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Large-scale genetic interaction (GI) screens in yeast have been invaluable for our understanding of molecular systems biol-
ogy and for characterizing novel gene function. Owing in part to the high costs and long experiment times required, a pre-
ponderance of GI data has been generated in a single environmental condition. However, an unknown fraction of GIs may
be specific to other conditions. Here, we developed a pooled-growth CRISPRi-based sequencing assay for GIs, CRISPRiSeq,
which increases throughput such that GIs can be easily assayed across multiple growth conditions. We assayed the fitness of
approximately 17,000 strains encompassing approximately 7700 pairwise interactions in five conditions and found that the
additional conditions increased the number of GIs detected nearly threefold over the number detected in rich media alone.
In addition, we found that condition-specific GIs are prevalent and improved the power to functionally classify genes.
Finally, we found new links during respiratory growth between members of the Ras nutrient–sensing pathway and both
the COG complex and a gene of unknown function. Our results highlight the potential of conditional GI screens to improve
our understanding of cellular genetic networks.

[Supplemental material is available for this article.]

Large-scale interrogation of biological systems across environ-
mental perturbations has been invaluable to our understanding
of molecular and systems biology. Examples of studies across
perturbations in Saccharomyces cerevisiae include genome-scale
measurements of RNA (Gasch et al. 2000) and protein levels
(Newman et al. 2006), as well as the effects of individual gene-
loss on growth (Hillenmeyer et al. 2008). Large-scale perturbation
studies of genetic interactions (GIs) provide potentially fertile
ground to uncover new biology, in which a GI is defined as an un-
expected double-mutant fitness, based on the fitness of the corre-
sponding single mutants (Phillips et al. 2000). A GI can be either
positive or negative, depending on whether the observed double-
mutant fitness is, respectively, higher or lower than expectation.
GI screens have been a crucial tool for identifying new gene func-
tions, because genes with similar functions have been shown to
have correlated GI profiles (Schuldiner et al. 2005; Pan et al.
2006; St Onge et al. 2007; Costanzo et al. 2010). Recently, screens
for higher-order GIs have yielded additional novel insights
(Kuzmin et al. 2018). However, the majority of GI screening has
been performed in a single growth condition, meaning that GIs
that are specific to other conditions remain largely undiscovered.
Indeed, a handful of GI perturbation studies performed in yeast
and other organisms have uncovered many new GIs (St Onge
et al. 2007; Musso et al. 2008; Bandyopadhyay et al. 2010;
Guénolé et al. 2013; Barker et al. 2015; Fischer et al. 2015; Martin

et al. 2015; Kumar et al. 2016), suggesting that further conditional
GI screensmay reveal the functionofuncharacterized genes (∼10%
of the yeast genome) or discover new functions of those already
characterized. In addition to functional discovery, further condi-
tional GI screens will reveal the extent to which the GI network is
dynamic, andprovide information as towhichparts of thenetwork
change in response to a particular perturbation.

The most widely used technique to perform GI screens in
yeast, synthetic genetic array (SGA), uses robotic systems to gener-
ate experimental strains through several rounds of mating and se-
lection (Tong et al. 2001). SGA requires that individual strains be
kept spatially segregated, and as a result, large collections are im-
practical to store and difficult to reassay under new conditions.
Pooled assays provide a potentially powerful alternative, because
they require significantly less space and resources to generate,
store, and subsequently assay across conditions (Pan et al. 2004;
Decourty et al. 2008; Jaffe et al. 2017; Díaz-Mejía et al. 2018).
Recently, we introduced a DNA barcode-fusion–based method,
iSeq, to perform GI screens in a pooled format (Jaffe et al. 2017).
Although this approach made it possible to easily retest the fitness
across multiple conditions, it was limited both by the two rounds
of arrayed mating and selection and by the influence of segregat-
ing variation and de novo mutations that occur during strain gen-
eration, which impacted reproducibility. A related method has
since been introduced, also relying on barcode fusion, that increas-
es throughput of strain generation by performing a pooledmating
to generate double mutants (Díaz-Mejía et al. 2018). However,
whole-genome sequencing, in these and other studies, has shown
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that spontaneous mutations occur often during strain generation,
leading to confounding genetic variation between ostensibly rep-
licate strains (van Leeuwen et al. 2016; Jaffe et al. 2017; Díaz-Mejía
et al. 2018). These types ofmutationsmay be partly responsible for
the relatively low reproducibility previously observed across repli-
cate SGA screens (Schuldiner et al. 2005; Jasnos and Korona 2007;
Dodgson et al. 2016).

To minimize the occurrence and selection of spontaneous
mutations, we turned to an inducible system of genetic knock-
down,CRISPR interference (CRISPRi). CRISPRi relies on the expres-
sion of a single guide RNA (gRNA), which localizes a catalytically
inactive Streptococcus pyrogenes dCas9 protein to the promoter of
a target gene to knock down its expression by blocking transcrip-
tion (Qi et al. 2013). CRISPRi has been adopted in many model
systems, and either the gRNA or dCas9 expression can be placed
under an inducible promoter (Smith et al. 2016; Liu et al. 2017).
In yeast, dCas9 fused with the transcriptional repressor Mxi1 has
yielded target knockdown levels of up to 53-fold for endogenous
targets (Smith et al. 2016; Gilbert et al. 2013). Because gene ex-
pression is repressed only after induction of theCRISPRi system, es-
sential genes can be targeted. Furthermore, one can study a
gradient of effects by including, for each target gene, multiple
gRNA sequences that vary in their knockdown efficiencies (Peters
et al. 2016; Deaner and Alper 2017; Liu et al. 2017; Smith et al.
2017). Although CRISPRi screens in yeast have thus far focused
mainly on single-gene knockdowns (Deaner and Alper 2017;
Smith et al. 2017; Vanegas et al. 2017), two studies report success-
fully using CRISPRi to test for GIs between 16 genes in bacteria
(Peters et al. 2016) and 107 genes in mammalian cells (Du et al.
2017). Additionally, there have been several GI studies inmamma-
lian systems that use the catalytically active Cas9 enzyme, further
illustrating the biological utility of such combinatorial screens
(e.g., Dixit et al. 2016, Wong et al. 2016, Han et al. 2017). Here
we introduce a novel pooled-growth CRISPRi-based method in
yeast, CRISPRiSeq, whichwe used to assay for GIs between approx-
imately 7700 gene pairs across five experimental conditions using
approximately 17,000 strains.

Results

Gene targets chosen for CRISPRiSeq

Wehavepreviouslydeveloped amethod toquickly generate single-
gene knockdown strains using CRISPRi and to assay for growth de-
fects in a pooled format (Smith et al. 2016, 2017).Here,weaimed to
extend this framework to conditional screening of GI networks.
First,we selectedandpooled760 singleCRISPRi strainswitha range
of known growth defects (see Supplemental Methods; Smith et al.
2017). Together, the 760 single CRISPRi strains carry gRNAs target-
ing 403 essential genes and 56 genes involved in respiration
(Supplemental Table S1), spanning 97 GO-Slim Biological Process
annotations (Hong et al. 2008), with up to five unique gRNAs per
gene. In contrast to studies that use newly designed guide sequenc-
es (typically including up to 10 targeting sequences per gene), our
guides had been previously validated (Smith et al. 2017), which al-
lowed us to decrease the number of guides targeting each gene and
thereby increase the number of unique genes included in this
study.We also generated 22 additional control starting pool strains
carrying nontargeting guides (see Supplemental Methods). Each
starting pool strain carries a constitutively expressed dCas9-Mxi1
fusion, which has defective nuclease activity, a constitutively ex-
pressed Tet repressor protein (TetR), as well as a gRNA under an

ATc-inducible promoter integrated at the neutral YBR209W locus
(Breslow et al. 2008; Kao and Sherlock 2008; Pelechano et al.
2013). Because gRNA expression is inducible, a growth defect con-
ferred by CRISPRi-induced gene-expression knockdown is unlikely
to occur in the absence of ATc, which minimizes the selection of
suppressor mutations during strain generation and before fitness
measurement. Furthermore, in contrast to systems that express
gRNAs directly off of plasmids or systems that integrate gRNAs ran-
domly in thegenome, our systemof genomic integrationof a single
copy of each gRNA at a known genomic location eliminates exper-
imental noise due to gRNA copy number variation and variability
in integration site.

Next, a total of 17 genes was chosen as “query” targets, and
plasmids carrying ATc-inducible gRNAs and a 25-nucleotide (nt)
DNA barcode identifier (BC) were generated as described in the
Methods, with up to two unique gRNAs chosen for each gene tar-
get. Query plasmids for three nontargeting control guides were
also generated. The query gene targets included three proteasome,
five secretory pathway, three small ribosome biogenesis, and three
large ribosomebiogenesis genes. Previouswork has shown that the
chosen query gene targets sharing the same annotated biological
process show GIs with similar subsets of the genes targeted in
our starting pool strains (Costanzo et al. 2016). We also chose to
include two uncharacterized genes (YCR016W and YLR050W)
and SAP30, amember of the Rpd3L histone deacetylation complex
(Supplemental Table S1).

Characterizing gRNA efficacy using a GFP-based assay

Before generating double CRISPRi strains, we developed an assay
to functionally validate CRISPRi-mediated target protein knock-
down, a phenotype more proximal to eventual gene function
than mRNA level. gRNAs present in our starting pool had previ-
ously been validated for activity by either a fitness assay or qPCR
(Smith et al. 2017); however, a subset of the gRNA sequences cho-
sen for this studywas newly designed and thus had not been previ-
ously validated. To validate these remaining gRNAs, we obtained
seven strains from the yeast GFP fusion collection (Huh et al.
2003) and then derived two or three strains from each by introduc-
ing one or two gene-targeting and one nontargeting control
CRISPRi plasmids to each. Flow cytometry analysis on 50:50 mix-
tures of each GFP collection strain with a nonfluorescent control
(BY4741) revealed that four of the strains had high enough GFP-
tagged protein expression to form a distinct population from the
non-GFP control when plotting fluorescence against cell size
(Supplemental Fig. S1A). The remaining three GFP strain popula-
tions partially overlapped with the nonfluorescent control strain,
but expression levels were still high enough to detect potential
knockdownuponCRISPRi induction, as these strainshad reported-
ly detectable GFP levels (Newman et al. 2006). Visual inspection of
plots of the fluorescence versus cell size of CRISPRi-induced versus
-uninduced samples revealed a marked reduction in fluorescence
upon CRISPRi induction (Supplemental Fig. S1B). However, in all
cases, the reduction in the inducedCRISPRi samplewas not a com-
plete ablationofGFP (i.e., fluorescence levelswere always distinctly
higher than the non-GFP control); this could be due in part to
the GFP fusion proteins having longer half-lives than the time of
induction (4 h), with the decrease in fluorescence likely because
of the dilution of starting protein levels during cell division.
We quantified this reduction by calculating residuals for each cell
in a sample from a loess regression fit to the uninduced sample,
and showed that all seven strains carrying a gene-targeting plasmid
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had a significant decrease in GFP compared with that of an unin-
duced control (Fig. 1A). No significant decrease in GFP was
detected in three of the four nontargeting control samples tested
(Fig. 1A).

Rapid generation and conditional screening of more than 17,000
double CRISPRi strains

We next developed a protocol to rapidly generate double CRISPRi
strains compatiblewith a sequencing-based conditional pooled fit-
ness assay. Previously, we have built collections of approximately
500,000barcoded yeast usingCre-mediated recombination to inte-
grate a barcoded plasmid library (Levy et al. 2015).Here,we applied
the same principle to add second gRNAs to our CRISPRi strain
library. The guide locus (YBR209W) of each strain of the CRISPRi
library carried a gRNA, a 5′ half of the URA3 selectable marker, an
artificial intron, a loxP variant (lox71) site (Fig. 1B), and a galactose
inducibleCre recombinase gene. Eachqueryplasmidcontainedan-
other loxP variant (lox66) site, a unique DNA barcode, a gRNA, the
complementary 3′ half of theURA3marker, and an artificial intron.
After transformation of a query plasmid into the starting pool, and
induction of Cre-recombinase, successful genomic integration of
the plasmid can be selected by growth on media lacking uracil
(Levy et al. 2015; Jaffe et al. 2017; Smith et al. 2017). We trans-
formed each of our 25 query plasmids into one or more pools con-
sisting of subsets of our 782 starting strains. This strain generation
strategywas implemented to span all possible gene–gene combina-
tions while leaving out a subset of guide–guide combinations. This
strategy was necessary to remove sequencing artifacts during a
downstream analysis step, which requires that not all possible
double guide combinations are present in the pool (for details,
see Methods). We collected an average of 52 plasmid insertion
events per resulting double CRISPRi strain. In total, we aimed to
generate 17,069 double CRISPRi strains, which included 15,200
double-gene knockdowns, as well as 1769 single-gene knockdown
and 100 no-gene knockdown controls (for details, see Methods)
(Fig. 1C). During pooled growth, each strain can be uniquely iden-
tified by sequencing amplicons of the YBR209W guide locus carry-
ing the gRNA sequence derived from the starting pool strain and
DNA barcode derived from the query plasmid.

Having generated a unique genotype identifier for each dou-
ble CRISPRi strain allowed us to easily and quantitatively measure
the fitness of each strain in parallel and across multiple growth
conditions. We pooled all double CRISPRi strains, propagated the
pool by serial batch culture (see below), sequenced gRNA/barcode
amplicons at the end of each of the three growth cycles, and used
changes in amplicon frequencies as a proxy for fitness (described
in Methods and Supplemental Methods) (Fig. 1D; see diagram in
Supplemental Fig. S2; Jaffe et al. 2017). We tested five growth con-
ditions in triplicate. Four conditions were performed by diluting
1:4 every 24h (about twogenerations per cycle): YPD24hr (fermen-
tative growth in rich media), YPD37C (high temperature, 37°C),
YPEG (respiratory growth), and SC-URA (media lacking uracil).
One condition was performed by diluting 1:8 every 48 h (about
three generations per cycle): YPD48hr (fermentative growth in
richmedia). Only 14 of the 17,069 strains (0.08%)were undetected
at time point zero (before the start of the fitness assay), and we
observed relatively even coverage across strains, with just a 2.4-
fold difference between first and third quartile coverage values
(Supplemental Fig. S3). Overall, we estimated fitness in all five con-
ditions for 85% of our double-gene knockdown strains, whereas in
any single condition, fitness was unmeasurable for between 0.5%

and 11.7% of strains because of low relative frequency in at least
one sample (for details on thresholds used, see Supplemental
Methods).

Assay reproducibility and characteristics

To characterize the reproducibility in our screen, we first examined
fitness correlations of all strains across replicate cultures and gen-
erally observed high correlations (mean Spearman’s rho for all
comparisons =0.90, median SD across replicates = 0.053) (Fig. 1E;
Supplemental Fig. S4). Independently constructed strains with
the same gRNA pair also showed high fitness correlations, indicat-
ing that strain construction artifacts were rare (Spearman’s rho=
0.87 and 0.92, median SD of 0.034 across single-gene knockdown
replicate strains) (Fig. 1F; Supplemental Fig. S5A). Furthermore, fit-
ness of single-mutant strains carrying a nontargeting control guide
from the query plasmid correlated well (rho=0.53 and 0.68, for
YPD and YPEG, respectively) with our previously published data
using strains without a nontargeting control (Smith et al. 2017;
Supplemental Fig. S5B). Notably, 13 strains carried two copies of
an identical guide sequence, and in 96.9% of comparisons (126
of 130), the fitness defect of the strain carrying two guide copies
was greater than the defect present in the single-mutant control
(Supplemental Fig. S5C), which further supports our finding in
Supplemental Figure S1B that CRISPRi gene knockdown is only
partial.

Identification of GIs

Next, we used these data to identify significant GIs in each of our
five growth conditions. Standard practice is to use a multiplicative
model to define the expected double-mutant fitness, which is the
product of the two single-mutant fitnesses (Phillips et al. 2000).
However, in most cases we observed a positive bias from the mul-
tiplicative expectation, suggesting this model was not appropriate
(Fig. 1G): The distribution of interaction scores calculated was cen-
tered above zero (Fig. 1G, inset). The magnitude of this positive
bias varied both by the query guide and the environmental condi-
tion (Supplemental Fig. S6). Taking these observations into ac-
count and operating under the assumption that most gene pairs
do not genetically interact, we recalculated the expectation empir-
ically using a linear model for each group of double mutants de-
rived from the same query guide in each condition as has been
performed previously for pooledGI screens inmammalian systems
(seeMethods; Supplemental Fig. S6) (Bassik et al. 2013). For double
mutants derived from the query guide targeting Rpd3L histone
deacetylase complex member SAP30, a linear model did not fit
the data (Fig. 1H).We observed that in YPD andYPEG, a significant
proportion of the growth defects induced by the guides derived
from the starting pool strains was alleviated upon the additional
knockdown of SAP30 (25%–42% of guides). Thus, for SAP30g7-
derived double mutants, we calculated the interaction score as
the deviation of the double-mutant fitness from expectation based
on the multiplicative model.

To assess whether our GI scores were reasonable, we first used
data for the 78 pairs of strains carrying the same two gRNAs in re-
verse orientation. Although the majority of these gene pairs did
not show a significant GI in any of the five growth conditions,
we nevertheless observedmodest agreement between theGI scores
for replicate strains in each condition (Spearman’s rho=0.39)
(Supplemental Fig. S6F, gray box indicates significance threshold).
Furthermore, two of the strongest negative GIs we observed in
rich media were between SEC22 and either BET1 or SED5, gene
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Figure 1. Rapid double CRISPRi strain generation and parallel fitness measurement of approximately 17,000 mutants. (A) Boxplots depicting the distri-
butions of residuals for GFP-tagged strains carrying either a gene-targeting (i), or nontargeting control (ii) CRISPRi plasmid and grown for 4 h in inducing
(+ATc; red) or noninducing (−ATc; turquoise) conditions. Residuals were calculated from a loess regression fit to the uninduced sample (for details, see
Methods). Asterisks indicate significant changes in distributions upon induction with ATc (P<10−8 by Student’s t-test). (B) Constructs used during the gen-
eration of double CRISPRi strains via transformation of a query plasmid into a pool of starting strains. (AI) Artificial intron; (BC) DNA barcode. (C) Guide
combinations resulting in the single-, double-, and no-gene knockdown control strains generated for this study (for details, see Methods).
(D) Representative normalized relative frequency trajectories from pooled fitness assay of approximately 17,000 strains in one replicate culture of YPD;
time points are collected every 24 h. Trajectories are used to estimate fitness. Raw count data are derived from amplicon sequencing.
(E,F) Reproducibility of fitness from pooled assay across two replicate YPD cultures with 24-h transfer time (E; approximately 17,000 strains) and replica
strains carrying the same two gRNA sequences in reverse orientations (F; 78 pairs of strains in each of five conditions). Spearman’s rho for each comparison
is displayed. (G) Observed double-mutant fitness compared with expectation calculated using the multiplicative model. Inset is a histogram of residuals
from expectation for each observed double mutant; vertical line is at x=0. (H) Same plot as in G, but only for SAP30g7 containing double knockdowns.
Red points have a z-score >2. For E–H, diagonal lines are y= x. For F–H, data are shown from all five growth conditions.

Pooled genetic interaction screening in yeast with CRISPRiSeq

Genome Research 671
www.genome.org



pairs known to be synthetically lethal (Newman et al. 1990; Sacher
et al. 1997), suggesting that our screening technology is capable of
detecting previously identified GIs. To investigate the mechanism
underlying the high frequency of positive interactions with
SAP30, we used qPCR to test whether SAP30 knockdown results
in an increase in mRNA expression for three gene targets observed
to positively interact with SAP30 (see Supplemental Methods).
Two of these genes increased in expression upon SAP30 knock-
down, suggesting SAP30 knockdown can suppress the effects of
a second guide by increasing mRNA expression (Supplemental
Fig. S7).

Increased GI discovery from screening in multiple conditions

We calculated the number of significant GIs in each condition us-
ing a significance threshold of an absolute z-score greater than two
(Fig. 2A, barplot). Depending on the condition, between 1.2% and
10.2% of guide pairs interacted significantly, and the cumulative
proportion of unique pairs increased with each additional condi-
tion tested (Fig. 2A, line). In total, 14.7% of the 12,715 guide pairs
for which we had a GI estimate for all conditions showed an inter-
action in at least one condition (Fig. 2B), representing 20.7%of the
6841 unique gene pairs in our screen. The SAP30 targeting query

A

B

E

C D

Figure 2. Condition-specific versus condition-independent GIs detected via CRISPRiSeq in five conditions. (A) Bar plot depicting number of significant
GIs detected between guide pairs in each of five growth conditions tested. Negative and positive GIs are distinguished by shading, and positive interactions
with SAP30 have a dotted pattern. Lines indicate the cumulative total of unique interactions (circles) and condition-specific interactions (triangles). (B–D)
Network diagrams of significant interactions measured in at least one condition (B), YPDmedia with a 48-h transfer time (C ) or YP + ethanol + glycerol me-
dia (D). Nodes represent guides; query guides are colored by their target’s biological process. In B, blue edges are negative interactions; gold are positive. In
C,D, gray edges are interactions detected in the condition; red are condition-specific. (E) Heatmap depicting mean GI score across three to 10 replicate
strains for gene pairs passing significance in at least one condition (95% CI nonoverlapping with absolute z-score of one; denoted with asterisk). For
gene pair labels, see Supplemental Figure S8.
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guide, which we previously noted rescuedmany single-mutant fit-
ness defects, accounted for the majority of significant positive in-
teractions in both of the YPD conditions. After removing these
pairs, a total of 16.9% of the remaining 6391 gene pairs interacted.
To further validate our choice in using a z-score threshold to iden-
tify GIs, we reanalyzed the data using amethod to call significance
that instead was based on false-discovery rate (Supplemental Note
1; Supplemental Table S3). Similar to our z-score–based threshold,
we observed an increase in the number of GIs with the number of
conditions screened, suggesting this result was not an artifact of
using a z-score–based threshold to call significance.

Tounderstand the frequencyof condition-specific versus con-
dition-independent GIs, we first defined condition-specific GIs as
guide pairs with an absolute z-score greater than two in one condi-
tion and less than one in all other conditions. In total, 3.6% of
guide pairs had a condition-specific GI, andmost of these were ob-
served in YPEG (Fig. 2A,C,D). Pairwise comparisons of GI scores be-
tween conditions revealed a general positive correlation across
conditions, with only 25 GI scores switching sign with condition
(Supplemental Fig. S8A). Most GIs observed in YPD24hr were also
observed in YPD48hr (229 of 267, 85.8%), although the magni-
tudes of the scores generally increased with a longer time between
transfers (mean fold increase in score of 1.4 in 48 h for significant
GIs in both conditions) (Supplemental Fig. S8A).When comparing
the two YPD transfer conditions (24 h and 48 h) to YPEG, we saw a
slightly stronger correlation between GI scores with the longer
transfer time to YPEG (R2 = 0.52 vs. 0.58) (Supplemental Fig.
S8A), possibly reflectingan increased roleof respiratorygrowthdur-
ing 48-h growth cycles.

To more confidently identify significantly interacting gene
pairs in each condition, we aggregated estimates from replicate
strains carrying guide pairs that targeted the same gene pair. In to-
tal, 198 gene pairs had a significant GI in at least one condition (of
the 1711 total gene pairs measured with at least three replicate
strains; 95% CI nonoverlapping with an absolute z-score score
greater than one) (Fig. 2E; Supplemental Fig. S8B).

Additional environments improve biological classification

We used our entire conditional GI data set to characterize biologi-
cal function. As a first test, we compared different query gRNA se-
quences that target the same gene (either SEC22 or PRE4) and
observed that GI scores were correlated across the 760 paired
gRNAs in all five growth conditions (R2 = 0.71 for SEC22 and
0.26 for PRE4, both at or above the 75th percentile of pairwise
comparisons of guides targeting different genes). For the remain-
ing pairwise comparisons, query guides targeting the same biopro-
cess tended to have higher GI profile similarity than those with
different targets (P=3.4 ×10−9 Wilcoxon rank-sum test) (Supple-
mental Fig. S9). The GI profiles of COG8 and the uncharacterized
ORF YCR016W were among the most correlated in our set (R2 of
0.74) (Supplemental Fig. S9), suggesting a potentially similar role
in the cell. This high degree of similarity was driven by approxi-
mately 30 shared positive interactions in YPEG, which were en-
riched (P=4.7 ×10−5, hypergeometric test) for guides targeting
genes involved in signaling, including Ras-, RAM-, and Tor-path-
way signaling, and two guanine–nucleotide exchange factors in-
volved in translation. We next asked if the 760 guides in the
starting pool could be classified by function using GIs with only
the 20 query guides. By using our entire data set, which includes
all five conditions, we observed a clear increase in the distributions
of GI profile correlations for guides targeting the same gene or bi-

ological process, as defined by GO-Slim annotations, over those
with different targets (Fig. 3A). However, it was unclear if assaying
multiple conditions had improved the separation between the dis-
tributions. To investigate this possibility, we partitioned GI scores
bywhich condition theyweremeasured in and calculated a receiv-
er operating characteristic (ROC) curve for each possible subset of
one, two, three, four, or five conditions. For this analysis, ROC
curves diagnose the classification of whether two guides target
the same gene using the correlation in GI scores by plotting the
“true-positive rate” versus the “false-positive rate” at various
thresholds of Spearman’s rho (Fig. 3B).Weobserved a clear increase
in area under the curve (AUC), or classification performance, with
the number of conditions used (Fig. 3C, purple points). We also
performed the same analysis on all possible subsets of conditions
from the entire data set after randomly permuting the data
for each query guide in each condition and observed all power to
classify function was lost (Fig. 3C, gray points). To determine
whether the improvement in classification with additional condi-
tions is a general property of having more data rather than more
conditions, we randomly selected 20, 40, 60, or 80 query genes (ig-
noring which condition they were measured in and taking eight
replicate samplings each) and performed the same analysis. Again,
we observed clear increases in AUC with the amount of data used,
indicating that functional classification generally improves with
more GI data (Supplemental Fig. S10, green points). Precision-
recall curves, quantifying the true-positive rate versus the positive
predict power, showed a similar trend of improved classification
with additional data (Supplemental Fig. S10). To visualize the im-
pact of assaying more conditions and thus generating more GI
data, we constructed GI profile correlation networks using data
from one condition or using the entire data set. We observed qual-
itatively that usingmore conditions resulted in better clustering of
gRNAs targeting genes in the samebiological process, as defined by
GO-Slim annotations (correlation threshold controlled for a 0.5%
false-positive rate; see Methods) (Fig. 3D; Supplemental Fig. S11).

Comparison of CRISPRiSeq to SGA

We compared our CRISPRi-based GI scores to the most compre-
hensive published GI study that uses SGA technology (Costanzo
et al. 2016). There are many major experimental differences be-
tween the two screens that may limit the expected overlap: (1)
We used CRISPRi to knock down transcription of the genes of in-
terest, whereas SGA has used temperature-sensitive, dAMP (de-
creased abundance by mRNA perturbation) and gene deletion
alleles; (2) we assayed in liquid culture instead of on agar plates;
(3) we quantified fitness by competitive growth instead of by col-
ony size; (4) we assayed several different growth conditions instead
of one; (5) there are differences in strain background; and (6) the
definition of GI used is slightly different (see Methods). After ac-
knowledging these differences, to compare the data of Costanzo
et al. (2016) to our data, we excluded gene pairs that included
the highly suppressive SAP30 guide (discussed more below), and
characterized a gene pair as interacting in our study if we observed
a significant GI (absolute z-score greater than two) in any of the
five conditions assayed. A total of 5072 unique gene pairs were
measured in both studies, and the majority showed no significant
GI in either study (67.1%) (Supplemental Table S4). Of the remain-
ing 1671 gene pairs, most observed GIs were unique to one study
or the other: 45% were only observed in our data, whereas 41%
were only observed by Costanzo et al. (2016). Only 149 gene pairs
had a significant GI common to both studies, with the remaining
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74 gene pairs having switched signs of GI between the studies.
Although there was no significant overlap between the lists of
gene pairs with positive interactions, the overlap between those
with negative interactions was significant (P=2.5 × 10−7, hyper-
geometric test).

Validation of condition-specific GIs

To increase confidence in the new, CRISPRi-based, condition-spe-
cific GIs we identified, we validated a subset of these GIs using two
low-throughput fitness assays: a spot assay and an assay based
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Figure 3. Screening in multiple conditions improves functional classification. (A) Density distributions depicting GI profile similarity of pairs of guides
targeting the same gene (n =422), targeting the same bioprocess (n =36,029), or having different gene and bioprocess targets (n=239,202).
(B) Receiver operating characteristic (ROC) curves depicting true-positive and false-positive rates when predictingwhether a starting pool guide pair targets
the same gene based on GI profile similarity using different thresholds of Spearman’s rho. Analysis was performed on all possible subsets of the data set for
one and three conditions. Experimental data are purple; permuted data, gray. (C) The area under the ROC curves from B. (D) Network diagrams built from
data from one condition (YPD24hr; i) or from the entire data set (ii). Nodes represent starting pool guides and are colored by bioprocess of target gene (for
bioprocesses where a region of enrichment in the network was detected). Edges link nodes with similar GI profiles and are colored bywhether the guide pair
targets the same gene (red) or same bioprocess (blue).
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on optical density growth curves (see Supplemental Methods). We
first validated interactions involving genes in the Ras-pathway, a
highly conserved nutrient-sensing pathway involved in regulating
cell growth (Broach 2012). In our pooled assay, we had observed
that the severe fitness defects conferred by the knockdown of
the Ras-pathway positive regulators, CDC25 or CYR1, in the
respiratory growth condition (YPEG), were almost completely res-
cued by the additional knockdown of either COG8 or YCR016W,
resulting in condition-specific positive GIs (Fig. 4A). In our spot as-
say, interactions were observed on YP+glycerol agar, but not on
YPD agar, for two of the four gene pairs: COG8/CDC25 and
YCR016W/CDC25 (Fig. 4B; Supplemental Fig. S12A). For the two
gene pairs in which the assay did not validate an interaction
(COG8/CYR1 and YCR016W/CYR1), the CYR1 single mutant did
not show a strong growth defect on YPG or YPD agar, and there-
fore, there was no defect to rescue by additional knockdown of
a second gene target (Supplemental Fig. S12B). In our OD-based
assay, we observed positive interactions between all four gene
pairs (COG8/CDC25, YCR016W/CDC25, COG8/CYR1, YCR016W/
CYR1; significant by nonoverlapping 95% confidence intervals)
(Figure 4C). The conserved oligomeric Golgi (COG) complex is in-
volved in autophagy (Yen et al. 2010), and Ras-pathway activation
inhibits autophagy (Budovskaya et al. 2004; Schmelzle et al. 2004),

but no direct link between the Ras-pathway andCOG complex has
previously been reported.

We next validated newly discovered interactions between
LSM2 and LSM4, members of two highly conserved protein com-
plexes involved in RNA processing and degradation (Bouveret
et al. 2000), and the proteasome target genes RPN5, PRE4, and
PRE7.A physical interaction has previously been reported between
Lsm4 and Rpn5 (Yu et al. 2011), and our data suggest additional
crosstalk between other members of the proteasome and RNA pro-
cessing complexes. In agreement with our large-scale screen (Fig.
4A), we observed on YPD plates that the fitness benefit conferred
by LSM2 or LSM4 knockdown at 37°C was ablated by the addition-
al knockdown of RPN5 (Fig. 4B; interaction somewhat less observ-
able at 30°C in Supplemental Fig. S12A). We were unable to verify
these interactions using our OD-based method, as neither LSM2
nor LSM4 knockdown showed a strong growth advantage in
this assay, so depletion of such an advantage by knockdown of
a second gene would not be observable (Supplemental Fig.
S12C). In total, GIs were observed in at least one validation assay
for all six of the gene pairs tested, and for instances in which the
interaction was unconfirmed, it was likely because of a difference
between the pooled fitness assay condition and the validation
condition.

A B

C

Figure 4. Validating condition-specific GIs detected in pooled screen. (A) Heatmap depicting GI scores derived from pooled fitness assay in each of five
growth conditions for 17 guide pairs. Red text indicates strains reconstructed for validation, and asterisks signify absolute z-score greater than two.
(B) Positive GIs for COG8 and YCR016W with CDC25 and negative GIs for RPN5 with LSM2 and LSM4 are validated on spot assay plates in the presence
of CRISPRi-inducing agent ATc. (ATc) Anhydrotetracycline, (NT) nontargeting control gRNA. (C) Positive GIs validated in monoculture for COG8 and
YCR016W with CDC25 and CYR1. Error bars, 95% confidence intervals around mean. Horizontal line is 95% confidence interval around expected dou-
ble-mutant fitness (using multiplicative model). Asterisks represent values passing significance based on nonoverlapping 95% confidence intervals of ob-
served and expected double-mutant fitness.
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Discussion
In this study, we rapidly generated and screened for GIs between
approximately 7700 gene pairs in five conditions using CRISPRi
technology.We showed that our estimates are highly reproducible
and that condition-specific as well as condition-independent GIs
are common. Building networks of GI profile similarity of the
760 starting pool guides against just 20 gene-targeting query
guides effectively clustered many genes by biological function,
confirming previous studies that GI profile networks are useful
for gene annotation (Collins et al. 2007). Further, we found that
functional annotation can be significantly improved by screening
multiple conditions. Finally, we validated a subset of novel and
condition-specific interactions, linking a previously uncharacter-
ized gene and a member of the secretory pathway with multiple
conserved signaling pathways during respiratory growth.

Advantages of screening for GIs with double CRISPRi

Using CRISPRi technology to quantify GIs has several key advan-
tages over traditional methods. First, for each condition we tested,
fitness estimates were highly reproducible across replicate strains
carrying the same guide sequence. Previously, we, and others,
have reported that when generating strains for GI screening via
mating and plate-based selection, suppressors or other mutations
that can affect fitness commonly occur (van Leeuwen et al.
2016; Jaffe et al. 2017; Díaz-Mejía et al. 2018). In contrast, here,
for the strains generated through pooled transformation that carry
inducible gRNAs, we observed that the error on fitness across rep-
licate strains is similar to the error across replicate cultures (Fig. 1E,
F), although the error in GI scores across replicate strains was high-
er, which is unsurprising given that the error on GI score estimate
is affected by each of the errors on the estimates of the respective
single and doublemutants (Supplemental Fig. S6F). Although sup-
pressor mutations have been reported to occur at low frequencies
in bacterial CRISPRi strains via frameshift mutations in the dcas9
gene (Zhao et al. 2016; Liu et al. 2017), weminimized the potential
effect of these mutations by collecting many representative trans-
formants for each genotype during strain generation and by se-
quencing amplicons often and across few generations during
pooled growth. However, we do note that satellite colonies were
observed in low fitness strains on our spot assay, suggesting that
suppressor mutations can and do occur at a low rate in our strains
(e.g., see CDC25 singlemutant in Fig. 4B). To address this issue, fu-
ture CRISPRi GI studies might consider incorporating an addition-
al copy of dcas9 in the genome of the ancestor strain, as has been
performed in bacteria (Zhao et al. 2016), and/or by performing
these assays under the selection for the URA3 marker.

A second advantage of GI screening with CRISPRi is that
knockdowns observe biological connections that may be hidden
when using traditional gene knockout GI screens. For example,
we found that a SAP30 knockdown, a member of the Rpd3L his-
tone deacetylation complex, partially rescued the fitness defects
caused bymanyother gene knockdowns (∼42% in YPEG). One po-
tential explanation for this finding is that SAP30 knockdown glob-
ally increases mRNA levels by increasing acetylation of chromatin
(Verdin and Ott 2015) and thereby reduces the impact of other
gene knockdowns. A positive GI with SAP30 through this mecha-
nism would be unobservable with previous methods using dele-
tion strains, because mRNA for a deleted gene is completely
absent, so its expression levels cannot be modulated by changes
inhistonemarks. This parallels positiveGIs betweenhypomorphic

alleles and knockdown or deletion of genes involved in mRNA
stability and protein turnover (van Leeuwen et al. 2016). Indeed,
coupling epigenetic profiling, such as nucleosome positioning
and chromatin modifications, with CRISPRiSeq for chromatin
modifiers across different conditions may highlight the dynamics
of functional epigenetic marks. However, the high rate of SAP30
positive interactions could also be explained by an inhibition of
CRISPRi knockdown, as the transcriptional repressor Mxi1 fused
to dCas9 has been shown to interact with another member of
the Rpd3L complex, Sin3 (Gilbert et al. 2013). Our qPCR results
(Supplemental Fig. S7) do not distinguish between potential
mechanisms of suppression; however, we did observe the magni-
tude of positive GI increased with the gRNA target distance from
the transcriptional start site (Supplemental Fig. S13), suggesting
that SAP30 inhibition reduces CRISPRi efficacy at distal gRNA tar-
geting sites, whereas steric effects still mediate knockdown atmore
proximal sites.

Other advantages of CRISPRi GI screening are its scalability,
portability, and ease of reproducibility, particularly for conditional
screening. In S. cerevisiae, new starting pool strains can be taken
from our existing collection or rapidly generated using the same
technique used to generate this collection (Smith et al. 2017).
New query plasmids can be generated by the straightforward pro-
tocols developed here or, for larger screens, by using more high-
throughput methods of cloning. We estimate the cost to generate
and verify 25,000 new guides sequences to be just $12,500. This
number of guides would allow for screening GIs between all pair-
wise combinations of 700 genes, accounting for preliminary func-
tional testing and replication. We have previously shown that at
least 500,000 plasmids can be integrated into the yeast genome
and tracked by Bar-seq, suggesting that CRISPRi GI screens of at
least that size are possible. Once the upfront work of generating
a pool of double CRISPRi strains is performed, the pooled fitness
assay can be easily performed across conditions, and we estimate
the cost of sequencing to be less than $0.02 per GI, per condition,
or $9800 per replicate for a screen of 700×700 genes. In addition,
because CRISPRi GI screens can be performed without first gener-
ating knockout libraries, as is required for traditional GI screens, it
can bemore easily ported to nonmodel organisms. One possibility
would be to performGI screens across strains or closely related spe-
cies as a new means of examining the evolution of genetic
networks.

GIs using knockdown versus knockout screening

In contrast to knockout alleles, knockdown by CRISPRi is more
similar to naturally occurring genetic variation that decreases
mRNA or protein levels (such as eQTLs) or diminishes protein ac-
tivity. One possibility is that GI screens using knockdown alleles
will reflect GIs that could occur because of segregating genetic var-
iation, which would be missed using knockout alleles. However, a
difference between knockout and knockdown alleles is that for
knockout alleles, all cells in the population will have identical lev-
els of protein for that gene (i.e., it will be absent), whereas with
knockdown alleles, there is likely heterogeneity in protein levels
within a population of cells. Although work in bacteria has shown
that binding of dCas9 to its target is irreversible (Jones et al. 2017),
the actual level of protein knockdown in a given cell will depend
on both stochastic and deterministic factors. These could include
the time it takes for dCas9 to find the target locus, the efficiency
of dCas9-induced transcriptional blockage, cell cycle state, divi-
sion time, and degradation rate of the target mRNA and protein.
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Furthermore, the level of knockdown for a given guide when ex-
pressed alone may differ from that experienced when two guides
are coexpressed. For example, Du et al. (2017) showed in mamma-
lian cell culture that the population level knockdown of an indi-
vidual gene target was often lower in strains carrying two gene-
targeting CRISPRi guides than in those carrying just one, although
this difference varied by guide (see Supplemental Fig. S2 in Du
et al. 2017). The positive bias we observed in our double-mutant
fitness from the multiplicative model (Fig. 1), as well as the subtle
bias observed in a bacterial screenusing 289 doubleCRISPRi strains
(Supplemental Fig. S7 in Peters et al. 2016), could potentially be ex-
plained by a similar mechanism, wherein dCas9 is limiting when
multiple gRNAs are expressed, so knockdown of each becomes
less efficacious.With regard to the effect of CRISPRi on protein lev-
els, here, we report that after a 4-h induction, ablation of target
protein in single mutants, at the single-cell level, was incomplete.
Future work will be required to further understand the intricacies
of double CRISPRi target knockdown and how growth condition
can affect efficacy.

Generally, we observed little overlap between theGIs wemea-
sured here with those that were measured using deletion, tempera-
ture-sensitive, and dAMP alleles (Costanzo et al. 2016). In addition
to the differences between knockout and knockdown screening,
possible explanations for the poor overlap include measurement
noise, differences in growthconditions (Musso et al. 2008), anddif-
ferences in the fitnessmeasurement scheme. Indeed, in our valida-
tionassays, one-thirdof theGIsdetected inourpooled screen could
notbe validatedonagarplatesor in small cultures. Furthermore,we
were unable to validate the GI between COG8 and CDC25 with a
spot assay and using a knockout and dAMP allele, respectively, as
the dAMP CDC25 strain showed no growth defect on YP-glycerol
plates (Supplemental Fig. S14). Previous work has illustrated that
different mutant alleles, either temperature sensitive or dAMP, of
the same gene typically have poor overlap in GI profiles (<20% of
GIs overlap for 90% of mutant allele pairs studied in Xu et al.
2012). This, coupled with the observation that there is a weak cor-
relation betweenmutational effect and the strength of observedGI
score (Velenich and Gore 2013), likely further contributed to the
poor overlap. Despite differences in specific interactions detected,
it is clear that both data sets allow the construction of biologically
meaningful networks. Technologies for GI screening using cutting
Cas9 in Candida albicans are now available (Shapiro et al. 2018),
so future work in S. cerevisiae could determine whether screens us-
ing Cas9-induced loss-of-function mutations better overlap with
prior work.

Future applications and considerations for CRISPRiSeq

Although feasible, it is currently costly to apply CRISPRiSeq to
screen for all pairwise interactions in the S. cerevisiae genome.
However, our data, and the work of others (Guénolé et al. 2013;
Martin et al. 2015), suggest that conditional screens between
even subsets of the genome will reveal novel functional informa-
tion. Indeed, in the case of our 760 starting pool guides, we detect-
ed network clusters enriched in function using measurements for
GIs across just 20 query guides in five growth conditions.
Furthermore, we showed that annotation accuracy is increased
by screening in multiple conditions. Future work is needed to
determine the most effective method by which GI data frommul-
tiple conditions should be combined: Our simple approach of con-
catenating the data across conditions was effective for five
conditions but is likely not optimal because most gene pairs do

not genetically interact in a given condition and thus introduce
measurement noise. A new method has been recently developed
to aid in the selection of an informative subset of the genome to
include in GI screening (Deshpande et al. 2017), although more
work is needed to determine the most informative set of experi-
mental conditions.

With regards to designing new guide target sequences for fu-
ture studies, we note that our understanding of guide design for
CRISPRi is still nascent. For our experiments, 14 of the 18 query
guide sequences we initially tested did not induce a fitness defect.
However, our GFP-based validation assay showed that four of these
actually did knock down the target protein (Supplemental Fig.
S15). Although the functional validation method we present
may be too low throughput for large gRNA libraries, it may be pos-
sible to generate and examine the knockdown efficacy of large li-
braries of barcoded CRISPRi/GFP strains in parallel using a
combination of FACS and Bar-seq, for example, FlowSeq (Kosuri
et al. 2013).

Although this study focused on filling the gap in our un-
derstanding of GI network dynamics across conditions, open ques-
tions remain regarding how the GI network changes with genetic
background and with gene knockdown level. Although several
GI screens have been performed in a different yeast species,
Schizosaccharomyces pombe (Dixon et al. 2008; Tosti et al. 2014),
most screens in S. cerevisiae have been performed in the S288C lab-
oratory strain. Because the CRISPRi platform is portable, GI studies
across multiple strain backgrounds using this technology are now
more feasible. Furthermore, by modulating the concentration of
the inducing agent or by testing multiple guides per gene (Smith
et al. 2016; Deaner and Alper 2017; Liu et al. 2017), it will be pos-
sible to tease apart howGI scores vary with gene knockdown level,
a question with broad implications to evolutionary theory
(Trindade et al. 2009; Xu et al. 2012). Finally, the strongest impact
of this approach is the power we illustrated for this technology to
rapidly screen for GIs across conditions; furthermore, our data sug-
gest that conditional screens are likely to identify GIs that would
be missed in a single condition.

Methods

Generation of query plasmids carrying DNA barcode and gRNA

Twenty-two 60-mers, each containing a different 20-nt PAM-adja-
cent gRNA targeting sequence, required for CRISPRi dCas9 target-
ing, either were derived from the published single CRISPRi strains
selected above (Smith et al. 2017) or weremade by oligonucleotide
synthesis (IDT). Nineteen of these sequences targeted genes, and
three were nontargeting controls; eight of the gene-targeting
guides were functionally validated using the GFP assay described
below. For newly synthesized oligonucleotides, sequences were
designed using the Yeast CRISPRi webtool (Smith et al. 2016).
Each 60-mer also contained 20 nt of homology on each side to
the pRS416-dCas9-Mxi1 +TetR+pRPR1(TetO)-NotI-gRNA plas-
mid vector (Addgene 73796) (Smith et al. 2016). PCRusing primers
P50 and P51 (Supplemental Table S1) and the Kapa HiFi HotStart
PCR kit (KAPA Biosystems) was used to add an additional 20 nt
of homology with each side of the insert, and the product was
then cloned into the vector as described (Smith et al. 2016).
After plasmid isolation, the entire gRNA sequence, including the
inducible promoter and 20-nt PAM-adjacent targeting sequence,
was amplified using P95 and P96 (Supplemental Table S1;
Supplemental Fig. S16) and PrimeSTAR HS DNA polymerase
(Takara Clontech) to add homology with the L001 BC library
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vector (Jaffe et al. 2017). The L001 BC plasmid library vector was
digested with NotI HF, SpeI HF, and XhoI (NEB) for 16 h; gel puri-
fied; diluted to 10 ng/µL; and stored at −20°C until cloning.
NEBuilder HiFi DNA assemblymaster mix (NEB) was used to clone
the gRNA insert sequence into the BC library vector. All cloned
plasmids were purified by Qiagen miniprep, and Sanger sequenc-
ing was used to verify assembly and to identify the unique DNA
barcode sequence corresponding to each query plasmid’s guide se-
quence. All query plasmids are listed in Supplemental Table S1,
with their respective 20-nt PAM-adjacent targeting sequence and
DNA barcode sequence.

GFP fusion knockdown assays

GFP collection strains (Huh et al. 2003) were PCR verified using
strain-specific primer pairs flanking the expected GFP insertion
site (Primer3) (Supplemental Table S1; Howson et al. 2005).
CRISPRi plasmids, generated from the first cloning step of the que-
ry plasmid generation process described above, were introduced to
each GFP strain by lithium acetate transformation (Gietz and
Schiestl 2007), and successful transformation was selected for us-
ing the URA3marker. To quantify GFP levels upon CRISPRi induc-
tion, strains were grown for 4 h in 1.5 mL each of either YPD or
YPD+ATc (final concentration 250 ng/µL anhydrotetracycline,
Clontech). These outgrowths were inoculated at a starting cellular
concentration of 2.5 ×107 cells/mL from SC-URA overnight cul-
tures. After growth, samples were diluted to approximately 1 ×
107 cells/mL in SC-URA and stored at 4°C until analysis. GFP levels
for 10,000 cells from each sample were measured at the Stanford
Shared FACs Facility using the BluFL1 channel (560 short-pass
splitter and 525/50 band-pass filter) on a custom Stanford and
Cytek upgraded FACScan machine. Small and large FSC value
thresholds were used to filter out dead cells and particulate matter
as well as aggregates of cells, respectively. For each GFP strain car-
rying a CRISPRi plasmid, a loess regression, modeling the depen-
dence of fluorescence on cell size, was fit to the ATc− sample
data using the gam() function from the mgcv package in R (R
Core Team 2014). Residuals from this model were then calculated
for the ATc− and ATc+ samples using the predict() function.

Generation of double CRISPRi strains via pooled transformation

One pool of 760 single-gene-targeting CRISPRi strains (Sublib1)
and two pools of five and 19 nontargeting control CRISPRi strains
(CCP2 and CCP3) were generated (see Supplemental Methods). To
generate double CRISPRi strains, 57 transformations of individual
query plasmids into one or more starting pools were performed
across three batches using a standard lithium acetate protocol
(Gietz and Schiestl 2007). Double-gene knockdown strains were
produced by transformation of gene-targeting query plasmids
into Sublib1. Single-gene knockdown control strains were generat-
ed by transforming each gene-targeting query plasmid into either
or both of CCP2 and CCP3 and by transforming a nontargeting
query plasmid into Sublib1. Finally, transformations of the non-
targeting query plasmids into either or both of CCP2 and CCP3
generated 100 control strains carrying two nontargeting guides.
Note that not all possible pairwise combinations of guides were
generated in these pools, allowing for subsequent quantification
of PCR chimeras (see Supplemental Methods and below) (Du
et al. 2017, Schlecht et al. 2017). Genomic integration of the query
plasmid was achieved by inducing Gal-Cre-mediated recombina-
tion by resuspending transformed cells near saturation density in
YP+galactose (2%) and rotating for 20 h at 30°C. Cells were then
plated on SC-URA, and after 3 d of growth, transformants were

sterilely pooled and aliquots stored in 17% glycerol at −80°C at
known cell densities.

Data analysis

Raw sequencing reads were parsed with custom Python scripts,
and subsequent count data were corrected for the presence of chi-
meric reads (see Supplemental Methods; Schlecht et al. 2017).

Estimating fitness and GI scores

Estimates of fitness for each strain were made as described (see
Supplemental Methods; Jaffe et al. 2017). The mean fitness across
the three replicate cultureswas taken, andwe required all three rep-
licatemeasurements tobe present for downstreamanalysis. For sin-
gle-mutant fitness estimates, averages across two, three, five, or 17
replicate strainswere taken (for strains generated, see Supplemental
Table S1). Except in the case of strains carrying the SAP30g7 query
guide, GI scores were quantified for each doublemutant by first fit-
ting a linear model, using the lm() function in R, to data from all
double mutants generated from the same query guide for a given
condition, whereby the dependent variable was the observed dou-
ble-mutant fitness and the independent variablewas the respective
single-mutant fitness for the gene-targeting guide derived from the
starting pool. Next, residuals were calculated for each strain from
the fitted line and subsequently used as theGI score. For strains car-
rying the SAP30g7queryguide,weused themultiplicativemodel to
estimate expected double-mutant fitness (see Results). To deter-
mine significance,wecalculated the standarddeviationofGI scores
betweenall guidepairs in all conditions anduseda significance cut-
off of an absolute z-score greater than two. For each gene pair with
at least three replicate strains, we computed a 95% confidence in-
terval anddeterminedwhether it overlappedwitha thresholdabso-
lute z-score of one. We acknowledge that other aggregation
methods such as a voting scheme are potentially valid, but these
methods do not account for a potential false negative derived
fromless efficacious guides. See SupplementalNote1 fordiscussion
of the results froma secondarymethod to call significantGIs based
on false-discovery rate. Supplemental Table S3 contains GI scores
and significance values for all guide pairs using both analyses.

Network analysis

The igraph package in R was used to visualize graphs generated
from GI data. The layout.kamada.kawai() function was used to
draw the network layout that visualized condition-specific GIs be-
tween query guides and guides in the starting pool. For this net-
work, a GI was called condition-specific if its z-score was greater
than two in one condition and was less than one in all other con-
ditions. The layout.frucherman.reingold() function was used to
draw the network layout that visualized the correlation of the GI
profiles of the guides in the starting pool, whereby nodes/guides
were only connected by edges if the Spearman’s rho correlation
of their GI profiles passed a threshold value chosen for each net-
work such that <0.5% of guide pairs with different (gene and bio-
logical process) targets passed. Areas enriched for guides targeting
genes in the same bioprocess, defined using GO-Slim annotations,
were identified visually and outlined in Figure 3D, ii. Seventeen
guides were removed from the analysis because >25% of theirmea-
surements were missing because of strain dropout during the fit-
ness assays.

Using GI profile similarity to classify guide targets

The cor() function in R (with parameters method= “spearman”
and use= “pairwise.complete.obs”) was used to calculate
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correlation coefficients for GI profiles for all pairwise combina-
tions of starting pool guides for all subsets outlined in the
Results of the entire data set. To construct a ROC curve that char-
acterized our ability to predict, based on their GI profile similarity,
whether two guides targeted the same gene, for each sample the
proportions of true positives and false positives were calculated
for threshold values of Spearman’s rho between −1 and 1 using a
step size of 0.05. The trapz() function from the pracma package
in R was subsequently used for each sample to calculate the
AUC. As a supplemental analysis, we also computed precision-re-
call curves, and their AUC values, for each of our subsets of data,
wherein the x-axis is the recall (or sensitivity value computed for
the ROCcurve) and the y-axis is the precision,which is the positive
predictive power calculated as the fraction of total positives as-
signed that are true positives.

Data access

Sequencing counts and normalized relative frequencies, fitness,
and interaction score estimates for each strain in each growth con-
dition can be found in Supplemental Table S2. The custom Python
andR scriptsused toparse rawsequencingdata, analyze results, and
render manuscript figures are available as Supplemental Code and
atGitHub (https://github.com/Sherlock-Lab/CRISPRiSeq). The raw
FASTQ files from three lanes of HiSeq 2500 sequencing from this
study have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject) under accession num-
ber PRJNA421372.
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