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AIM: To evaluate the lung function of coronavirus disease 2019 (COVID-19) patients using
oxygen-enhanced (OE) ultrashort echo time (UTE) MRI.
MATERIALS AND METHODS: Forty-nine patients with COVID-19 were included in the study.

The OE-MRI was based on a respiratory-gated three-dimensional (3D) radial UTE sequence. For
each patient, the percent signal enhancement (PSE) map was calculated using the expression PSE
¼ (S100%e S21%)/S21%, where S21% and S100% are signals acquired during room air and 100% oxygen
inhalation, respectively. Agreement of lesion detectability between UTE-MRI and computed to-
mography (CT) was performed using the kappa test. The ManneWhitney U-test was used to
evaluate the difference in the mean PSE between mild-type COVID-19 and common-type COVID-
19. Spearman’s test was used to assess the relationship between lesion mean PSE and lesion size.
Furthermore, the ManneWhitney U-test was used to evaluate the difference in region of interest
(ROI)meanPSEbetweennormal pulmonaryparenchymaand lesions. TheKruskaleWallis testwas
applied to test the difference in the mean PSE between different lesion types.
RESULTS: CTandUTE-MRI reachedgoodagreement in lesiondetectability. Ventilationmeasures

inmild-typepatients (5.3� 5.5%)were significantly different fromthose in common-type patients
(3� 3.9%). Besides, there was no significant correlation between lesionmean PSE and lesion size.
Themean PSE of COVID-19 lesions (3.2� 4.9%) was significantly lower than that of the pulmonary
parenchyma (5.4� 3.9%). No significant difference was found among different lesion types.
CONCLUSION: OE-UTE-MRI could serve as a promising method for the assessment of lung

function or treatment management of COVID-19 patients.
� 2021 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
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Introduction whole-lung OE imaging in humans8 and reported a com-
As of 09 June 2020, coronavirus disease 2019 (COVID-19)
has been confirmed in 7,039,918 people worldwide,
invading over 160 countries, and carrying a mortality of
approximately 6.9%.1 Despite public health responses aimed
at controlling the disease and delaying its spread, several
countries have been confronted with a critical care crisis,
and more countries will almost certainly follow.2 To date,
prior research has suggested that computed tomography
(CT) has a high sensitivity in the diagnosis of COVID-19, 98%,
compared to real-time polymerase chain reaction (RT-PCR),
with a sensitivity of 71%3; however, the prediction of the
clinical course and prognosis of COVID-19 remains a chal-
lenge. There is an urgent need to identify patients at higher
risk of developing acute respiratory failure so that they can
be monitored closely and receive intervention treatment
early.

The clinical course of COVID-19 often meets the Berlin
definition of acute respiratory distress syndrome (ARDS);
however, as a specific disease, the distinctive features of
COVID-19 are severe hypoxaemia often associated with
near-normal respiratory system compliance, which has
seldom been seen in previous severe ARDS.4 These severely
hypoxaemic patients, despite sharing a single aetiolo-
gydsevere acute respiratory syndrome coronavirus 2
(SARS-CoV-2)dmay present with different phenotypes,
and the degrees of ventilatory responsiveness may be quite
different from one another.5 In addition, accumulating ev-
idence suggests that patients with COVID-19 have the po-
tential for defective lung function and might suffer long-
term impacts from the disease. For instance, a prospective
longitudinal study of 90 patients with COVID-19-associated
pneumonia found that 94% of discharged patients still had
evidence of disease on their final CT.6 This evidence
included the persistence of ground-glass opacities (GGOs),
which, in some patients, increased as they recovered
enough to be discharged.6 GGOs are hazy white opaque
structures found on CT images, which are commonly seen in
pneumonia and lung cancer. Therefore, it remains to be
determined whether current COVID-19 patients will expe-
rience long-term dysfunction, similar to how some SARS
patients experienced long-term lung function
abnormalities.7

Once severe lung damage occurs, efforts should be made
to suppress inflammation and manage the symptoms. As
such, there is a need for a quantitative pulmonary function
test thatmight be helpful in treatment decision-making and
prognosis management. Functional magnetic resonance
imaging (MRI) techniques, such as hyperpolarised helium 3
(3He) MRI and, more recently, the less expensive alternative
oxygen enhanced (OE) MRI, have been used to assess
regional ventilation abnormalities of the lung. Three-
dimensional radial ultrashort echo time (3D-UTE) MRI has
shown promise as an OE-MRI method. This method does
not require specialised multinuclear hardware or expensive
specialty gas while providing full chest images of regional
ventilation. With this technique, Kruger et al. performed
parison of ventilation defect distribution and signal in-
tensity between OE-UTE-MRI and hyperpolarised 3He MRI.9

Zha et al. further suggested that 3D-UTE MRI supports
quantitative differentiation between diseased and healthy
lungs with excellent testeretest repeatability.10

The goal of this study was to investigate the pulmonary
ventilation of patients with COVID-19 with different se-
verities, including both pulmonary parenchyma and lesions,
using OE-UTE-MRI.

Materials and methods

Patients

This study was approved by the institutional review
board, and written informed consent from all patients was
obtained. In this single-institution prospective study, pa-
tients diagnosed with COVID-19 according to the results of
RT-PCR were recruited during the period from 25 March
2020 to 27 April 2020. Patients were divided into four
groups based on the guidelines of the National Health
Commission (7th edn; in Chinese)11: (1) mild type: mild
clinical symptoms without pneumonia on imaging; (2)
common type: fever, respiratory symptoms, and pneu-
monia manifestations on imaging. Common CT manifesta-
tions included GGOs, consolidation, and reticular and crazy-
paving pattern.12 Among these lesions, GGO is defined as
hazy increased lung attenuation with preservation of
bronchial and vascular margins. Consolidation is defined as
opacification with obscuration of margins of vessels and
airway walls.13 The crazy-paving pattern is characterised by
scattered or diffuse ground-glass attenuation with super-
imposed interlobular septal thickening and intralobular
lines14; (3) severe type: respiratory distress, respiratory rate
�30 times/min; resting-state oxygen saturation �93%;
PaO2/FiO2 �300 mmHg; (4) critical type: respiratory failure
requiring mechanical ventilation, shock, and other organ
failure requiring intensive care unit (ICU) monitoring and
treatment. Only mild-type and common-type COVID-19
patients were included in this study because most severe-
and critical-type COVID-19 patients cannot endure MRI
examinations, and some of them were transferred to the
ICU immediately. In addition, all the patients included in
this study only received basic supportive treatment without
any special intervention during the CT and MRI examina-
tions. Pulmonary function tests had not been performed in
order to minimise the risk of exposure to COVID-19 infec-
tion. The exclusion criteria were as follows: (a) interval
between CT and OE-UTE-MRI longer than 1 day; (b) poor
MRI image quality; and (c) inability to undergo the OE-UTE-
MRI examination.

Image acquisition

All patients underwent both chest CT and MRI exami-
nations, including OE-UTE-MRI, with an interval of no more
than 1 day between scans. The chest CTwas performedwith
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a 64-section scanner (Scenaria 64 CT; Hitachi Medical,
Kashiwa, Chiba Prefecture, Japan) with the patient scanned
in a supine position during end-inspiration without intra-
venous contrast medium. Before CT imaging, all the patients
received the training for breath-hold CT (including “breath
in”, “breath out” and “hold your breath”). They were
instructed by the breathing commands during the CT ex-
aminations. The imaging parameters were as follows: 120
kV tube voltage, 150e400 mA tube current 1.5 pitch, 1 mm
slice thickness, 1 mm reconstructive thickness, 350 mm
collection diameter, 350 mm reconstruction diameter, 350
ms rotation time, 512 � 512 matrix, and three acquisitions.

MRI was performed using a 3 T MRI machine (uMR 780,
United Imaging Healthcare, Shanghai, China) with a com-
mercial phased-array 12-channel torso coil. Patients were in
a supine position during the whole examination. The pro-
tocols included (a) transverse T2-weighted fast spin echo
sequence (FSE; repetition time [TR]¼3,965 ms, echo time
[TE]¼90.3 ms, flip angle [FA]¼120�, section thickness¼5
mm, field of view (FOV)¼380 � 380 mm2,
matrix¼456 � 456); (b) coronal T2-weighted single shot
fast spin echo sequence (SS-FSE; TR¼1,000 ms, TE¼85.3 ms,
FA¼120�, slice thickness¼5 mm, FOV¼380 � 380 mm2,
matrix¼325 � 408); and (c) a respiratory-gated 3D-UTE
pulse sequence (TR¼2.2 ms, TE¼0.08 ms, slice thickness¼2
mm, FOV¼350 � 350 mm2, matrix¼480 � 480). For opti-
misation purposes, the FA for the 3D-UTE pulse sequence
was set to 8� to maximise the absolute signal difference and
contrast after OE-UTE-MRI.8 All the patients were instruc-
ted to breathe evenly during the UTE-MRI examination and
the acquisition time varied from 4e5minutes depending on
the respiration status of the individual patients.

The OE-UTE-MRI of the lungs was performed with a 3D-
UTE sequence as in a previous study.15 For this technique,
the entire thoracic cavity was excited with a nonselective
hard pulse, followed by the acquisition of a free induction
decay (FID) signal instead of an echo (as in the case of most
conventional clinical sequences), resulting in a centre-out
radial encoding trajectory. Signal acquisition was initiated
during the ramp-up stage of the encoding gradient to
further reduce the effective echo time as well as potential
susceptibility artefacts as a result of airetissue boundaries
in the lungs. The direction of the encoding gradient was
incremented from one acquisition to another to cover the
whole k-space in a “Koosh ball” pattern.16 A total of 40,000
encoding directions were prescribed. To alleviate the effects
of respiratory motion, the UTE sequence was interleaved
with a navigator sequence to track the diaphragm
displacement in the superioreinferior direction. The
acquisition module was enabled only within a certain pre-
determined displacement range, during which 2,000 FIDs
were collected each time. During reconstruction, the radial
k-space data were first re-gridded onto Cartesian co-
ordinates using a KaisereBessel convolution kernel.17 A 3D
fast Fourier transform was subsequently performed to
generate the final image.

For OE-UTE-MRI measurement, oxygen was delivered
through a nonrebreather mask placed over the subject’s
nose and mouth. 3D-UTE was performed twice for each
subject. The first was acquired during free-breathing with
21% oxygen (normoxic), while the second was acquired
with 100% oxygen (hyperoxic). Twominutes of 100% oxygen
inhalation was performed before the second UTE mea-
surement to avoid the transit effect. The duration of whole
MRI acquisition was about 20 minutes.

Image analysis

To assess the feasibility of UTE-MRI in the diagnosis of
COVID-19, all the CT and normoxic UTE-MRI images were
randomised and analysed independently by two radiolo-
gists (one with more than 6 years of experience in chest CT
diagnosis and 3 years of experience in pulmonary MRI, and
the other with more than 36 years of experience in chest CT
diagnosis and 16 years of experience in pulmonary MRI). All
images were anonymised and evaluated in a random order
blinded to clinical data. The UTE-MRI and CT images for a
single patient were read separately. The number of lesions
in each imagemodality for each patient was recorded. Then,
another two experienced radiologists (one with 8 years of
experience in clinical chest CT interpretation and 4 years of
experience in pulmonary MRI, and the other with 19 years
of experience in clinical chest CT interpretation and 8 years
of experience in pulmonary MRI) evaluated independently
the lesion detectability of UTE-MRI with CT as the reference.
For each lesion, a five-point visual scoring system (1, absent;
2, probably absent; 3, equivocal; 4, probably present; 5,
present) was applied.

Percent signal enhancement (PSE) was used to quantify
pulmonary ventilation in this study. To avoid the negative
impact from noise from the high-resolution normoxic and
hyperoxic images on the quality of the PSEmaps, the images
were reconstructed at 1 cm resolution to improve the
signal-to-noise (SNR).8 After that, the high-resolution nor-
moxic and hyperoxic images were co-registered by rigid
transform and B-spline symmetric normalisation (SyN)
transform18 with a mutual information metric using
Advanced Normalisation Tools (http://stnava.github.io/
ANTs). The high-resolution hyperoxic images were
segmented automatically to produce a binary lung mask
using ITK-SNAP (www.itksnap.org).19 After applying the
deformation field from the registration and lung mask to
the low-resolution data, the PSE map was computed as

PSE ¼ ðS100% � S21%Þ=S21% (1)

where S100% and S21% represent the signal intensity of the
hyperoxic and normoxic UTE images, respectively.

Lesion-based analysis was performed in consensus by
two experienced radiologists. Spherical regions of interest
(ROIs) with diameters of 10 mm were placed over the pul-
monary parenchyma (left upper lobe, left mid-zone, left
lower lobe, right upper lobe, right middle lobe and right
lower lobe for each patient) on the high-resolution trans-
verse hyperoxic images. In addition, for each COVID-19-
associated lesion, the high-resolution transverse hyperoxic
slice with the largest lesion area was selected as the
representative slice. Lesion size was measured on the
representative slice. The ROIs were then transferred to the

http://stnava.github.io/ANTs
http://stnava.github.io/ANTs
http://www.itksnap.org


Table 1
Summary of the demographic and clinical features of the patients.

Variables Total (n¼49)

Age, years (mean � SD) 31.58 � 14.43
Sex male, n (%) 30 (61.2%)
Severities, n (%)
Mild 16 (32.7%)
Common 33 (67.3%)
Symptoms, n (%)
Cough 18 (36.7%)
Fever 23 (46.9%)
Chest pressure 5 (3.4%)
Sore throat 5 (3.4%)
Diarrhoea 7 (4.7%)

Lesion size, mm2 (mean � SD) 451.60 � 749.53
Lesion types, n (%)
Pure GGOs 25 (15.7%)
GGOs with consolidation 120 (75.5%)
Consolidation 11 (6.9%)
Crazy-paving pattern 3 (1.9%)

Imaging-positive, n (%) 33 (67.3%)

SD, standard deviation; GGOs, ground glass opacities; RT-PCR, real-time
polymerase chain reaction.

Table 2
Result of lesion detectability between CT and UTE-MRI.

Radiological findings Method Visual score ka p-Value

1 2 3 4 5

Pure GGOs CT 134 0 0 3 22 0.678 <0.05
UTE 135 0 3 10 11

GGOs with
consolidation

CT 39 0 1 5 114 0.444 <0.05
UTE 39 2 7 53 58

Consolidation CT 148 0 0 0 11 0.903 <0.05
UTE 148 0 0 2 9

Crazy-paving pattern CT 156 0 0 0 3 1 <0.05
UTE 156 0 0 0 3

All lesions CT 477 0 1 8 150 0.709 <0.05
UTE 478 2 10 65 81

CT, computed tomography; UTE, ultrashort echo time; MRI, magnetic reso-
nance imaging; GGOs, ground glass opacities.

a k was interpreted as follows: 0.00e0.20 indicates poor agreement;
0.21e0.40, fair agreement; 0.41e0.60, moderate agreement; 0.61e0.80,
good agreement; and >0.81, very good agreement.
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PSE map. The mean PSE of the pulmonary parenchyma was
calculated as the averagemean PSE of the six spherical ROIs,
and the mean PSE for each lesion was measured.

Statistical analysis

Agreement of lesion detectability was performed using
the kappa test. k was interpreted as follows: 0.00e0.20,
poor agreement; 0.21e0.40, fair agreement; 0.41e0.60,
moderate agreement; 0.61e0.80, good agreement; and
>0.81, very good agreement. For patient-based analysis, the
ManneWhitney U-test was used to evaluate the difference
in the mean PSE among mild-type COVID-19 and common-
type COVID-19. In common-type patients, a lesion-based
analysis was carried out in which Spearman’s test was
used to assess the relationship between lesion mean PSE
and lesion size. Furthermore, the ManneWhitney U-test
was used to evaluate the difference in the ROI mean PSE
among normal pulmonary parenchyma and the lesions. The
KruskaleWallis test was applied to test the difference in the
mean PSE between different lesion types. Bonferroni
correction was applied to reduce problems associated with
multiple comparisons.

A p-value of <0.05 was considered to indicate a signifi-
cant result. All statistical analyses were performed using
SPSS (version 21.0, SPSS, Chicago, IL, USA).

Results

A cohort of 49 patients (age, 31.58 � 14.43 years; range,
16e74 years) was finally included in this study. Four pa-
tients were excluded because of severe motion artefacts,
two of whom coughed during the examination. Another
two patients were excluded because they were unable to
undergo the OE-UTE-MRI examination. A total of 35 pa-
tients (71.4%) underwent CT before MRI, while 14 patients
(28.6%) underwent MRI before CT examinations.

For all the patients included in this study, the lesions
detected by both CT and UTE-MRI had four typical signs
(pure GGOs, GGOs with consolidation, consolidation, and
crazy-paving pattern). Table 1 summarises the de-
mographic and clinical features of the patients.

For chest CT, 159 lesions were detected in 33 patients,
while for UTE-MRI, 158 lesions from 33 patients were
detected. No lesions were detected in the other 16 patients.
As shown in Table 2, CT and UTE-MRI reached good agree-
ment in lesion detectability.

PSE analysis was frequently able to reveal the difference
between patients with and without COVID-19-associated
lesions (Fig 1). As shown in Fig 2, the mean PSE between
mild-type and common-type patients was significantly
different (p¼0.002). The mean PSE of mild-type COVID-19
was 5.3 � 5.5% (mean � SD), while the mean PSE of
common-type COVID-19 was 3 � 3.9% (mean � SD).

In this study, 142 out of 158 (89.9%) lesions could be
readily visualised by PSE analysis (Fig 3). There was no
significant correlation between lesion mean PSE and lesion
size (p>0.05). The mean PSE of the pulmonary parenchyma
ranged from 0.4% to 13.8% (mean � SD, 5.4 � 3.9%), while
the mean PSE of the lesions was significantly lower
(p<0.001) with a range of 0e9.4% and a mean of 3.2 � 4.9%
(Fig 4). Furthermore, no significant difference was found
among different lesion types (Fig 5).

Discussion

Currently, high-resolution chest CT is the routine and
preferred method for providing morphological information
on COVID-19 pneumonia. The CT findings of COVID-19
pneumonia have been reported widely; however, there is
an unmet need to develop non-invasive and effective bio-
markers of COVID-19 to monitor pulmonary ventilation and
evaluate lung function in affected patients. A recent pre-
print study carried out a pulmonary function test in 137
patients with COVID-19 pneumonia 2 weeks after discharge
and suggested that the pulmonary function of patients with
COVID-19 pneumonia manifested as restrictive ventilation



Figure 1 Patient-based analysis for mild-type and common-type COVID-19. (a) CT image from a mild-type patient without lesions. (b) Hyperoxic
transverse UTE-MRI image from a mild-type patient without lesions. (c) Mask generated from (b). (d) PSE map for the mild-type patient. (e) CT
image from a common-type patient with two COVID-19-related lesions. (f) Hyperoxic transverse UTE-MRI image from a common-type patient
with two COVID-19-related lesions. (g) Mask generated from (f). (h) PSE map for the common-type patient.
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disorder and small airway obstruction.20 In addition, as
secondary ARDS carries risk factors affecting the prognosis
of COVID-19 and causes high mortality,21 evaluating lung
function and monitoring the risk of ARDS are crucial not
only for diagnosis but also for prognosis.

Although CT is able to visualise lung ventilation by using
dual-energy scanners, exposure to ionising radiation can be
detrimental, especially when repeated examinations are
required. MRI has been used to evaluate different lung
diseases with the advantage of detailed soft-tissue contrast
and a lack of radiation.22 In lung imaging, conventional MRI
is challenging in that the extremely short T2* of the lung
parenchyma, which is due to the low hydrogen proton
density in this tissue, leads to very low signal intensity
obtained in the lungs. In UTE-MRI, projection acquisition of
Figure 2 Comparison of the PSE between mild-type patients an
the FID in conjunction with radial readout technically
makes it possible to obtain a sufficient SNR with short TE
and to reduce the sensitivity to motion.23 Previously, 3D-
UTE-MRI had good concordance with CT in assessing cystic
fibrosis,24,25 quantifying lung parenchymal density,26 and
detecting pulmonary nodules.27 The present study
demonstrated that 3D-UTE-MRI was also in good agree-
ment with CT for COVID-19 lesion detectability, which is in
accordance with prior research.28 More importantly, the
complementarity of structure and function afforded by OE-
MRI with UTE can provide a framework for interpreting the
functional severity of structural abnormalities in lung dis-
eases. This study further indicated the potential of OE-UTE-
MRI in measuring pulmonary ventilation and performing
early diagnosis.
d common-type patients using the ManneWhitney U-test.



Figure 3 Representative lesion-based analysis of a 62-year-old female patient. (a) Lesion 1 (red arrow) on a CT image with radiological findings
of GGO with consolidation and visual score ¼ 5. (b) Lesion 2 (yellow arrow) on the CT image with radiological finding: GGO with consolidation,
visual score ¼ 5. (c) Lesion 1 and lesion 2 on the transverse UTE-MRI image. Radiological findings for lesion 1 are GGO with consolidation, visual
score ¼ 3. Radiological findings for lesion 2 are GGO with consolidation, visual score ¼ 4. (d) Manifestation of lesions 1 and 2 on the PSE map.
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Another advantage of 3D-UTE-MRI is its large coverage of
the whole lung in one measurement. Compared to 2D OE-
MRI, this 3D technique is conducive to quantitative anal-
ysis of ventilation for the whole lung or even per lobe rather
than based on ROIs. Conventional 2D OE-MRI examined
small-volume measurements or ROIs that often covered
only a modest portion of the lungs. It is therefore unclear
whether the T1 values or mean signal enhancement
Figure 4 Comparison of the PSE between COVID-19-related lesions
observed are representative of the entire pulmonary pa-
renchyma. Calculating the mean PSE using full lung vol-
umes supports more accurate volumetric measurements of
ventilation. Based on 3D-UTE OE-MRI, the patient-based
analysis revealed that the mean PSE between mild-type
(mean PSE ¼ 5.3 � 5.5%) and common-type (mean
PSE ¼ 3.2 � 5%) patients was significantly different. This
result suggested that subtle changes in lung function may
and pulmonary parenchyma using the ManneWhitney U-test.



Figure 5 Comparison of PSE between different lesion types using the KruskaleWallis test.
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reflect reduced efficiency of gas exchange and that
common-type patients have worse pulmonary ventilation
than mild-type patients. Previously, CT imaging had shown
potential in evaluating the severity and extent of the dis-
ease29,30; however, two recent studies showed that clinical
presentation and chest CT manifestations were sometimes
unmatched. Zhang et al. found a patient who was clinically
diagnosed as severe, but was at an early stage according to
chest CT.31 In contrast, the patients in another study showed
symptom relief but progression on chest CT, indicating that
clinical symptoms and imaging findings are unmatched in
the early stage of COVID-19.32 As such, OE-UTE-MRI could
be a supplementary method for making diagnoses and
treatment decisions. Furthermore, according to previous
research, in discharged survivors with COVID-19, impair-
ment of diffusion capacity and restrictive ventilator defects
are themost common abnormalities of lung function, which
are both associated with the severity of the disease.33 OE-
UTE-MRI does not involve exposure to ionising radiation
and does not require expensive contrast agents or hyper-
polarised gases. It could therefore be considered for appli-
cation not only in diagnosis but also in routine clinical
follow-up for certain recovered survivors, especially in
common and severe patients.

In the present lesion-based study, there was no signifi-
cant correlation between the lesion mean PSE and lesion
size, probably because only common-type patients were
included in this part of the study. Compared with that of the
normal pulmonary parenchyma, the mean PSE of the le-
sions was significantly reduced (p<0.001). According to
prior OE-MRI study, regional decreases in ventilation are
common in pulmonary diseases, including lung cancer,34

chronic obstructive pulmonary disease,35 and asthma.36

The measurements of regional ventilation defects from
PSE maps depicts local to areas of structural abnormality.
Four types of lesions were investigated in this study: GGOs,
consolidations, GGOs with consolidation, and crazy-paving
patterns. Consolidation is a homogeneous increase in pul-
monary parenchymal attenuation that obscures the mar-
gins of vessels and airway walls.37 Various substances may
fill the air space, including fluid, blood, pus, and cells, which
probably cause a regional decrease in ventilation. A previ-
ous study suggested that consolidation was associated with
impairment of gas exchange and lung stiffness.38 GGOs are
caused by a partial filling of air spaces, a thickening of
alveolar walls, and/or partial collapse of the alveoli.39 Pre-
vious research also stated that an increased extent of GGOs
may be correlated with a decrease in forced vital capacity.40

According to a previous study, crazy-paving pattern lesion is
related to progressive dyspnoea.41 Thus, considering the
structure and histology of COVID-19-related lesions, the
result of lower mean PSE in all the lesions could be
explained.

There was no significant difference between different
lesion types in this study, likely attributable to a lack of
consolidation (n¼11) and the crazy-paving pattern (n¼3).
As shown in previous studies, more consolidation is found
in patients with COVID-19 as the disease course progresses,
and more consolidation lesions have been found in elderly
patients (>50 years) than in younger patients.42 Similarly, a
crazy-paving patternmight be seen during the intermediate
phase of infection (4e14 days from symptom onset).43 As a
substantial number of patients in the present study were at
an early stage, this might be a possible explanation for why
there were fewer complete consolidation and crazy-paving
pattern lesions. This insufficiency warrants further
investigation.

There were several limitations in this study. First, a small
sample size, especially reflected in the lack of different
lesion types, and the single-site design may affect the
generalisability of the present results. Further in-
vestigations on different lesion types in a multicentre trial
with a large sample size are warranted. Second, the hospital
served as a quarantine hospital in this period, and no
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normal control group was included in this study due to
contamination of the MRI machines. Therefore, it is difficult
to determine the extent to which pulmonary ventilation
changes in COVID-19 patients versus normal controls. Third,
the disparity between CTand UTE-MRI lung volumes during
imaging acquisition and the time interval between imaging
will probably affect the comparative results between CT and
UTE-MRI. Fourth, considering the safety and effectiveness of
the imaging examinations, COVID-19 patients at severe and
critical stages were not included in this study, reducing the
comprehensiveness of its results. Fifth, all the ROIs were
drawn manually, which might limit the reproducibility of
the measured values. An automated technique for lobar
ventilation measurements from OE-MRI is needed in future
research. This would enable more accurate assessment of
the impact of regional ventilation by the lesions detected.

In summary, the regional and whole-lung oxygen
enhancement observed on UTE-MRI in the present study
suggested that OE-UTE-MRI could serve as a promising
method in the evaluation of lung function in patients with
COVID-19. OE-UTE-MRI is feasible to stratify the severity of
COVID-19 according tomean PSE, whichmay help guide the
treatment, evaluate treatment response, predict prognosis
and identify patients who require earlier intervention.
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