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TRPM6 and TRPM7 are two known channel kinases that play important roles in various physiological processes, 
including Mg2+ homeostasis. Mutations in TRPM6 cause hereditary hypomagnesemia and secondary hypocalce-
mia (HSH). However, whether TRPM6 encodes functional channels is controversial. Here we demonstrate several 
signature features of TRPM6 that distinguish TRPM6 from TRPM7 and TRPM6/7 channels. We show that heterol-
ogous expression of TRPM6 but not the mutant TRPM6S141L produces functional channels with divalent cation 
permeability profi le and pH sensitivity distinctive from those of TRPM7 channels and TRPM6/7 complexes. 
TRPM6 exhibits unique unitary conductance that is 2- and 1.5-fold bigger than that of TRPM7 and TRPM6/7. 
Moreover, micromolar levels of 2-aminoethoxydiphenyl borate (2-APB) maximally increase TRPM6 but signifi -
cantly inhibit TRPM7 channel activities; whereas millimolar concentrations of 2-APB potentiate TRPM6/7 and 
TRPM7 channel activities. Furthermore, Mg2+ and Ca2+ entry through TRPM6 is enhanced three- to fourfold 
by 2-APB. Collectively, these results indicate that TRPM6 forms functional homomeric channels as well as hetero-
meric TRPM6/7 complexes. The unique characteristics of these three channel types, TRPM6, TRPM7, and 
TRPM6/7, suggest that they may play different roles in vivo.

I N T R O D U C T I O N

TRPM6 and TRPM7 are unique channel kinases that 

belong to the long or melastatin-related transient re-

ceptor potential TRPM subfamily of TRP channel su-

perfamily (Harteneck et al., 2000; Clapham, 2003; Fleig 

and Penner, 2004; Schmitz et al., 2004; Montell, 2005). 

 Recent studies have indicated that TRPM6 and TRPM7 

play important physiological roles (Nadler et al., 2001; 

Schlingmann et al., 2002; Walder et al., 2002; Schmitz 

et al., 2003; Hanano et al., 2004; Elizondo et al., 2005; 

 Hermosura et al., 2005; Nilius et al., 2005; Schlingmann 

et al., 2005). Mutations of TRPM6 cause inherited hy-

pomagnesemia and secondary hypocalcemia (HSH) 

(Walder et al., 2002; Schlingmann and Gudermann, 

2005; Schlingmann et al., 2002, 2005), while mutation 

of TRPM7 may contribute to the pathogenesis of Gua-

manian neurodegenerative disorders (Hermosura et al., 

2005).  Furthermore, TRPM7 appears to be essential for 

cell viability and growth (Nadler et al., 2001; Schmitz 

et al., 2003; Hanano et al., 2004; Elizondo et al., 2005), 

whereas overwhelming Ca2+ entry through TRPM7 is in-

volved in anoxic neuronal cell death (Aarts et al., 2003).

TRPM6 and TRPM7 are close homologues and the 

only known ion channels with an intrinsic kinase 

 domain. Unlike the ubiquitously expressed TRPM7, 

TRPM6 is mainly distributed in kidney and small intes-

tine (Schlingmann et al., 2002; Walder et al., 2002). 

In contrast to TRPM7, whose functional properties have 

been extensively investigated, the experimental fi nd-

ings for TRPM6 are controversial (Chubanov et al., 

2004; Voets et al., 2004; Schlingmann and Gudermann, 

2005). Voets and colleagues successfully expressed func-

tional TRPM6 channels in HEK-293 cells and demon-

strated similar properties of TRPM6 to those of TRPM7 

(Voets et al., 2004). In contrast, Chubanov et al. (2004) 

reported that in HEK-293 cells and Xenopus oocytes, 

TRPM6 does not produce functional currents by itself. 

Instead, TRPM7 is required for TRPM6 to incorporate 

into channel complexes at the plasma membrane. The 

association of TRPM6 and TRPM7 channel proteins is 

also demonstrated in a recent study (Schmitz et al., 

2005), although the detailed functional characteristics 

of TRPM6/7 channels remain unknown (Chubanov 

et al., 2005). Given the potential importance of TRPM6 

and TRPM7 in Mg2+ homeostasis, it is essential to deter-

mine (a) whether TRPM6 forms functional homomeric 

channels by itself, and (b) whether TRPM6 channels as 

well as TRPM6/7 complexes exhibit similar functional 

characteristics to those of TRPM7.
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In the present study, we demonstrate that TRPM6, 

TRPM7, and TRPM6/7 are three distinct ion channels 

that exhibit different divalent cation permeability, pH 

sensitivity, and unique single channel conductance. 

Furthermore, 2-APB differentially regulates channel ac-

tivities of TRPM6, TRPM7, and TRPM6/7. More impor-

tantly, 2-APB markedly increases Mg2+ and Ca2+ entry 

through TRPM6. Taken together, our results strongly 

suggest that TRPM6 forms functional homomeric chan-

nels and heteromeric TRPM6/7 channels, and that 

TRPM6, TRPM7, and TRPM6/7 channels may play dif-

ferent roles under various physiological and/or patho-

logical conditions. Additionally, these fi ndings may 

prove to be useful tools to distinguish endogenous 

TRPM6, TRPM7, and TRPM6/7 channels, and perhaps, 

may provide new insight into channel regulation and 

information in designing TRPM6 channel activators to 

facilitate Mg2+ absorption.

M AT E R I A L S  A N D  M E T H O D S

Functional Expression of TRPM6, TRPM6S141L, TRPM7, 
and TRPM6/7
TRPM6 construct was provided by J.G.J. Hoenderop (University 
Medical Center Nijmegen, Nijmegen, Netherlands). The TRPM6 
mutant S141L identifi ed in HSH patients was generated by site-
 directed mutagenesis (QuickChange, Stratagene) following the 
standard protocol we previously reported (Yue et al., 2002). The 
predicted DNA sequence of the mutant was verifi ed by sequenc-
ing analysis. TRPM7 was previously cloned from mouse (Runnels 
et al., 2001).

CHOK1 cells, HEK-293 cells, and MDCT (mouse distal con-
vulsed tube) cells were provided by D.E. Clapham (Harvard Med-
ical School, Boston, MA). Cells were grown in DMEM/F12 
medium supplemented with 10% FBS, 100 U/ml penicillin, and 
100 mg/ml streptomycin at 37°C in a humidity-controlled incuba-
tor with 5% CO2. Most experiments were conducted in CHOK1 
cells (see Discussion) and all the electrophysiological data in the 
fi gures are from CHOK1 cells. MDCT cell line was used to study 
endogenous TRPM6 currents (see Fig. S1, available at http://
www.jgp.org/cgi/content/full/jgp.200609502/DC1). CHOK1 or 
HEK-293 cells were transiently transfected with human TRPM6 
wild-type, TRPM6 mutant S141L, TRPM6 plus TRPM7 at 1:1 ratio, 
or TRPM7 as previously described (Runnels et al., 2001). Electro-
physiological recordings were made between 36 and 48 h after 
transfection. Successfully transfected cells were identifi ed by their 
green fl uorescence when illuminated at 480 nm. Patch-clamp 
 experiments were performed at room temperature (20–25°C).

Electrophysiology
Whole-cell and single-channel currents were recorded using an 
Axopatch 200B amplifi er. Data were digitized at 10 or 20 kHz, 
and digitally fi ltered offl ine at 1 kHz. Patch electrodes were 
pulled from borosilicate glass and fi re polished to a resistance 
of ?3 MΩ when fi lled with internal solutions. Series resistance 
(Rs) was compensated up to 90% to reduce series resistance er-
rors to <5 mV. Cells in which Rs was >10 MΩ were discarded 
(Yue et al., 2002).

For whole cell current recordings, voltage stimuli lasting 250 ms 
were delivered at 1–5-s intervals, with either voltage ramps or volt-
age steps ranging from −120 to +100 mV. Unless otherwise 
stated, 3–5 min were allowed to let TRPM6 and TRPM7 currents 

develop and reach a steady state after break-in. A fast perfusion 
system was used to exchange extracellular solutions. A complete 
solution exchange was achieved in ?1–3 s.

Single channel currents were recorded in outside-out confi gu-
ration at various test potentials using patch electrodes with a resis-
tance of ?8–10 MΩ. The pipette solution contained (in mM) 110 
NaSO3CH3, 10 NaCl, 10 HEPES, 10 sodium HEDTA, 2 EGTA 
pH 7.2. The same solution was used extracellularly in outside-out 
patches after adding 10 mM glucose.

The internal pipette solution (P1) for whole cell current re-
cordings contained (in mM) 145 Cs-methanesulfonate, 8 NaCl, 
10 EGTA, and 10 HEPES, pH adjusted to 7.2 with CsOH. In ex-
periments designed to diminish outward currents, pipette solu-
tion (P2) contained (in mM) NMDG 120, glutamic acid 108, 
HEPES 10, EGTA 10, CsCl 10, pH adjusted to 7.2 with NMDG.

The standard extracellular Tyrode’s solution contained (in 
mM) 140 NaCl, 5 KCl, 2 CaCl2, 20 HEPES, and 10 glucose, pH ad-
justed to 7.4 (NaOH). External solutions at various acidic pH 
were prepared as previously reported (Jordt et al., 2000; Askwith 
et al., 2004; Yermolaieva et al., 2004; Jiang et al., 2005). Divalent-
free solution (DVF) contained (in mM) 145 NaCl, 20 HEPES, 
5 EGTA, 2 EDTA, and 10 glucose, with estimated free [Ca2+] 
< 1 nM at pH 7.4 and free [Mg2+] ≈10 nM at pH 7.4 (calculated 
with the MaxChelator software, available at http://www.stanford. 
edu/~cpatton/webmaxcS.htm). Isotonic Mg2+ and Ca2+ and so-
lutions of various divalent cations at different concentrations were 
prepared as we previously reported (Jiang et al., 2005). 2-aminoe-
thoxydiphenyl borate (2-APB) was dissolved in methanol at 0.5 M 
stock solution and diluted in extracellular solutions as indicated 
in the text. All the chemicals were from Sigma-Aldrich.

Quantitative Real-time PCR
Total RNA was extracted from HEK-293 cells transfected with 
TRPM6, control vector, and TRPM7 using TRIzol reagent (Invit-
rogen) as previously reported (Yue et al., 1999). RNA was treated 
with DNase I to prevent contamination of genomic DNA. Total 
RNA (2 μg) was used in reverse transcription reactions. Quantita-
tive real time PCR (RQ-PCR) was performed using Assays-on-
 Demand gene expression products from ABI Prism 7500.

Data Analysis
Pooled data are presented as mean ± SEM. Concentration–
 response curves were fi tted by an equation of the form E = Emax{1/
[1 + (EC50/C)n]}, where E is the effect at concentration C, Emax is 
maximal effect, EC50 is the concentration for half-maximal effect, 
and n is the Hill coeffi cient (Yue et al., 2000). EC50 is replaced by 
IC50 if the effect is an inhibitory effect. Statistical comparisons 
were made using two-way analysis of variance (ANOVA) and 
two-tailed t test with Bonferroni correction; P < 0.05 indicated 
statistical signifi cance.

Online Supplemental Material
The online supplemental material (Fig. S1, available at http://
www.jgp.org/cgi/content/full/jgp.200609502/DC1) elaborates 
MagNuM/MIC current in MDCT cells.

R E S U LT S

TRPM6 Expresses Functional Currents in Heterologous 
Expression System
In CHOK1 cells transiently transfected with TRPM6, 

outward rectifying currents were elicited by a voltage 

ramp protocol ranging from −120 to +100 mV (Fig. 

1 A). Current amplitude was small immediately after 
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 establishment of the whole-cell confi guration, but grad-

ually increased and reached a plateau in ?200 s (Fig. 

1 B), presumably due to depletion of intracellular Mg2+ 

(Voets et al., 2004). In the cells transfected with TRPM6 

mutant (TRPM6S141L) identifi ed in HSH patients, cur-

rent amplitude was similar as nontransfected cells (Fig. 

1 B). Like TRPM7, TRPM6 is permeable to Ca2+ and 

Mg2+, and Ca2+ and Mg2+ also block monovalent inward 

currents with an apparent affi nity of 5.4 ± 0.3 (n = 6) 

for Ca2+ and 3.4 ± 0.4 μM (n = 8) for Mg2+ at −120 

mV, similar to those reported by Voets et al. (2004). One 

of the unique features of TRPM7 is its permeability to 

a wide array of divalent cations (Monteilh-Zoller et al., 

2003). Therefore, we examined whether TRPM6 is also 

permeable to different divalent cations. The inward 

current amplitude of different divalent cations was used 

to represent permeability as previous studies suggested 

(Nadler et al., 2001; Monteilh-Zoller et al., 2003; Voets 

et al., 2004). To prevent Na+ or other monovalent cat-

ions from passing through the channels along with diva-

lent cations, external monovalent cations were replaced 

by nonpermeant NMDG. Since inward current ampli-

tude is small, we used 30 mM of each divalent cation in 

order to get bigger inward currents and thereby rela-

tively accurate measurements. However, Zn2+ was pre-

pared at 10 mM due to its low solubility at pH 7.4. As 

shown in Fig. 1 (C and D), TRPM6 inward current was 

the biggest in 10 mM Zn2+, followed by 30 mM Ba2+, 

Mg2+, Ca2+, Mn2+, Sr2+, Cd2+, and Ni2+. The ratio of in-

ward current of TRPM6 in 30 mM Ni2+ versus Ca2+ was 

0.52 ± 0.05 (n = 6; Fig. 1 D), ranking Ni2+ the least per-

meant cation to TRPM6. This result is in clear contrast 

to that of TRPM7, which exhibited high permeability 

to Ni2+ (INi/ICa = 2.3 ± 0.7, n = 7) as shown in Fig. 1 

Figure 1. Functional expression of TRPM6 
in CHOK1 cells, and relative permeability of 
TRPM6, TRPM7, and TRPM6/7 to divalent 
cations. (A) Representative TRPM6 currents 
elicited by a voltage-ramp ranging from −120 
to +100 mV. (B) Changes of current ampli-
tude of wild-type TRPM6 and TRPM6 mutant 
TRPM6S141L with time. Top, outward current 
measured at +100 mV; bottom, inward cur-
rent measured at −120 mV. (C) Inward cur-
rents of TRPM6 measured in 30 mM different 
divalent cation solutions and 10 mM Zn2+ 
 solution prepared in nonpermeant NMDG. 
(D) The ratio of different divalent current 
amplitude versus Ca2+ current amplitude 
(mean ± SEM, n = 6). (E and G) Inward cur-
rents of TRPM7 (E) and TRPM6/7 (G) in the 
indicated cation solutions. (F and H) The ratio 
of divalent current amplitude versus Ca2+ cur-
rent amplitude of TRPM7 (F) and TRPM6/7 
(H) (mean ± SEM, n = 7).
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(E and F) and also as previously reported (Monteilh-

Zoller et al., 2003). Except for Ni2+, the relative perme-

ability sequence of other tested cations including Ba2+, 

Mg2+, Ca2+, Mn2+, Sr2+, and Cd2+ of TRPM6 was similar 

to that of TRPM7. Interestingly, in cells cotransfected 

with TRPM6 and TRPM7 (TRPM6/7), the permeability 

sequence was similar but not identical to that of TRPM6 

(Fig. 1, G and H), with the largest permeability to Zn2+, 

and the smallest permeability to Ni2+. In comparison 

with TRPM7, both TRPM6 and TRPM6/7 exhibited 

much lower permeability to Ni2+, but much higher per-

meability to Zn2+. These different permeability profi les 

suggest that TRPM6, TRPM7, and TRPM6/7 may pos-

sess different pore structures.

To test if exogenous overexpression of TRPM6 af-

fected endogenous TRPM7 gene expression, the mRNA 

level of TRPM7 was examined by quantitative real-time 

PCR. No difference of endogenous TRPM7 expression 

was observed in TRPM6- and mock-transfected cells, 

whereas the mRNA expression of TRPM7 was much 

higher in the positive control cells, which were trans-

fected with 2 μg TRPM7 (Fig. 2 A). These results indi-

cate that overexpression of TRPM6 did not infl uence 

the endogenous expression of TRPM7, suggesting that 

the currents recorded in TRPM6-transfected cells could 

not be attributed to up-regulation of endogenous 

TRPM7 expression.

We further examined current amplitude in cells 

transfected with TRPM6 (2 μg), TRPM7 (2 μg), and 

TRPM6/7 (2 μg in total). The current densities were 

similar among the three groups, but signifi cantly big-

ger than that of the endogenous MagNuM/MIC (Fig. 

2 B). Similar results were obtained in TRPM6-, TRPM7-, 

and TRPM6/7-transfected HEK-293 cells (unpub-

lished data). These results suggest that TRPM6 is able 

to express functional currents without cotransfection 

with TRPM7.

Different pH Sensitivity of TRPM6, TRPM7, and TRPM6/7
We have recently reported that TRPM7 inward current 

is signifi cantly increased by acidic pH (Jiang et al., 

2005). As TRPM6 and TRPM7 are closely related homo-

logues, we next examined the effects of low pH on 

TRPM6 inward currents. As expected, lowering the ex-

tracellular pH increased TRPM6 inward currents (Fig. 

3, A and B). To compare with the effects of low pH on 

TRPM7, Fig. 3 (E and F) shows the effects of protons on 

TRPM7 inward currents. Although the pH1/2 was simi-

lar between TRPM6 and TRPM7 (Fig. 3 H), the magni-

tude of increase in TRPM6 inward current (Fig. 3 B) 

was signifi cantly smaller than that of TRPM7 (Fig. 3 F). 

For example, pH 4.0 elicited a 9.9 ± 1.3–fold (n = 6) 

(Fig. 3, F and G) increase of TRPM7 inward current, but 

only a 3.8 ± 0.3–fold (n = 8) (Fig. 3, B and G) increase 

of TRPM6 inward current. In TRPM6/7 coexpressing 

cells, the increase of inward current was 5.9 ± 0.7–fold 

(n = 6) by pH 4.0 (Fig. 3, C and D, and G). Interest-

ingly, the pH1/2 for TRPM6/7 was shifted by one pH 

unit toward physiological pH 7.4 (Fig. 3 H), indicating 

an increased sensitivity to acidic pH. At pH 6.0, the in-

crease of TRPM6/7 inward current was much bigger 

than those of TRPM6 and TRPM7 (Fig. 3 G, right), sug-

gesting that TRPM6/7 channels may play a role under 

acidic conditions where local pH 6.0 is attained during 

ischemia and most forms of tissue injury (Reeh and 

Steen, 1996). As protons potentially compete with diva-

lent cations for binding sites in the external pore of the 

channels (Jiang et al., 2005), the differences in pH sen-

sitivity further suggest the distinctive pore structures of 

TRPM6, TRPM7, and TRPM6/7 channels.

Differential Effects of 2-APB on TRPM6, TRPM7, 
and TRPM6/7
To investigate if there are pharmacological differences, 

we studied the effects of 2-APB on TRPM6, TRPM7 

and TRPM6/7. As shown in Fig. 4 C, 500 μM 2-APB 

dramatically decreased TRPM7 current amplitude, 

consistent with the inhibitory effects of 2-APB on endog-

enous MagNuM/MIC current (Hanano et al., 2004).  

Surprisingly, TRPM6 current amplitude was signifi -

cantly increased by the same concentration of 2-APB 

(Fig. 4 A). Both inward and outward currents of TRPM6 

were  increased by 2-APB in a concentration-dependent 

Figure 2. Heterologous overexpression of TRPM6 does not 
 affect endogenous TRPM7 expression. (A) Quantitative real-time 
PCR results showing similar expression level of endogenous 
TRPM7 mRNA in TRPM6- and mock-transfected HEK-293 cells. 
TRPM7-transfected cells were used as a positive control. TRPM7 
mRNA was normalized to the internal control GAPDH (mean ± 
SEM, n = 5 for each group). (B) Current density of overexpressed 
TRPM6 (n = 17), TRPM6/7 (n = 15) and TRPM7 (n = 16) in 
comparison with that of endogenous MagNuM/MIC (n = 15).
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 manner (Fig. 4 D), with the EC50s of 380 ± 22 μM (nHill = 

1.8) for the inward currents and 205 ± 10 μM (nHill = 

1.7) (Fig. 4 G) for the outward currents, respectively. 

We next tested the effects of 2-APB on TRPM6/7 het-

eromeric channels. As shown in Fig. 4 B, 500 μM 2-APB 

only slightly increased current amplitude. However, at 

higher concentrations, 2-APB apparently increased the 

TRPM6/7 current amplitude (Fig. 4 E). The EC50 of 

2-APB on TRPM6/7 was 1.6 ± 0.1 mM (nHill = 1.8) for 

the outward currents (Fig. 4 G) and 1.7 ± 0.09 mM 

(nHill = 1.5) for the inward currents, respectively.

Interestingly, we found that while 2-APB at concentra-

tions <1 mM suppressed TRPM7 currents (Fig. 4, C and 

F), higher concentrations of 2-APB increased TRPM7 

channel activities. Fig. 4 C shows that 2 mM 2-APB ap-

parently potentiated TRPM7 current amplitude. The 

concentration-dependent increases of TRPM7 inward 

and outward currents by 2-APB at concentrations >1 mM 

are shown in Fig. 4 F. At 1.5 mM 2-APB, a transient

inhibition was induced before current was increased, 

followed by a decrease in current amplitude upon wash-

out of 2-APB. The transient inhibition of TRPM7 was 

smaller at 2, 5, and 10 mM 2-APB. The percentage in-

crease of TRPM7 is shown in Fig. 4 H (top), and the 

normalized inhibition of TRPM7 at low 2-APB concen-

trations is shown at the bottom of Fig. 4 H for  comparison. 

The potentiation of 2-APB on TRPM7 did not reach a 

plateau. However, the effects of 2-APB at >10 mM were 

not tested due to the solubility limit (Fig. 4 H). The ini-

tial transient inhibition as well as the decrease in TRPM7 

after washout 2-APB were presumably caused by inhibi-

tory effects of 2-APB at low concentrations, as it is evi-

dent that the transient inhibition was smaller at 5 and 

10 mM 2-APB.

In summary, at micromolar concentrations, 2-APB en-

hanced TRPM6 but inhibited TRPM7 currents, whereas 

at millimolar concentrations, 2-APB increased TRPM7 

and TRPM6/7 currents. The differential effects of 

2-APB on these channels provide pharmacological evi-

dence that TRPM6, TRPM7, and TRPM6/7 compose 

distinctive ion channels.

Additive Effects of 2-APB and Protons on TRPM6
Since both protons and 2-APB increase TRPM6 current 

amplitude, we next examined whether the effects are 

 additive. Fig. 5 shows TRPM6 currents recorded in exter-

nal solutions at pH 7.4 and pH 5.0, in the presence and 

absence of 500 μM 2-APB. Changes in TRPM6 inward 

current amplitude by 2-APB were much bigger at pH 5.0 

than that at pH 7.4 (Fig. 5, A and B), suggesting an addi-

tive effect between 2-APB and low pH. The additive ef-

fects were observed at all the tested pH (Fig. 5 C), 

although the pH1/2 (4.8 ± 0.1, n = 7) was not signifi -

cantly changed by 2-APB (pH1/2 = 4.3 ± 0.4; Fig. 3 H). 

We also evaluated whether low pH infl uences the effects 

of 2-APB on TRPM6. The maximal response induced by 

Figure 3. Acidic pH potentiates the inward current of TRPM6, TRPM7, and TRPM6/7. (A, C, and E) Representative recordings of 
TRPM6 (A), TRPM6/7 (C), and TRPM7 (E) at pH 7.4, 6.0, 5.0, and 4.0, respectively. (B, D, and F) Concentration-dependent changes 
of inward currents of TRPM6 (B), TRPM6/7 (D), and TRPM7 (F) at the indicated pH values. Note the difference of Y-axis scale of B, D, 
and F. (G) Averaged inward currents of TRPM6, TRPM7, and TRPM6/7 at the indicated pH values normalized to the value at pH 7.4 
(left). The increase of inward current of TRPM6, TRPM7, and TRPM6/7 at pH 6.0 normalized to the value at pH 7.4 (right: *, P < 0.05; 
**, P < 0.01). (H) Normalized increase in inward current amplitude and the best-fi t of the concentration-dependent curves yielded 
pH1/2 of 4.3 ± 0.4 (n = 8, nHill = 0.7) for TRPM6, 4.7 ± 0.7 (n = 6, nHill = 1.1) for TRPM7, and 5.5 ± 0.3 (n = 6, nHill = 0.5) for 
TRPM6/7, respectively.
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2-APB at pH 5.0 was similar to that at pH 7.4. However, 

the EC50 of 2-APB (Fig. 5 D) was signifi cantly reduced 

from 205 ± 10 μM (pH 7.4) to 96.8 ± 13.2 μM (pH 5.0) 

for outward currents, and from 380 ± 22 μM (pH 7.4) to 

92.2 ± 6.8 μM (pH 5.0) for inward current, respectively.

Unique Single Channel Conductance of TRPM6, TRPM7, 
and TRPM6/7
The above results, including different divalent perme-

ability, pH sensitivity, and distinct effects of 2-APB on 

TRPM6, TRPM6/7, and TRPM7, suggest that TRPM6, 

TRPM7, and TRPM6/7 form different ion channels. 

To further study the pore properties of these channels, 

we investigated the single channel currents of TRPM6, 

TRPM7, and TRPM6/7. Whole cell currents in each 

transfected cell were fi rst confi rmed in the Tyrode’s so-

lution, and then single channel currents were recorded 

in DVF under outside-out configuration as previously 

reported (Yue et al., 2001). Fig. 6 A shows single chan-

nel openings in a representative cell transfected with 

TRPM6. Large current amplitude was observed at nega-

tive potentials (Fig. 6 A), with a single channel conduc-

tance of 83.6 ± 1.7 pS (Fig. 6 D). Likewise, we measured 

single channel current of TRPM7 and TRPM6/7 under 

the same conditions. Single channel current  amplitude 

of TRPM7 was much smaller than that of TRPM6, and 

the unitary conductance between −120 and −20 mV 

was 40.1 ± 1.0 pS (Fig. 6, C and D). Furthermore, when 

TRPM6 and TRPM7 were coexpressed, a novel single 

channel conductance of 56.6 ± 3.7 pS was produced, 

indicating that TRPM6 and TRPM7 can form hetero-

tetrameric ion channels. These different single chan-

nel conductances indicate that TRPM6, TRPM7, and 

TRPM6/7 channels have distinct pore structures.

In TRPM6 and TRPM7 cotransfected cells, TRPM6 

and TRPM7 may randomly form heterotetrameric 

Figure 4. Differential modulation of TRPM6, TRPM7, and TRPM6/7 by 2-APB. (A–C) 500 μM 2-APB signifi cantly increased TRPM6 
current (A), markedly inhibited TRPM7 current (C), and moderately enhanced TRPM6/7 current (B). Potentiation of TRPM7 by 2 mM 
2-APB is shown in (C). (D–F) Concentration-dependent effects of 2-APB on inward and outward currents of TRPM6 (D), TRPM6/7 (E), 
and TRPM7 (F). Note the dual-effects of 2-APB on TRPM7. (G) Best-fi t of dose–response curves evaluated by using outward currents 
yielded EC50 of 205 ± 10 μM (nHill = 1.7, n = 7) for TRPM6, IC50 of 178 ± 14 μM (nHill = 1.5, n = 6) for TRPM7, and EC50 of 1.6 ± 0.1 mM 
(nHill = 1.8, n = 7) for TRPM6/7 complexes. (H). Percentage increase of TRPM7 outward currents by 2-APB at concentrations >1 mM 
(top, n = 7), and inhibitory effects at low concentrations of 2-APB is shown at the bottom as a comparison.
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channels with different confi gurations. Indeed, in the 

patches that contain two or more channels, single chan-

nels with different current amplitudes were observed 

(Fig. 7 C). All points histogram (Fig. 7 D) illustrates the 

single channel current amplitudes corresponding to 

the single channel conductances of TRPM6, TRPM7, 

and TRPM6/7, suggesting the existence of both hetero-

tetrameric TRPM6/7 channels and homotetrameric 

TRPM6 and TRPM7 channels in the TRPM6/7 coex-

pressing cells. In another three separated patches that 

contain three channels, similar histograms correspond-

ing to the unitary conductances of 83.6, 56.6, and 40.1 

pS were obtained, suggesting that the heterotetramers 

with unitary conductance of 56.6 is the preferred con-

fi guration when TRPM6 and TRPM7 are expressed at a 

1:1 ratio. In comparison with the TRPM6/7 coexpress-

ing cells, only one type of single channel was observed 

in TRPM6- or TRPM7-transfected cells (Fig. 7, A and B, 

E and F).

Increased Mg2+ and Ca2+ Permeability of TRPM6
Both TRPM6 and TRPM7 are important in Mg2+ homeo-

stasis. Dysfunction of TRPM6 results in HSH (Schling-

mann et al., 2002, 2005; Walder et al., 2002), whereas 

deletion of TRPM7 causes Mg2+ defi ciency, thereby lead-

ing to cell death (Schmitz et al., 2003, 2005). Since 2-APB 

signifi cantly increased TRPM6 inward currents, we next 

investigated whether Mg2+ and Ca2+ currents are in-

creased by 2-APB. Fig. 8 shows that the inward Ca2+ and 

Mg2+ currents of TRPM6 recorded in isotonic Ca2+ and 

Mg2+ solutions were signifi cantly enhanced by 2-APB. 

The reversal potentials were also shifted toward more 

positive direction, consistent with the increased inward 

currents. These results imply that Mg2+ and Ca2+ entry 

through TRPM6 can be pharmacologically potentiated.

D I S C U S S I O N

In the present study, we have demonstrated several unique 

functional characteristics of TRPM6, which distinguish 

TRPM6 from those of TRPM7 and TRPM6/7 channels. 

Our fi ndings indicate that TRPM6 forms functional ho-

momeric channels on its own and heteromeric channels 

in combination with TRPM7. Moreover, we found that 

TRPM6 channel activity, as well as Mg2+ and Ca2+ entry 

through TRPM6, can be signifi cantly potentiated.

TRPM6, TRPM7, and TRPM6/7 compose distinct 
ion channels
TRPM6 and TRPM7 are two unique channel kinases. 

Although the kinase function is not fully understood 

(Nadler et al., 2001; Runnels et al., 2001; Ryazanova 

et al., 2004; Matsushita et al., 2005), the channel 

 function in permeating Mg2+ seems essential for cell 

 viability (Nadler et al., 2001; Schmitz et al., 2003; 

Schmitz et al., 2005) and Mg2+ homeostasis in humans 

Figure 5. Additive effects of 2-APB and 
acidic pH on TRPM6. (A and B) Effects of 
500 μM 2-APB on TRPM6 at pH 7.4 and 
pH 5.0. Changes in inward current are 
shown in B with expanded Y-axis scale. 
(C) Effects of acidic pH on TRPM6 inward 
current in the presence and absence of 
500 μM 2-APB. (D) Acidic pH enhanced 
the effects of 2-APB on TRPM6. The EC50 of 
2-APB evaluated using outward current 
was signifi cantly decreased from EC50 = 
205 ± 10 μM (n = 7, nHill = 1.7) at pH 7.4 
to EC50 = 96.8 ± 13.2 μM (n = 8, nHill = 
1.6) at pH 5.0.
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( Schlingmann et al., 2002; Walder et al., 2002; Schling-

mann and Gudermann, 2005; Schlingmann et al., 2005). 

Functional characteristics of TRPM7 have been well 

studied (Nadler et al., 2001; Runnels et al., 2001, 2002; 

Aarts et al., 2003; Kerschbaum et al., 2003; Monteilh-

Zoller et al., 2003; Hanano et al., 2004; Takezawa et al., 

2004; Elizondo et al., 2005; Kozak et al., 2005), whereas 

confl icting fi ndings in terms of whether TRPM6 forms 

functional channels have been reported (Chubanov 

et al., 2004; Voets et al., 2004). In the present study, al-

though we do not have explanations for the different 

fi ndings (Chubanov et al., 2004; Voets et al., 2004), 

we provide several lines of evidence demonstrating 

that TRPM6, TRPM7, and TRPM6/7 channels are bio-

physically and pharmacologically distinguishable, and 

that TRPM6, TRPM7, and TRPM6/7 form distinct 

ion channels.

First, TRPM6, TRPM7, and TRPM6/7 display differ-

ent divalent cation permeability profi les. Although 

TRPM6 (Voets et al., 2004), TRPM7 (Nadler et al., 2001; 

Runnels et al., 2001), and TRPM6/7 (Chubanov et al., 

2004) in heterologous expression systems produce 

identical outward rectifying I-V curves (Fig. 1 A and Fig. 

4, A–C), and exhibit similar permeation to Ca2+ and 

Mg2+ and other divalent cations, we found that the rela-

tive permeability to Ni2+ is signifi cantly different among 

these three different types of channels (Fig. 1). As the 

pore structure of a channel plays a crucial role in deter-

mining its ionic permeability and selectivity properties 

(Hille, 2003; Owsianik et al., 2005), the different ionic 

permeation profi les suggest that TRPM6, TRPM7, and 

TRPM6/7 channels comprise distinct channel pores.

Second, TRPM6, TRPM7, and TRPM6/7 exhibit dif-

ferent sensitivity to low pH. We previously demonstrated 

that external protons compete with divalent cations for 

the binding sites in the putative channel pore of TRPM7 

(Jiang et al., 2005). Between transmembrane domains 

5 and 6, there are seven negatively charged residues 

for TRPM7 and eight negatively charged residues for 

TRPM6. These differences in the pore structure may 

 explain the increased sensitivity of TRPM6/7 to low pH 

and the varied degree of potentiation in inward cur-

rents of TRPM6, TRPM7, and TRPM6/7 elicited by low 

pH (Fig. 3).

Third, the most striking biophysical difference among 

TRPM6, TRPM7, and TRPM6/7 is their unique single 

channel conductance. The unitary conductance of 

TRPM6 (83.6 pS) is much bigger than that of TRPM7 

(40.1 pS), although they share ?80% sequence identity 

in the putative pore region. When TRPM6 and TRPM7 

form heterotetramers, a novel conductance (56.6 pS) is 

produced. As the single channel conductance is a signa-

ture feature of an ion channel, these differences in sin-

gle channel conductance (Fig. 6) strongly suggest that 

TRPM6 forms homomeric channels as well as TRPM6/7 

heteromeric channels.

The new conductance obtained in TRPM6/7 coex-

pressing cells indicates that TRPM6 and TRPM7 indeed 

Figure 6. Unique single channel conductance of TRPM6, TRPM7, and TRPM6/7. (A–C) Representative recordings of TRPM6, 
TRPM6/7, and TRPM7 at various voltages in outside-out confi guration. Dashed lines represent zero current level. (D) Averaged current 
amplitude of TRPM6, TRPM7, and TRPM6/7 plotted as a function of test potentials. Linear regression fi t of the mean current amplitude 
produced the unitary conductance of 83.6 ± 1.7 (n = 8), 56.6 ± 3.7 (n = 6), and 40.1 ± 1.0 pS (n = 8) for TRPM6, TRPM6/7, and 
TRPM7, respectively.



 Li et al. 533

form functional heteromeric channels. This result is con-

sistent with previous fi ndings that TRPM6 and TRPM7 

physically interact (Chubanov et al., 2004; Schmitz et al., 

2005). It is interesting that an intermediate single chan-

nel conductance (56.6 pS) was obtained for TRPM6/7 

heteromeric channels. Heteromultimerization has been 

reported to occur within other highly homologous TRP 

channels, such as TRPC1/4/5 (Strubing et al., 2001, 

2003), TRP1/3 (Lintschinger et al., 2000), TRPC3/6/7 

(Vennekens et al., 2002), and TRPV5/6. The single 

channel conductance of TRPC1/5 multimers is much 

smaller than that of TRPC5 homomers (Strubing et al., 

2001). TRPV5/6 complex exhibits many properties in-

termediate to those of TRPV5 and TRPV6, yet the sin-

gle channel conductance of TRPV5/6 heterotetramer 

was not determined (Hoenderop et al., 2003). Durkun 

and colleagues demonstrated that hybrid gramicidin 

channels of [Gly1]gramicidin C and [Val1]gramicidin 

produce single channel conductances that are inter-

mediate to those of the corresponding symmetric 

channels (Durkin et al., 1990), whereas heterodimers 

of des-Val1-[Ala2]gA and [Val1]gA resulted in single 

channel conductances that are smaller than either of 

the symmetric channel types (Durkin et al., 1993). The 

intermediate single channel conductances have been 

observed for heteromeric K+ channels. When the WT 

and T442S mutant of Shaker potassium channel subunit 

form heteromultimers, four new intermediate single 

channel conductances are observed besides the two 

conductances of homomultimeric channels (Zheng 

and Sigworth, 1998). Intermediate single channel con-

ductances were also reported in heterotetrameric Kir 

1.1 channels (Wang et al., 2005). Coexpression of CNG 

channel subunits RET and RO133 yields four classes 

of intermediate conductance (Liu et al., 1996, 1998). 

Therefore, generation of intermediate single channel 

conductances is a common phenomenon observed in 

heteromultimer channels.

Figure 7. Histogram of single channel currents in TRPM6, TRPM6/7 (1:1 ratio), and TRPM7-expressing cells. (A, C, and E) Represen-
tative recordings of single channel opening at −60 mV from different cells. Two or three channels were observed in each patch. Dashed 
lines represent different closing or opening states of single channels. “C” represents closing state; “O1,” “O2,” “O3,” and “O4” represent 
different opening states; and “A1”, “A2,” and “A3” represent different current amplitudes. (B, D, and F) All point histogram of single 
channel current amplitudes obtained under each condition as shown in A, C, and E. Current amplitudes A1, A2, and A3 represent the 
amplitudes corresponding to the unitary conductances of 83.6 pS (TRPM6), 56.6 pS (TRPM6/7), and 40.1 pS (TRPM7), respectively. 
Note that there were three different conductances in TRPM6/7-expressing cells (C and D), whereas only one conductance was observed 
in TRPM6 (A and B) or TRPM7 (E and F) expressing cells. Similar results were observed in another three separated patches for each 
group (n = 4 for each group).
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We observed one intermediate single channel con-

ductance (56.6 pS) by coexpressing of TRPM6/7 plas-

mids at 1:1 ratio. This conductance might represent the 

heterotetrameric channels that compose two TRPM6 

and two TRPM7 subunits. It is possible that other inter-

mediate conductances can be produced when hetero-

tetramers are formed at 3:1 or 1:3 ratios of TRPM6 and 

TRPM7. Further experiments are required to address 

this question.

Fourth, TRPM6, TRPM7, and TRPM6/7 channels are 

differentially regulated by 2-APB. The detailed mecha-

nism by which 2-APB modulates TRPM6, TRPM7, and 

TRPM6/7 requires further investigation. However, it is 

apparent that the mechanism of 2-APB’s effects is dif-

ferent from that of protons, because the effects of 

2-APB and protons on TRPM6 are additive (Fig. 5). The 

different responses to 500 μM 2-APB among TRPM6, 

TRPM7, and TRPM6/7 are so striking that TRPM6, 

TRPM7, and TRPM6/7 currents can be differentiated 

by 500 μM 2-APB. Therefore, the effect of 2-APB repre-

sents an independent line of evidence indicating that 

TRPM6, TRPM7, and TRPM6/7 form three distinct 

types of ion channels.

2-APB was initially found to inhibit IP3 recep-

tor, thereby suppressing intracellular Ca2+ release 

(Maruyama et al., 1997; Wu et al., 2000). Recent stud-

ies have demonstrated that this compound exhibits ef-

fects on ICRAC (Prakriya and Lewis, 2001; Bootman et al., 

2002), TRP channels (Voets et al., 2001; Chung et al., 

2004, 2005; Hu et al., 2004; Wicher et al., 2005; Xu 

et al., 2005), SERCA Ca2+ pumps (Bilmen et al., 2002), 

endogenous nonselective cation current (Braun et al., 

2003), and anion channels (Lemonnier et al., 2004). 

The clearly opposite effects of 2-APB at micromolar 

concentrations on TRPM6 and TRPM7 is intriguing, 

as TRPM6 and TRPM7 share 50–80% similarities. It 

is also interesting that 2-APB produces dual-effects on 

TRPM7 (Fig. 4 F) but not on TRPM6 (not depicted) 

or TRPM6/7 (Fig. 4 E). The concentration window of 

2-APB for inhibiting and activating of TRPM7 is very 

narrow. A similar dual-effect of 2-APB on ICRAC has 

been previously reported (Prakriya and Lewis, 2001). 

Prakriya and Lewis found that 5 μM 2-APB signifi cantly 

increases ICRAC, whereas 10 μM 2-APB initially poten-

tiates ICRAC and then irreversibly inhibits ICRAC. The 

mechanism of the dual-effect of 2-APB is unknown, yet 

it is possible that 2-APB binds to different sites of the 

channel protein, therefore producing opposite effects 

on TRPM7. Although 2-APB may not produce physio-

logical and/or pathological impact due to the high con-

centrations required, it is a useful tool to differentiate 

TRPM6, TRPM7, and TRPM6/7. Indeed, in an attempt 

to record endogenous TRPM6 currents in MDCT cell 

line, we found that MagNuM/MIC currents in MDCT 

cells were inhibited by 500 μM 2-APB but potentiated 

by 2 mM 2-APB (see Fig. S1, available at http://www.jgp.

org/cgi/content/full/jgp.200609502), suggesting that 

TRPM6 currents and TRPM6/7 currents are unlikely 

Figure 8. Increased Mg2+ and Ca2+ permeability 
of TRPM6. (A and B) Effects of 2-APB on TRPM6 
currents recorded in isotonic 120 Ca2+ and 120 
Mg2+ solutions (in mM) with P2 pipette solution. 
(C) Inward currents measured at −120 mV plot-
ted against time. (D) Average inward current 
density of TRPM6 under the indicated condi-
tions (n = 8).
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present in MDCT cell line under our experimental con-

ditions. Therefore, although TRPM6 has been found to 

be highly expressed in the native distal convoluted tu-

bule (DCT) (Voets et al., 2004), the DCT cell line derived 

from mouse may not be a good model system to study 

TRPM6. More detailed studies are required in order to 

understand the underlying mechanisms by which 2-APB 

activates TRPM6 and inhibits TRPM7 at low concentra-

tions, as well as activates TRPM7 at high concentrations.

Potential Signifi cance
The present study provides strong evidence indicating 

that the channel kinase, TRPM6, whose mutations cause 

HSH (Schlingmann et al., 2002, 2005; Walder et al., 

2002), forms functional homomeric channels by itself 

and heteromeric channels with TRPM7. Understanding 

the unique functional characteristics of TRPM6 will ex-

tend our understanding of potential roles and regula-

tory mechanisms of TRPM6 in HSH.

The unique properties of TRPM6 discovered in the 

present study, including the unique single channel con-

ductance, activation by 2-APB, and sensitivity to low pH, 

may serve as functional identifi cations of TRPM6, which 

could be used as potential tools to distinguish TRPM6 

from TRPM7 and TRPM6/7 channels. TRPM6 and 

TRPM7 share 50% sequence identity and are the closest 

homologues in the TRPM subfamily. There were no 

available tools to differentiate TRPM6 and TRPM7 

channels because the known properties (Voets et al., 

2004), such as outward rectifying I-V curve, intracellular 

Mg2+ regulation, and external Ca2+ and Mg2+ block of 

the two channels, are similar. We have shown in the 

present study that TRPM6, TRPM7, and TRPM6/7 

channel activities are differentially regulated by 2-APB. 

While TRPM6 is maximally increased by 500 μM 2-APB, 

TRPM7 is largely inhibited by the same concentration 

of 2-APB but signifi cantly activated by 2 mM 2-APB; 

TRPM6/7 is slightly increased by 500 μM 2-APB but 

 signifi cantly increased by 2 mM 2-APB. Although 2-APB 

also increases TRPV1, TRPV2, TRPV3 (Chung et al., 

2004; Hu et al., 2004), and TRPV6 (Voets et al., 2001) 

and inhibits TRPC5 (Xu et al., 2005), TRPC6, and 

TRPM8 (Chung et al., 2004; Hu et al., 2004), the unique 

responses of TRPM6, TRPM7, and TRPM6/7 to 2-APB, 

in conjugation with other features of TRPM6 and 

TRPM7, such as different sensitivity to pH and unique 

single channel conductances, should prove to be useful 

in distinguishing endogenous TRPM6, TRPM7, and 

TRPM6/7 currents.

The increased channel activity of TRPM6 and 

TRPM6/7 by 2-APB provides the fi rst evidence that 

these Mg2+-permeable channels can be pharmacologi-

cally activated. Moreover, both Mg2+ and Ca2+ currents 

through TRPM6 were increased (Fig. 8), implying that 

it is possible to increase Mg2+ and Ca2+ absorption by 

regulating TRPM6 and TRPM6/7 channel activities. 

Given the potential importance of TRPM6 and TRPM7 

in Mg2+ homeostasis (Nadler et al., 2001; Schlingmann 

et al., 2002; Walder et al., 2002; Schmitz et al., 2003, 

2005; Schlingmann and Gudermann, 2005; Schling-

mann et al., 2005; Schmitz et al., 2005), our fi ndings 

that channel activity and Mg2+ entry of TRPM6 and 

TRPM6/7 can be increased by 2-APB may provide an 

important clue as to searching or designing channel ac-

tivators to increase Mg2+ entry.

Potential Limitations
Our data indicate that TRPM6 forms functional homo-

meric channels by itself, as well as heteromeric channels 

in combination with TRPM7. Since all the experiments 

were performed in CHOK1 cells that contain endoge-

nous TRPM7, we cannot exclude the possibility that en-

dogenous TRPM7 may have played a role in functional 

expression of TRPM6. However, given that the endoge-

nous TRPM7 current amplitude of CHOK1 cells is only 

1/10 that of the TRPM6 current amplitude, the pre-

dominant channel form (90%) should be homomeric 

TRPM6 channels when TRPM6 is overexpressed in 

CHOK1 cells. In addition, we also transfected TRPM6 

to HEK-293 cells, which have larger endogenous TRPM7 

currents than CHOK1 cells. No differences in current 

amplitude and 2-APB response were observed between 

TRPM6 expressed in CHOK1 cells and HEK-293 cells 

(unpublished data). Nonetheless, the dramatic differ-

ences in single channel conductance, 2-APB response, 

divalent cation permeability, and pH sensitivity indicate 

that TRPM6, TRPM7, and TRPM6/7 are three distinct 

types of channels. Future studies using cells from 

TRPM7 knockout animals will help to clarify whether 

TRPM6 can form the same functional channels in the 

absence of TRPM7.

In TRPM6/7 coexpression experiment, we used 1:1 

ratio of TRPM6 and TRPM7 cDNA for transfection. 

However, it is diffi cult to know whether the TRPM6/7 

complexes have 1:1 ratio of TRPM6 and TRPM7 subu-

nits. Investigating single channel properties and whole-

cell TRPM6/7 current characteristics by coexpressing 

TRPM6 and TRPM7 at various ratios, or by making con-

catemeric channels as previous reported (Hoenderop 

et al., 2003), will answer if the biophysical and pharma-

cological properties of TRPM6/7 complexes are differ-

ent when the complexes contain different compositions 

of TRPM6 and TRPM7 subunits. This will provide insight 

into subunit stoichiometry of TRPM6/7 heteromers in 

heterologous expression systems and shed light on en-

dogenous TRPM6/7 complex confi gurations.

In conclusion, we demonstrated that TRPM6, TRPM7, 

and TRPM6/7 represent three different types of chan-

nels with unique functional characteristics. Our data in-

dicate that both TRPM6 and TRPM7 are able to form 

homotetrameric as well as heterotretrameric channels. 

The distinct characteristics of TRPM6, TRPM7, and 
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TRPM6/7 suggest that they may play different roles un-

der physiological and/or pathological conditions. The 

increased channel activity of TRPM6 and TRPM6/7 by 

2-APB and increased Mg2+ entry through TRPM6 may 

provide new insight into channel regulation and infor-

mation in designing channel activators to facilitate 

Mg2+ absorption.
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