 mA,
0.6 ms) of presumed parabrachial afferents (see Section
‘‘Calcium Imaging’’). Evoking CeA neuronal activity through the
stimulation of parabrachial afferents has been a well-documented
technique in previous studies from our group (Neugebauer et al.,
2003; Fu and Neugebauer, 2008; Han et al., 2010; Ren et al.,
2013; Thompson et al., 2018; Hein et al., 2021) and others (Ikeda
et al., 2007; Watabe et al., 2013; Miyazawa et al., 2018; Yamamoto
et al., 2021). The organization of parabrachial afferents to the
amygdala has been well-characterized, with parabrachial fiber
tracts shown to run dorsomedial to the CeA and ventral to
but outside of the caudate-putamen area (Sarhan et al., 2005).
The parabrachial afferent pathway to the CeA can be activated
either by electrical (Neugebauer et al., 2003; Ikeda et al., 2007;
Hein et al., 2021) or optogenetic (Sugimura et al., 2016; Hein
et al., 2021) stimulation. Here neurons were visualized and
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FIGURE 2 | Effects of CGRP1 receptor blockade in the CeA on chronic neuropathic pain behaviors. Pain-related behavioral assays were performed 4 weeks after
SNL surgery. Mechanical withdrawal thresholds were measured by electronic von Frey (A) and paw compression (B) tests. CGRP 8-37 (100 µM in microdialysis
probe) administration into the CeA significantly increased withdrawal thresholds in both male (n = 12) and female (n = 24) SNL rats. **, ***, ****P < 0.01, 0.001,
0.0001, repeated measures ANOVA with Bonferroni post-hoc tests, compared to predrug ACSF vehicle. (C) Duration of ultrasonic vocalizations evoked by brief
(10 s) noxious (500 g /6 mm2) mechanical compression of the affected hindpaw. CGRP 8-37 administration into CeA significantly decreased ultrasonic vocalizations
in female (n = 24) but not male (n = 12) SNL rats compared to predrug ACSF vehicle. ****P < 0.0001, repeated measures ANOVA with Bonferroni post-hoc tests. (D)
CGRP 8-37 administration into CeA significantly decreased anxiety-like behaviors in female (n = 24) but not male (n = 12) SNL rats as measured by increased
duration (s) of time spent in the center of the open field test (OFT). **P < 0.01, ANOVA with Bonferroni post-hoc tests. Bonferroni post-hoc tests were used as
sample sizes were unequal for each group (see Section “Statistical Analysis”). Bar histograms show mean ± SEM.

signals were recorded following electrical stimulation using a
multiphoton imaging system. Neurons that showed an increase
in calcium signals in response to electrical stimulation were
selected for further analysis. CGRP 8-37 (1 µM, 20 min)
significantly decreased calcium transients in CeA-CRF neurons
(n = 18 neurons from four rats; P< 0.001, paired t-test, compared
to predrug ACSF vehicle; Figure 3C). Time course analysis
revealed a significant effect of CGRP 8-37 treatment on calcium
signals from CeA-CRF neurons (P < 0.0001, F15,150 = 15.60,
one-way ANOVA with repeated measures and Dunnett post-hoc
test; see Section ‘‘Statistical Analysis’’; Figure 3D).

DISCUSSION

This study explored the role of CGRP in sensory and affective
pain-related behaviors as well as in pain-related amygdala
function in male and female rats in a neuropathic pain model.

We previously showed that selective CGRP1 receptor antagonists
(CGRP 8-37 and BIBN4096BS) can inhibit CeA neuronal
excitability in vitro and can reduce withdrawal reflexes and
vocalizations in awake male animals in an acute arthritis pain
model (Han et al., 2005). However, it is unclear if these findings
extend to a chronic pain condition and whether this inhibition
elicits similar behavioral responses in the female sex. The key
novelties in this study are the sex-specific characterizations of
CGRP and CGRP1 receptor component expression levels in the
CeA at both acute and chronic stages of neuropathic pain, the
differential behavioral modulation by CGRP1 signaling in the
CeA between males and females at the chronic stage, and the
effects of CGRP1 receptor blockade on CeA-CRF neurons in
chronic neuropathic pain.

Abundant preclinical (Neugebauer et al., 2009; Veinante et al.,
2013; Neugebauer, 2015, 2020; Thompson and Neugebauer,
2017; Allen et al., 2021) and clinical (Baliki et al., 2006, 2008;
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FIGURE 3 | CGRP1 receptor blockade inhibits calcium transients in CeA-CRF neurons in chronic neuropathic pain. In vitro calcium imaging of CeA-CRF neurons in
brain slices from chronic SNL rats was performed using a multiphoton imaging system (see Section “Calcium Imaging”). (A,B) Images show calcium transients in
CeA-CRF neurons expressing a fluorescent calcium indicator (GCaMP7s) in response to electrical stimulation (1.5 mA, 0.6 ms) of presumed parabrachial afferents.
Solid white circles (A) indicate neurons showing synaptically evoked fluorescence in the presence of ACSF vehicle; dashed white circles (B) indicate the same
neurons after application of CGRP 8-37 (1 µM, 20 min). Scale bars represent 10 µM. (C) CGRP 8-37 decreased calcium transients in CeA-CRF neurons
(n = 18 neurons from four rats) expressing GCaMP7s. ***P < 0.001, paired t-test, compared to predrug ACSF vehicle. (D) Time course analysis of calcium signals
from CeA-CRF neurons during application of ACSF, CGRP 8-37, washout in ACSF, and CNQX (20 µM). *, **, ***, ****P < 0.05, 0.01, 0.001, 0.0001, repeated
measures ANOVA with Dunnett post-hoc tests, compared to predrug ACSF vehicle at 10 min (see Section “Statistical Analysis”). Bar histograms show mean ± SEM.

Geha et al., 2007; Kulkarni et al., 2007; Liu et al., 2010;
Vachon-Presseau et al., 2012, 2016; Simons et al., 2014)
evidence has linked the amygdala to the emotional-affective
aspects of pain and pain modulation. The lateral and
capsular regions of the CeAconstitute the ‘‘nociceptive

amygdala’’ due to the high content of neurons encoding
nociceptive information and modulating pain-related behaviors
(Neugebauer et al., 2004, 2020; Neugebauer, 2015). Changes in
the activity of these neurons have been demonstrated inacute
inflammatory pain (Adedoyin et al., 2010; Sugimura et al., 2016;
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Shinohara et al., 2017; Miyazawa et al., 2018), in colitis (Han
and Neugebauer, 2004), in muscle pain (Cheng et al., 2011), in
neuropathic pain (Ikeda et al., 2007; Gonçalves and Dickenson,
2012; Nakao et al., 2012; Ji et al., 2017), and in arthritis pain
models (Neugebauer and Li, 2003; Bird et al., 2005; Han et al.,
2005; Li and Neugebauer, 2006; Ji and Neugebauer, 2007, 2009;
Fu and Neugebauer, 2008; Fu et al., 2008; Ji et al., 2009; Ren and
Neugebauer, 2010; Ren et al., 2011, 2013). Decreasing amygdala
activity has been shown to inhibit pain-related behavior in
arthritic (Han and Neugebauer, 2005; Ji et al., 2007, 2010; Fu and
Neugebauer, 2008; Palazzo et al., 2008; Ji and Neugebauer, 2009;
Grégoire and Neugebauer, 2013; Ren et al., 2013; Medina et al.,
2014; Thompson et al., 2015; Kim et al., 2017; Mazzitelli and
Neugebauer, 2019; Mazzitelli et al., 2021), acute inflammatory
(Kolber et al., 2010; Palazzo et al., 2011; Sugimoto et al., 2021),
visceral (Crock et al., 2012), widespread nociplastic (Yajima
et al., 2022), and neuropathic (Pedersen et al., 2007; Ansah et al.,
2010; Jiang et al., 2014; Ji et al., 2017; Seno et al., 2018; Wilson
et al., 2019; Mazzitelli et al., 2022) pain models.

The lateral and capsular divisions of the CeA are the targets of
nociceptive input from the spino-parabrachio-amygdaloid pain
pathway (Gauriau and Bernard, 2002), where neurons from
the lateral pontine parabrachial area provide the main if not
exclusive source of CGRP within the amygdale (Dobolyi et al.,
2005; D’Hanis et al., 2007; Shinohara et al., 2017; Palmiter,
2018). CGRP has previously been suggested to act as an
important modulator of synaptic plasticity within the amygdala,
as its exogenous application onto brain slices from normal
rats increased both excitatory transmission at the parabrachio-
amygdaloid synapse as well as excitability of neurons in the lateral
and capsular CeA through N-methyl-D-aspartate (NMDA)- and
PKA-dependent mechanisms (Han et al., 2010). Furthermore,
the stereotaxic administration of CGRP into the right CeA of
awake rats increased emotional responses (audible and ultrasonic
vocalizations) to noxious stimuli and induced mechanical
hypersensitivity (lowered hindlimb withdrawal thresholds; Han
et al., 2010), and CGRP1 receptor blockade in the CeA reduced
mechanical hypersensitivity and emotional responses in an acute
arthritis pain model (Han et al., 2005). Similarly, mechanical
sensitivity in the formalin test was significantly decreased
6 h post-inflammation in CGRP knockout mice, while acute
nociceptive behavior was reduced only at 20–25 min after
injection (Shinohara et al., 2017). The role of CGRP is therefore
a critical link to investigate in the mechanistic analysis of
pain-related processing in the amygdala.

A substantial portion (35%–42%) of CRF neurons, which
serve output functions in the lateral and capsular regions of the
CeA, receive input from CGRP-containing parabrachial afferents
(Kruger et al., 1988; Shimada et al., 1989; Harrigan et al., 1994;
Dobolyi et al., 2005; D’Hanis et al., 2007; Chen et al., 2018;
Palmiter, 2018). As such, CGRP may strengthen the synaptic
drive onto CRF neurons and influence amygdala output activity
(Han et al., 2010; Okutsu et al., 2017; Shinohara et al., 2017).
Here our multiphoton calcium imaging experiments revealed
that CGRP1 receptor blockade in a chronic neuropathic pain
model decreased CeA-CRF neuronal activity, which indicates
endogenous CGRP release and would translate into decreased

output from these neurons. As CRF neurons project to numerous
extra-amygdalar targets involved in the modulation of averse-
affective pain behaviors (Beckerman et al., 2013; Pomrenze
et al., 2015, 2019; Dedic et al., 2018; de Guglielmo et al., 2019;
Neugebauer et al., 2020), we expect that the deactivation of
CeA-CRF neurons would correspond with beneficial behavioral
effects observed here in a neuropathic pain model. This is
consistent with our previous studies showing that optogenetic
silencing of CeA-CRF neurons inhibits pain behaviors (Mazzitelli
et al., 2021, 2022). Our data implicate CGRP1 receptors in the
pain facilitating role of CRF neurons. The calcium imaging
data complement data from our behavioral experiments to
suggest that reduced CeA-CRF neuronal activity plays a critical
contribution to the facilitatory behavioral responses that we
saw from CGRP1 receptor antagonism in chronic neuropathic
pain. However, the full downstream consequences of reduced
CeA-CRF neuronal output remain to be determined.

Information about sex-specific roles for CGRP in pain
modulation is rather limited, though a few studies have
focused on sex-differential expression levels in the spinal
cord. In the spinal trigeminal nucleus caudalis (SpVc), naïve
male rats showed higher baseline mRNA levels of CLR,
Ramp1, and the third receptor component, RCP, but not
of CGRP when compared to female counterparts (Stucky
et al., 2011). Surprisingly, expression of the CGRP-related
genes increased in both sexes 30 min after dural application
of either an inflammatory cocktail or a vehicle control,
though this upregulation was larger in females than in males.
As both the inflammatory and control treatments promoted
increased CGRP-related gene expression, the authors attributed
this upregulation to mechanical stimulation from cannula
implantation as opposed to meningeal inflammation (Stucky
et al., 2011). However, a later study found SpVc protein levels
of RCP but not CLR were higher in naïve females than in males
(Ji et al., 2019). In the periphery, naïve female rats were shown to
have fewer CGRP-immunoreactive dorsal root ganglion (DRG)
neurons than their male counterparts, though ovariectomy
produced a significant increase in immunoreactive neurons
(Yang et al., 1998). A recent study reported no significant sex
differences in CGRP-immunostaining cells in the DRG 7 days
after the induction of neuropathic pain using the spared nerve
injury (SNI) model (Ahlström et al., 2021). To our knowledge,
this study is the first to report neuropathic pain stage-specific
sex differences in mRNA expression levels of CGRP and its
receptor components within the brain. Additional investigation
is needed to confirm sex differences in CGRP and CGRP receptor
expression at the protein level and characterize pain-related
transcriptional and translational regulatory mechanisms of
CGRP and its receptor components at each level of the neuraxis
in male and female animals. As a note of caution, we did
not determine or analyze separately the different stages of the
estrous cycle because previous evidence because our previous
work (Chen et al., 2020) and the current study found that sexually
dimorphic effects were robust, readily detectable, and statistically
significant, even though we did not control for the estrous stage
of females, suggesting that the estrous cycle may not be a major
factor in the outcomes of our studies. Actually, the value of
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testing female rodents at different stages of the estrous cycle is
somewhat debatable (Greenspan et al., 2007).

Potential sex differences in CGRP-related pain behaviors have
also been explored. Within the brain, a migraine model of
dural CGRP administration produced hypersensitivity responses
in female but not male rats (Avona et al., 2019). In the
SpVc, knockdown of RCP expression with short hairpin RNA
(shRNA) attenuated mechanical facial allodynia produced by
noxious chemical stimulation of the meninges in both male
and female rats (Ji et al., 2019). However, another group found
that intrathecal injection of CGRP receptor antagonists (CGRP
8-37 orolcegepant) attenuated mechanical hypersensitivity in a
female-specific manner in both a hyperalgesic priming model
and at the chronic phase of the SNI neuropathic pain model
(Paige et al., 2022). In the same study, intrathecal injection of
CGRP caused prolonged mechanical hypersensitivity only in
female mice, an effect that was blocked by systemic pretreatment
with olcegepant (Paige et al., 2022). These data are consistent
with our current finding that CGRP receptor antagonism reduces
mechanical hypersensitivity in a neuropathic pain model to a
greater extent in female animals. Additionally, since we found
that this treatment strategy alleviated other dimensions of pain
(emotional-affective responses and anxiety-like behaviors) more
strongly in female rats, our collective data provide support for
the utilization of CGRP receptor-blocking therapies in the central
nervous system for female chronic neuropathic pain patients.

Increasing evidence across the pain field has revealed sexually
dimorphic mechanisms that contribute to pain development
and maintenance (recently reviewed in Presto et al., 2022).
Studies from the periphery and spinal cord have illustrated
a male-predominant reliance on macrophage-related (Liu
et al., 2020; Rudjito et al., 2021) and microglia-related
(Sorge et al., 2011, 2015; Taves et al., 2016; Agalave et al.,
2021) pain processing mechanisms. However, the underlying
pain modulatory processes for females are complex and not
well-characterized. Particularly within the brain, sex-specific
signaling mechanisms are largely unknown. Our data may
be the first to show sex differences in pain-related behavior
following CGRP receptor blockade within the brain, which
may be attributed to sex-specific molecular expression profiles
throughout neuropathic pain development. Though CGRP
expression in the CeA was not upregulated in male rats at
the chronic stage, blockade of the CGRP1 receptor at this
phase still showed inhibitory effects on sensory pain responses.
This may reflect a more tonic role of CGRP signaling in
males during the chronic phase, as CGRP also exhibits several
physiological properties within the brain (Abushik et al., 2017;
Borkum, 2019; Tian et al., 2020). As pain-related CGRP signaling
in the CeA of male rats appears to play a significant role
during the induction phase but primarily sensory role at the
chronic stage of neuropathic pain modulation, our study could
provide support that other mechanisms, such as those involved
in neuroimmune signaling, may be more relevant for brain-
related pain processing in males. Importantly, the impact of
CGRP-related pain mechanisms may differ across the pain time
course. Our previous studies have highlighted the beneficial
effects of CGRP1 receptor blockade in the CeA on pain-related

behaviors in males in relatively acute (arthritis) pain conditions
(Han et al., 2005, 2010). The role of CGRP in the arthritis model
may be more comparable to the acute 1-week stage of the SNL
model presented here, in which a stronger upregulation of CGRP
mRNA expression was observed in male compared to female
SNL rats. The current data suggest that while CGRP signaling
may play a critical role in brain-related pain processing at an
acute stage in males, other modulatory mechanisms may take
on a more predominant role with regard to pain chronicity
and maintenance. This illustrates the urgent need to investigate
potential sexual dimorphisms in pain-related amygdala function
across all stages of neuropathic pain development.

CONCLUSION

The data may suggest that while CGRP-related signaling
mechanisms play an important role in neuropathic-pain-related
amygdala function, this influence likely differs with respect to
the time course of pain development in males and females.
CGRP1 receptor blockade in the amygdala may serve as
a novel therapeutic strategy for chronic neuropathic pain
relief, particularly among female chronic pain patients. Future
investigation into the contributions of other pain modulatory
mechanisms, such as the role of neuroimmune signaling in the
transition from acute to chronic pain, is warranted in both sexes.
Ultimately, our work provides support for the investigation of
therapeutic targets, such as CGRP receptors, in both male and
female subjects across different stages of neuropathic pain.
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