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Abstract

Hepatitis B virus (HBV) infection is a major risk for hepatocellular carcinoma (HCC), and it is a serious global health problem
with two billion people exposed to it worldwide. HBx, an essential factor for viral replication and a putative oncoprotein
encoded by the HBV genome, has been shown to promote oncogenic properties at multiple sites in HBV-infected liver cells.
The expression level of HBx closely associates with the development and progression of HCC, therefore the mechanism(s)
regulating the stability of HBx is important in oncogenesis of HBV-infected cells. We demonstrate that the X-linked tumor
suppressor TSPX enhances the degradation of HBx through the ubiquitin-proteasome pathway. TSPX interacts with both
HBx and a proteasome 19S lid subunit RPN3 via its C-terminal acidic tail. Most importantly, over-expression of RPN3 protects
HBx from, and hence acts as a negative regulator for, proteasome-dependent degradation. TSPX abrogates the RPN3-
depedent stabilization of HBx, suggesting that TSPX and RPN3 act competitively in regulation of HBx stability. Since
mutation and/or epigenetic repression of X-located tumor suppressor gene(s) could significantly predispose males to
human cancers, our data suggest that TSPX-induced HBx degradation could play key role(s) in hepatocarcinogenesis among
HBV-infected HCC patients.

Citation: Kido T, Ou J-HJ, Lau Y-FC (2011) The X-Linked Tumor Suppressor TSPX Interacts and Promotes Degradation of the Hepatitis B Viral Protein HBx via the
Proteasome Pathway. PLoS ONE 6(7): e22979. doi:10.1371/journal.pone.0022979

Editor: Ben C. B. Ko, Chinese University of Hong Kong, Hong Kong

Received March 8, 2011; Accepted July 8, 2011; Published July 29, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work is supported by a grant from the National Cancer Institute of the National Institutes of Health and a merit-reviewed grant from the
Department of Veterans Affairs to Y-FCL. Y-FCL is a Research Career Scientist of the US Department of Veterans Affairs. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Chris.Lau@UCSF.edu

Introduction

The Y-encoded testis-specific protein Y-encoded (TSPY) and its

X-chromosome homologue TSPX (also called TSPYL2, CDA1

and DENTT) are members of the SET/NAP1 superfamily of

proteins, which are characterized by the presence of a highly

conserved NAP-domain [1,2,3]. TSPY is a tandemly repeated

gene mapped to the critical region of gonadoblastoma locus on the

Y chromosome (GBY). It is highly expressed in gonadoblastoma,

preferentially developed in XY-sex reversed patients at high

frequency [4,5,6]. TSPY is also expressed in testicular carcinoma-

in-situ and germ cell tumors and somatic cancers, including pro-

state cancer, melanoma, and liver cancer [7,8,9]. Over-expression

of TSPY in cultured cells promotes cell proliferation and tumori-

genicity in athymic mice [10]. TSPY interacts with cyclin B-

CDK1 complex and stimulates its kinase activities and accelerates

G2/M transition of the host cells [11]. It also binds the translation

elongation factor eEF1A and promotes cellular protein synthesis,

an essential oncogenic property of a cancer cell [12]. Hence,

TSPY is considered to be a proto-oncogene on the Y chro-

mosome. In contrast, the X-linked TSPX could function as a

tumor suppressor by activating p53 [13] and inhibiting cyclin

B-CDK1 activity [11]. Over-expression of TSPX retards cell

cycle progression and promotes cell death [13,14]. Hence, it is

considered as a X-linked tumor suppressor. These observations

suggest that, although TSPY and TSPX originated from the same

ancestor gene, they play opposite roles in regulation of cell

proliferation and tumorigenesis. Such contrasting properties of a

pair of sex chromosome homologues raise the possibility that they

might play important roles in sexual dimorphisms in certain

somatic cancers, such as hepatocellular carcinoma, which sig-

nificantly affects more men than women among their respective

patient populations.

Human hepatitis B virus (HBV) is one of the major etiological

factors for the development of hepatocellular carcinoma (HCC)

[15]. Chronic carriers of HBV have a greater than 100-fold in-

creased risk of developing HCC [16]. Approximately 350 million

individuals are chronically infected with HBV worldwide, and this

virus remains a global health problem with considerable morbidity

and mortality, particularly among populations in Pacific Asia and

central Africa [17]. HBV has a small DNA genome containing

four partially overlapping open reading frames, encoding viral

proteins, i.e. DNA polymerase, C, S and X proteins [18]. The

HBV X protein (HBx) is essential for virus replication in vivo and

has been postulated to be associated with initiation and pro-

gression of hepatocellular carcinoma [19,20]. Indeed, transgenic

mice expressing HBx show significant increase in incidence of

HCC [21,22]. HBx protein activates various pro-growth genes and
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signal transduction pathways, e.g. via CBP/p300, NF-kB, Ras/

Raf/ERK pathways, and androgen receptor transactivation [18,

23]. HBV-associated hepatocarcinogenesis, however, is postulated

to be complex and could have a lengthy incubation period, in

which the affected hepatocytes could accumulate incremental

oncogenic actions by HBx, other HBV components, and non-

HBV factors, e.g. chronic liver inflammation. HBx protein is

detected at high frequency in HCC patients with HBV-infection,

but it is rarely detected in HBV-infected chronic hepatitis patients

[24]. Hence, the stability of HBx protein is a key in the

pathogenesis of HBV-mediated HCC. Normally, HBx is main-

tained at a very low intracellular level by proteasome-dependent

degradation of the infected host cells [25]. Currently, only a few

mechanisms, involving p53 and MDM2, have been proposed to

regulate the HBx stability and degradation [26,27].

In this study, we show a novel function of the X-encoded tumor

suppressor TSPX in degradation of a HBV viral protein HBx.

TSPX interacts with both HBx and RPN3, a subunit of the 19S

proteasome lid, and enhances HBx degradation via ubiquitin-

proteasome pathway. Since HBx plays crucial roles in development

of hepatocellular carcinoma, our finding shed light on the functions

of X-linked tumor suppressors in HBV-mediated liver cancer.

Results

TSPX enhances the degradation of HBx in vivo
Since TSPY gene is frequently upregulated in HCC samples

(,50%) [8], and HBx stability and actions are closely associated

with HCC development, we had examined the probable functions

of TSPY and its X-linked homologue TSPX in HBV-mediated

HCC. To address this problem, we first investigated the effect of

TSPY and TSPX on the expression levels of HBx in transiently

transfected cells. Hemagglutinin (HA) epitope-tagged HBx (HA-

HBx) expression vector [28] was co-transfected with full-length

TSPX (TSPX[full]), FLAG-tagged TSPX[D26–108] (FLAG-

TSPX[DPro]) or TSPY expression plasmids into 293T cells. Our

results showed that when HA-HBx was co-transfected with TSPX,

the levels of HA-HBx protein were significantly repressed

(Figure 1B) while no significant change was observed in the cells

co-transfected with TSPY expression vectors (Figure S1). Since

FLAG-TSPX[DPro] also enhanced HBx degradation as well as

full-length TSPX, the proline-rich domain of TSPX may not

function in HBx-degradation. The same result was obtained from

the experiment using human hepatocellular carcinoma cell line

HuH-7 cells (Figure 1C). Treatment with the proteasome inhibitor

MG132 dramatically increased HA-HBx, and abolished the effect

of FLAG-TSPX[DPro] in both 293T and HuH-7 cells (Figure 1C).

These results suggest that TSPX down regulates HBx protein

in a proteasome-dependent manner. The differential functions of

TSPX and TSPY are quite interesting since this pair of homo-

logues were initially evolved from the same ancestral gene.

Although TSPX and TSPY share a highly conserved SET/NAP

domain, TSPX harbors a N-terminal proline-rich domain and a

C-terminal aspartic acid/glutamic acid (D/E)-rich domain, which

are absent from TSPY (Figure 1A).

Co-immunoprecipitation (co-IP) assays demonstrated that HA-

HBx could be co-immunoprecipitated with TSPX variants with

the deleted N-terminal proline-rich domain (FLAG-TSPX[DPro]),

deleted both N-terminal and carboxyl domains (FLAG-TSPX

[DProDC]) or with the C-terminal acidic domain alone (FLAG-

TSPX[Tail-L]) (Figure 1D). These results suggests that TSPX

interacts with HBx via multiple sites, including SET/NAP and

C-terminal acidic domains, and may either directly or indirectly

associate with its promoting activities for HBx degradation.

To determine the probable domain of TSPX involved in its

promotion of HBx degradation, variant FLAG-tagged TSPX

expression vectors harboring deletions of one or two of TSPX

domains were co-transfected with HA-HBx into 293T cells. Our

results showed that, while deletion of the C-terminal acidic domain

alone or in combination with the proline-rich domain (TSPX

[DProDC]) abolished the TSPX function promoting HBx de-

gradation while deletion of the N-terminal proline-rich domain

alone did not, suggesting that the C-terminal acidic domain is

important for its function in HBx degradation. Significantly, the

variant TSPX constructs expressing either the complete (TSPX

[Tail-L]) or an abbreviated version (TSPX[Tail-S]) of its C-

terminal acidic domain were capable of promoting the degrada-

tion of the HA-HBx protein (Figure 1E). These data suggest that

the mediator domain for HBx degradation is located within the

D/E-rich C-terminal domain (amino acid residues 538–693) of

TSPX.

Expression analysis using reverse transcription polymerase

chain reaction (RT-PCR), demonstrated that 293T cells expressed

the endogenous TSPX (Figure 2A). To determine whether endo-

genously expressed TSPX could also enhance the HBx degrada-

tion, we next knocked down the endogenous TSPX by using small

interfering RNA (siRNA). In the cells co-transfected with TSPX

siRNA, the expression level of HA-HBx was significantly increased

(2.8 folds), whereas the expression level of DsRed-V5 was not

affected (Figure 2B). Further, co-transfection of TSPX siRNA also

significantly decreased the expression level of an exogenously

transfected FLAG-TSPX[DPro] (Figure 2C). These observations

support the hypothesis that endogenous or exogenously transfected

TSPX plays critical roles in HBx degradation.

TSPX enhances HBx degradation via ubiquitin-
proteasome pathway

Previous studies suggest that HBx is degraded through both

ubiquitin-dependent and -independent proteasome pathways [29].

Ubiquitylation is processed sequentially by ubiquitin-activating

enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin

protein ligase (E3). In mammalian cells, while only a few types of

E1 enzymes are essential, more than 500 distinct ubiquitin E3

ligases confer substrate specificity for ubiquitylation [30]. In order

to determine whether TSPX enhances the HBx degradation

through the ubiquitin-dependent pathway, we used PYR-41, an

E1 inhibitor that blocks the activation and subsequent transfer of

ubiquitin to substrate [31]. PYR-41 treatment greatly increased

the levels of HA-HBx in the cells, in the presence of a co-

transfected TSPX expression vector (Figure 3), suggesting that

TSPX promotes HBx degradation via the ubiquitin-dependent

proteasome pathway.

TSPX interacts with a proteasome component RPN3 and
inhibits the protective function of RPN3 on HBx

Although we have demonstrated that TSPX promotes HBx

degradation via its C-terminal D/E-rich domain by the ubiquitin-

dependent proteasome pathway, the exact mechanism is still

uncertain. This domain bears little amino acid homology to other

proteins, except the Deleted in Split hand/Split foot 1 (DSS1, also

called Sem1), which also harbors a D/E-rich domain. Noteworthy,

DSS1 mediates various protein-protein interactions including

BRCA2-RAD51 [32], and is also essential for the maintenance

of 19S proteasome cap particle [33], which is required for re-

cognition and regulation of degradation of ubiquitinated protein

[34]. The 19S, in combination with the 20S proteolytic core

particle, forms the 26S proteasome [34]. Further, numerous

X-linked TSPX Enhances HBx-Degradation
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Figure 1. TPSX stimulates degradation of HBx in a proteasome dependent manner. (A) Structure of TSPY, TSPX, and schematic
representation of the truncated mutants of TSPX used in present study. (B) Effect of co-expression with TSPX on HBx stability in mammalian cells. 293T
cells were co-transfected with HA-HBx expression vector (0.2 mg/well) in the presence or absence of TSPX[full] or FLAG-TSPX[DPro] expression vector
(0.025, 0.1 mg/well). DsRed-V5 expression vector (0.1 mg/well) was co-transfected as the internal control for monitoring the transfection efficiency. Forty-
eight hours after transfection, cells were lysed and analyzed by Western-blot (immuno-blot = IB) using indicated antibodies. (C) Effect of a proteasome
inhibitor MG132 on TSPX-enhanced HBx degradation. 293T cells and HuH-7 cells were co-transfected with HA-HBx expression vector (0.2 mg/well) in the
presence or absence of FLAG-TSPX[DPro] expression vector (0.025, 0.1 mg/well). DsRed-V5 expression vector (0.1 mg/well) was co-transfected similarly as
above. Twenty-four hours after transfection, cells were treated with vehicle (DMSO) or 25 mM MG132 for additional 24 h. Cells were lysed and analyzed
by Western-blot using indicated antibodies. (D) Interaction of TSPX and HBx in mammalian cells. HA-HBx expression vector was co-transfected into 293T
cells with expression vector of FLAG-epitope tagged TSPX mutants. Twenty-four hours after transfection, cells were treated with 20 mM MG132 for
additional 24 h. Coimmunoprecipitation was performed with anti-FLAG antibody, and immunoprecipitated complexes (co-IP) were analyzed by Western
blot using anti-HA and anti-FLAG antibodies. One percent of each lysate (input) was analyzed in parallel as a transfection control. (E) Mapping of the
functional domain for stimulation of HBx-degradation. HA-HBx expression vector (0.1 mg/well) was co-transfected into 293T cells with FLAG-TSPX[DPro]
(0.05, 0.1, 0.2 mg/well), FLAG-TSPX[DProDC] (0.05, 0.1, 0.2 mg/well), FLAG-TSPX[Tail-L] (0.05, 0.1, 0.2 mg/well) or FLAG-TSPX[Tail-S] (0.05, 0.1, 0.2 mg/well),
and analyzed as described above. The results indicate that the D/E-rich C-terminal region is sufficient to promote HBx degradation.
doi:10.1371/journal.pone.0022979.g001

X-linked TSPX Enhances HBx-Degradation
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accessory proteins, including proteasome assembly chaperones

and adaptor proteins that deliver the substrates to proteasome,

play important roles to regulate the efficiency of critical steps in

proteasome biogenesis [35]. DSS1 is known to interact with the

RPN3 (also called as PSMD3 and S3) subunit of the 19S

regulatory particle through its D/E-rich acidic region [36]. RPN3

harbors a PCI-domain that is characteristic for subunits of pro-

teasome lid, COP9 signalosome (CSN) and eIF3 complex [32].

These observations suggest that the D/E-rich C-terminal domain

of TSPX could interact with RPN3 and play a role in HBx

degradation. To test this postulation, we had investigated the

interactions between RPN3 and TSPX and its different variants

in transfected cells. Co-IP assay using Myc-tagged RPN3[DN],

bearing a PCI-domain (Figure 4A), demonstrated that Myc-

RPN3[DN] was co-immunoprecipitated with FLAG-TSPX[Tail-

L] mutant (Figure 4B). Unexpectedly, FLAG-TSPX[DProDC]

also interacted with RPN3, suggesting that TSPX interacts with

RPN3 through multiple sites. In addition, co-IP assays demon-

strated that interaction between FLAG-TSPX[DPro] and

HA-HBx was not competitively inhibited by Myc-RPN3[DN]

(Figure 4C).

Next, we investigated the effect of TSPX on the RPN3-

dependent regulation of HBx-degradation. Co-transfection with

either Myc-RPN3[DN] or full-length RPN3 expression vector

significantly increased HA-HBx, and over-expression of FLAG-

TSPX[DPro] abolished the effect of RPN3 on HBx-degradation

(Figure 4D). However, in the cells treated with MG132, co-

expression of Myc-RPN3[DN] did not affected the level of HA-

HBx (Figure 4E), suggesting that RPN3 protects HBx from

proteasome-dependent degradation. Taken together, TSPX could

interact with and inhibit the protective function of RPN3 on HBx,

thereby promoting the proteosomal degradation of HBx (Figure 5).

Discussion

In the present study, we show, for the first time, that the X-

linked tumor suppressor TSPX enhances HBx-degradation by

inhibiting a proteasome regulatory subunit RPN3. Whereas a

couple of mechanisms including p53 and MDM2 are suggested

to stimulate HBx-degradation [26,27], our data represents a

novel pathway for HBx-degradation. Currently, we are uncertain

how important is each of these HBx degradation pathways in

modulating HBx abundance and oncogenic functions in HCC

development. Significantly, the effective domain responsible for

promoting HBx degradation in TSPX is mapped to the D/E-rich

C-terminal domain, which also participates in the negative re-

gulation of cyclin-B/CDK1 kinase activity [11] and retardation of

cell cycle progression [37]. The Y-located TSPY, on the other

hand, lacks the D/E-rich C-terminal domain, and functions as an

oncoprotein promoting cyclin B-CDK1 kinase activities and cell

proliferation [10,11]. The present study further supports the

hypothesis that TSPX is a tumor suppressor and exerts its anti-

tumorigenic functions via its D/E-rich C-terminal domain.

Epidemiological studies demonstrated that males are at

significantly high risk in developing HBV-related HCC, with a

male to female ratio as high as 7:1 as compared to that (2–3:1,

male to female) associated with hepatitis C virus (HCV)-related

HCC [38,39]. Such gender disparity has been attributed to

hormonal regulation of HBx expression in a positive feedback loop

Figure 2. Endogenously expressed TSPX enhances HBx degradation in 293T cells. (A) 293T cells express endogenous TSPX. Total RNA
isolated from 293T cells were analyzed by RT-PCR with primer pairs for TSPX[538–693] and GAPDH using a standard technique. Control, PCR product
with p36FLAG-TSPX[DPro]; +RT, with reverse transcriptase; -RT, without reverse transcriptase. (B) Repression of endogenous TSPX increased the
expression of HA-HBx in 293T cells. HA-HBx expression vector (50 ng/well) and DsRed-V5 expression vector (50 ng/well) were co-transfected into
293T cells with either control siRNA (4 pmol/well) or TSPX siRNA (4 pmol/well). Forty-eight hours after transfection, cells were lysed and analyzed by
Western-blot using anti-V5 and anti-HA antibodies. Treatment with TSPX siRNA resulted in significant increase in HA-HBx expression (2.8 fold). (C)
Effect of TSPX siRNA on TSPX expression. FLAG-TSPX[DPro] expression vector (0.1 mg/well) was co-transfected into 293T cells with control siRNA
(4 pmol/well) or TSPX siRNA (4 pmol/well). Forty-eight hours after transfection, cells were lysed and analyzed by western-blot using anti-FLAG
antibody. TSPX siRNA significantly decreased the protein level of FLAG-TSPX[DPro].
doi:10.1371/journal.pone.0022979.g002

Figure 3. TSPX mediates HBx degradation through ubiquitin-
proteasome pathway. Ubiquitin-activating enzyme inhibitor PYR-41
inhibits TSPX-mediated enhancement of HBx-degradation. HA-HBx
expression vector (0.2 mg/well) and DsRed-V5 expression vector
(0.1 mg/well) were co-transfected into 293T cells with FLAG-TSPX[DPro]
(0.05 mg/well). Twenty-four hours after transfection, cells were treated
with either vehicle (DMSO) or 50 mM PYR-41 for additional 24 h. Cell
lysates were analyzed by Western blot using anti-HA, anti-V5 and anti-
FLAG antibodies. Treatment with PYR-41 significantly increased the HA-
HBx even in the presence of TSPX.
doi:10.1371/journal.pone.0022979.g003

X-linked TSPX Enhances HBx-Degradation
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Figure 4. TSPX interacts with RPN3, and abrogates the protective effect of RPN3 on HBx-degradation. (A) Structure of RPN3 and
schematic representation of the truncated mutant of RPN3. The position of PCI/PINT domain is as marked. N-terminal truncated RPN3 (residues 128–
534 a.a., termed as RPN3[DN]) was cloned into pCMV-Myc vector to express a Myc epitope-tagged product. (B) Interaction of TSPX and RPN3 in
mammalian cells. Myc-RPN3[DN] was co-transfected with p36FLAG-CMV7 (FLAG control), FLAG-TSPX[DPro], FLAG-TSPX[Tail-L] or FLAG-TSPX[DProDC]
into 293T cells. Immunoprecipitations were carried out as before using anti-FLAG antibody. Immunoblots were probed with anti-Myc and anti-FLAG
antibodies. The immunoblots indicate that human RPN3 co-immunoprecipitates with human TSPX. (C) RPN3 did not interfere the interaction
between TSPX and HBx. HA-HBx and FLAG-TSPX[DPro] expression vectors were co-transfected with or without Myc-RPN3[DN] vector into 293T cells.
Immunoprecipitations were carried out using anti-FLAG antibody. Immunoblots were probed with anti-HA, anti-Myc and anti-FLAG antibodies,
respectively. The results indicate that interaction between HA-HBx and FLAG-TSPX was not affected by co-expression of Myc-RPN3[DN]. (D) Over-
expression of RPN3 protected HBx from protein-degradation, and TSPX overcomes the protective effect of RPN3. 293T cells were co-transfected with
HA-HBx (0.2 mg/well), Myc-RPN[DN] (0.05, 0.1 mg/well), RPN3[full] (0.05, 0.1 mg/well) and/or FLAG-TSPX[DPro] (0.05 mg/well) as indicated in the figure.
pcDNA-DsRed-V5 expression vector (0.1 mg/well) was co-transfected as the internal control for monitoring the transfection efficiency. Cells were lysed
48 h after transfection, and analyzed by Western blot using indicated antibodies. Although co-transfection of RPN3[full] or RPN3[DN] resulted in the
increase of HA-HBx, TSPX significantly decreased the level of HBx even in the presence of RPN3. (E) Over-expression of Myc-RPN3[DN] did not affect

X-linked TSPX Enhances HBx-Degradation
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[23,40]. HBx has been shown to promote androgen receptor

transactivation, while its expression is enhanced by androgen

receptor via a couple of androgen response elements located

within the enhancer region of HBV-genome [23]. Our study,

however, shows that an X-linked tumor suppressor is capable of

promoting HBx degradation. TSPX is ubiquitously expressed in

normal tissues including liver [3], but its expression is markedly

down regulated in primary tumors and human tumor cell lines

[14]. Since male has one X chromosome, any loss-of-function

mutation(s) and/or epigenetic dysregulation of X-linked tumor

suppressors could render males without the corresponding

oncogenic protection, thereby promoting carcinogenesis in male-

preferential manner(s) [41]. Hence, genetic/epigenetic inactiva-

tion of TSPX gene could closely associate with the HBV-mediated

HCC development. Further, since pro-oncogenic TSPY expres-

sion has been documented in selected HCC specimens [8], it could

exert a male-specific effect(s) on the overall complex etiology for

HBV-associated HCC in addition to inactivation mutation of its

X-homologue, TSPX. Further studies on the roles of TSPX and

TSPY in hepatocarcinogenesis could shed critical insights on the

HBV-mediated pathologic process(es), and could lead to develop-

ments of genderized strategies for the prevention, diagnosis and

treatments of HBV-associated liver cancer.

Materials and Methods

Plasmids
p36FLAG-TSPX[DPro] and p36FLAG-TSPX[DProDC] were

described previously [11]. TSPX[Tail-L], TSPX[Tail-S], and

DsRed2 were generated by standard PCR amplification and

insertion into respective expression plasmids, p36FLAG-CMV7

(Sigma-Aldrich, St. Louis, MO) or pcDNA3.1-V5/His (Invitrogen,

Carlsbad, CA), to express FLAG epitope-tagged or V5 epitope-

tagged products respectively. Primers used in PCR cloning were;

TSPX-397F, 59-GCC TCG AGA GAG AAA GGG GCT CCA

GGA TAA AG-39; TSPX-538F, 59-GCC TCG AGA CTT ACG

GCA ACA ACT TCT TCA AA-39; TSPX-693R, 59-GCG TCG

ACT TAT CCG GTT TTC CCC CTC TTC CC-39; DsRed-F,

59-GCG GAT CCA TGG CCT CCT CCG AGA ACG T-39;

DsRed-R, 59-GCG GAT CCC TAG AAT TCC AGG AAC

AGG TGG TGG CGG C-39. HA-HBx expression plasmid

pHAX was generated as described previously [28]. Full-length

RPN3 expression vector, pCMV-SPORT6-RPN3, was purchased

from Open Biosystmens (Huntsville, AL). The DNA fragment

encoding RPN3[residues 128–534a.a.] was excised from pCMV-

SPORT6-RPN3 using XhoI, and inserted into XhoI site of pCMV-

Myc (Clontech/Takara bio, Mountain View, CA), resulting in

pCMV-Myc-RPN3[DN].

Cell culture
293T cells and HuH7 cells were obtained from the American

Type Culture Collection (Manassas, VA) and were maintained

in Dulbecco’s modified Eagle medium (DMEM) supplemented

with 10% fetal bovine serum (Sigma-Aldrich). One day before

transfection, 293T cells were plated in 24 well plates at a density of

1.06105 cells/well, and HuH-7 cells were plated at 26104 cells/

well. The cells were transfected with the above-mentioned

plasmids as indicated in figure legends, using FuGENE6 (Roche

Applied Science, Indianapolis, IN). Respective empty plasmids

were added to the DNA mixture to ensure that equal amount of

DNA was transfected in each sample. Forty-eight hours post-

transfection, cells were lysed in 100 mL of SDS-PAGE sample

buffer and subjected to Western-blot analysis. For HBx degrada-

tion assays, cells were treated with 25 mM MG132 (Calbiochem/

EMD Chemicals, Gibbstown, NJ) or 50 mM PYR-41 (Calbio-

chem/EMD Chemicals) for 24 h before cell lysis. DMSO was used

as vehicle.

siRNA transfection
The siRNA targeted against TSPX and non-targeting control

were purchased from Ambion/Applied Biosystems (Austin, TX).

293T cells plated in 24 well plate were co-transfected with siRNA

(4 pmol/well), HA-HBx expression vector (50 ng/well) and DsRed2-

V5 expression vector (50 ng/well) using HiPerFect siRNA trans-

fection reagent (QIAGEN, Valencia, CA). Forty-eight hours after

transfection, cells were lysed and analyzed by Western-blot.

Western blot
Western-blot analysis was performed as described previously

[12], using anti-FLAG rabbit IgG (Sigma-Aldrich), anti-FLAG

mouse IgG (Sigma-Aldrich), anti-HA rabbit IgG (Clontech/Takara

bio), anti-Myc mouse IgG (Santa Cruz Biotechnology, Santa Cruz,

CA), anti-Myc rabbit IgG (Upstate/Millipore, Charlottesville, VA),

anti-RPN3/PSMD3 antibody (Sigma-Aldrich), anti-TSPX/TSPYL2

rabbit antibody (Proteintech, Chicago, IL), anti-V5 rabbit IgG

(Abcam, Cambridge, MA), and anti-V5 mouse IgG (Abcam).

Co-immunoprecipitation assay
293T cells were transfected with the above-mentioned con-

structs using FuGENE6 (Roche Applied Science, Indianapolis,

IN). Respective empty plasmids were added to the DNA mixture

to ensure that equal amount of DNA was transfected in each

on the transcription of HA-HBx. 293T cells were co-transfected with HA-HBx (0.2 mg/well), Myc-RPN[DN] (0.1 mg/well), and/or FLAG-TSPX[DPro]
(0.05 mg/well) as indicated in figure. pcDNA-DsRed-V5 (0.1 mg/well) was co-transfected as the internal control for monitoring the transfection
efficiency. Twenty-four hours after transfection, cells were treated with either vehicle (DMSO) or 25 mM MG132 for additional 24 h. Cells were lysed
and analyzed by Western blot using anti-HA, anti-V5, anti-Myc, and anti-FLAG antibodies. Co-transfection of Myc-RPN3[DN] increased HA-HBx
(DMSO). No significant difference was observed in HA-HBx level in the cells treated with MG132 (+MG132).
doi:10.1371/journal.pone.0022979.g004

Figure 5. A model illustrating the potential roles of TSPX and
RPN3 as regulators of ubiquitin-proteasome dependent HBx
degradation. TSPX enhances the HBx degradation by recruiting HBx
to proteasome complex, and inhibiting the protective function of PRN3
on HBx-degradation. E1-E3 indicates the ubiquitylation cascade
including E1, E2, and E3 enzymes. MG132-responsive and PYR-41-
responsive sites are also indicated.
doi:10.1371/journal.pone.0022979.g005
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sample. Two days post-transfection, the cells were lysed in co-IP

buffer (20 mM Tris-HCl [pH 7.2], 300 mM NaCl, 20% glycerol,

1% NP-40), and incubated with anti-FLAG antibody conjugated

on agarose beads (EZview Red anti-FLAG M2 affinity Gel,

Sigma-Aldrich) at 4uC overnight as described previously [12]. The

immunoprecipitate was washed with co-IP buffer for 1 hr at 4uC,

and subjected to Western-blot analysis. In co-immunoprecipitation

assays for the interactions with HA-HBx, cells were treated with

20 mM MG132 for 24 h before cell lysis.

Reverse transcription-polymerase chain reaction (RT-PCR)
Total cellular RNA was isolated from 293T cells using RNeasy

Mini kit (QIAGEN) according to vendor’s instructions. First-

strand cDNA was synthesized using Superscript III (Invitrogen).

PCR was performed using specific primers; TSPX-397F and

TSPX-693R for TSPX; hGAPDH-F (59-CCA CCC ATG GCA

AAT TCC ATG GCA-39) and hGAPDH-R (59-TCT AGA CGG

CAG GTC AGG TCC ACC-39) for GAPDH. Denaturation was

for 1 min at 94uC, annealing for 1 min at 50–60uC, and synthesis

for 1 min at 72uC.

Supporting Information

Figure S1 The D/E-rich C-terminal region of TSPX is
critical for enhancing HBx-degradation. 293T cells were

co-transfected with HA-HBx expression vector (0.2 mg/well) and

FLAG-TSPX[DPro], FLAG-TSPX[residues 112–693] (FLAG-

TSPX[DN]), FLAG-TSPX[DProDC] or FLAG-TSPY expression

vector (0.3 mg/well) as indicated. Two days after transfection, cells

were lysed and analyzed by Western blot using anti-HA, anti-

FLAG, and anti-bactin antibodies. FLAG-TSPX[DPro] and

FLAG-TSPX[DN] significantly down-regulated HA-HBx, while

FLAG-TSPX[DProDC] and FLAG-TSPY did not.

(TIF)
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