
Research Article

FIREWORKS: a bottom-up approach to integrative
coessentiality network analysis
David R Amici1,2,3,4, Jasen M Jackson1,2,3, Mihai I Truica3,4,5 , Roger S Smith1,2,3,4 , Sarki A Abdulkadir3,5,
Marc L Mendillo1,2,3

Genetic coessentiality analysis, a computational approach which
identifies genes sharing a common effect on cell fitness across
large-scale screening datasets, has emerged as a powerful tool to
identify functional relationships between human genes. However,
widespread implementation of coessentiality to study individual
genes and pathways is limited by systematic biases in existing
coessentiality approaches and accessibility barriers for investi-
gators without computational expertise. We created FIREWORKS,
a method and interactive tool for the construction and statistical
analysis of coessentiality networks centered around gene(s)
provided by the user. FIREWORKS incorporates a novel bias re-
duction approach to reduce false discoveries, enables restriction
of coessentiality analyses to custom subsets of cell lines, and
integrates multiomic and drug–gene interaction datasets to in-
vestigate and target contextual gene essentiality. We demon-
strate the broad utility of FIREWORKS through case vignettes
investigating gene function and specialization, indirect thera-
peutic targeting of “undruggable” proteins, and context-specific
rewiring of genetic networks.
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Introduction

Now 20 yr removed from the first draft of the human genome, our
understanding of how genes function together to form cellular and
organismal networks is still growing rapidly. Genetic coessentiality
analysis, a guilt-by-association computational approach rooted in
principles from foundational studies in yeast (Boone et al, 2007),
has recently emerged as a powerful tool to infer the function of
human genes as well as the relationships between them. Coes-
sentiality analysis is based on the observation that the importance
of a given gene to cellular growth (or any other phenotype) depends
on cellular context (Rancati et al, 2018). That is, factors such as
genetic background, tissue of origin, and cell culture conditions can

all impact the “essentiality” of a given gene (defined here as a
continuous variable reflecting a gene’s importance for cellular
growth). Thus, by quantifying the essentiality of each protein-coding
gene across hundreds of biological contexts—such as established
cancer cell lines derived from unique tumors—genes with highly
similar fitness variations across contexts may be identified and
considered putatively co-functional. The observation that strong
genetic fitness correlations are predictive of participation in the
same biological process has already spurred discoveries of novel
gene functions from publicly available, genome-scale fitness screening
datasets (McDonaldet al, 2017;Wanget al, 2017; Boyle et al, 2018; Panet al,
2018; Rauscher et al, 2018; Kim et al, 2019; Wainberg et al, 2019 Preprint;
Bayraktar et al, 2020).

Despite the great potential of coessentiaity analysis to improve
our understanding of the human genome, several factors limit its
widespread adoption. Existing coessentiality resources take a “top-
down” approach, whereby the strongest of all possible gene–gene
correlations are clustered at genome-scale. Although powerful for
detecting high-confidence interactions, these top-down approaches
predominantly yield clusters of genes which function in obligate
cooperativity (e.g., those encoding members of the same protein
complex) or which represent technical artifacts (e.g., genes located on
the same chromosome). In turn, much of the genome does not belong
to informative clusters in these approaches. Even with inevitable
algorithmic improvements in the identification and clustering of
coessential fitness profiles, many genes with multifaceted functions
may not be expected to ever segregate into onemodule. Indeed, many
crucial genes which have a dynamic network of effectors and affect
multiple biological processes—such as transcription factors, E3 ligases,
and kinases—are unlikely to ever attain the strong and reciprocal
coessentiality phenotype needed to form a distinct cluster in top-
down coessentiality networks. As such, “bottom-up” coessentiality
networks centered upon these complicated, but critically important,
genes may better provide insight into their functional relationships. In
addition to generalized limitations of top-downnetwork analysis, there
is a broader need for methods to seamlessly integrate orthogonal
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datasets with genetic coessentiality data. For example, by integrating
multiomic characterization data for the cell lines used in coessentiality
analyses, one may gain insight into the contextual factors which drive
dependence on a given gene or functional module. Finally, and
perhapsmost importantly, intuitive tools are required to overcome the
accessibility barrier which currently limits custom coessentiality net-
work analyses to those with computational and domain expertise.

Here, we introduce FIREWORKS (Fitness Interaction Rank-Extrapolated
netWORKs; fireworks.mendillolab.org), an interactive web tool for
customizable, bottom-up coessentiality network analysis constructed
around the user’s gene(s) of interest (Fig 1). FIREWORKS addresses the
principal remaining source of systematic bias in CRISPR-based coes-
sentiality analyses, implements novel features such as context-specific
coessentiality networks and orthogonal data integration, and requires
no coding or subject matter expertise.

Results

A sliding window preprocessing approach to reduce correlation
bias from genes in close physical proximity

Previous CRISPR-based coessentiality analyses have reported an
overrepresentation of highly coessential genes which share no
known biological function but are located in the same chromosomal

neighborhood (Boyle et al, 2018; Pan et al, 2018; Kim et al, 2019; Bayraktar
et al, 2020). This bias is thought to reflect a phenotypic artifact of Cas9-
mediated DNA cleavage in copy number–variable regions which is not
entirely addressed by the best normalization and de-noising ap-
proaches currently available (Dempster et al, 2019 Preprint). We sought
to quantify the extent to which locus bias affects CRISPR-based coes-
sentiality estimates for individual genes across the genomeanddevelop
a preprocessing approach that mitigates this source of error. To de-
termine the expected rate of syntenic (i.e., same chromosome) coes-
sentiality, we considered two null distributions: the first attributable to
chance based on the number of genes on each chromosome (i.e., larger
chromosomes have higher expected syntenic coessentiality rates;
“Random”) and the second from coessentiality analysis performed with
data from 712 shRNA genetic screens, which do not produce a DNA
damage phenotype when targeting copy number–variable genes
(“RNAi”) (McFarland et al, 2018). The latter would be expected to
identify any overrepresentation of coessentiality signal from bona
fide co-functional neighbor genes. Indeed, estimates of syntenic
coessentiality in RNAi data largely matched those expected from
random chance, with few positive outlier exceptions often reflecting
duplicated genes which retain putatively similar functions and thus
loss-of-function fitness profiles (Figs 2A and S1A).

We next identified the proportion of each gene’s top 100 ranked
fitness correlations which are located on the same chromosome
using CRISPR-Cas9 gene essentiality estimates derived from the

Figure 1. Schematic representation of bottom-up, integrative coessentiality network mapping with FIREWORKS.
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Broad Institute’s Dependency Map screening project of 739 cancer
cell lines (Meyers et al, 2017; Tsherniak et al, 2017) (Fig 2A). Im-
portantly, these CRISPR-based essentiality estimates have already
undergone several bias reduction steps, including application of
the CERES algorithm (which adjusts the gene effect estimate based
upon local copy number) and principal components analysis (PCA)-
based denoising similar to that described by Boyle et al (Meyers et
al, 2017; Boyle et al, 2018; Dempster et al, 2019 Preprint). Despite
these preprocessing steps, we found evidence of substantial locus
bias in CRISPR coessentiality estimates, with themedian gene in the
CRISPR dataset having ~6-fold more syntenic correlations than the
largest expected value from random chance or RNAi coessentiality
(Fig 2A). Remarkably, more than 1,000 genes had every one of their
top-ranked correlations located on the same chromosome, and
more specifically, within the same chromosomal band region. The
bands containing the highest numbers of locus-biased genes often
represented genomic regions commonly amplified in cancer (Fig
S1B). However, by quantifying the median overrepresentation of
neighbor genes and copy number variance of each chromosomal
band neighborhood, we determined that locus bias spans the
genome and is not entirely explained by local copy number vari-
ability (Fig 2B). To better understand the driving factors of locus bias
in CRISPR coessentiality, we trained a Random Forest regression

model to predict locus bias from gene-level features: gene ex-
pression in cancer cell lines (mean and minimum), essentiality
score in Achilles CRISPR screens (variance, mean, and maximum),
copy number variance of the gene and its chromosomal band, gene
length, and duplicate gene status. This model yielded a decision
tree which primarily used three features to predict locus bias with
~17% mean absolute error: local copy number variance, essentiality
score variance, and mean gene expression (Figs 2C and S1C–E). In
sum, our model predicts that genes with weaker or less variable
fitness effects in CRISPR knockout screens are more likely to have
higher levels of locus bias, particularly if they are located within
genomic regions subject to copy number variation.

Next, we tested the impact of several preprocessing approaches
designed to reduce the overrepresentation of neighbor genes in
CRISPR coessentiality analysis. These approaches included removal
of principal components explaining essentiality score variance in
highly locus-biased genes, normalization of gene-level correlations
by considering neighbor genes’ fitness scores, and penalization of
correlations between genes on the same chromosome (see the
Materials and Methods section and Fig S2A–C). We highlight the
best-performing approach: “neighbor subtraction,” a sliding win-
dow correction similar to that described previously (Wang et al,
2017) where, for each pre-correction gene not located within a

Figure 2. Correction of genomic locus bias reduces false positives and increases predictive power in CRISPR coessentiality analysis.
(A) Genome-scale distribution of the fraction of each gene’s top 100 ranked fitness correlations which are co-localized in the same chromosomal band. Random
indicates frequency based on chromosome gene content, whereas RNAi indicates coessentiality computed using shRNA screen data. CRISPR data and RNAi data stem
from 739 and 712 cell lines, respectively. (B) Median locus bias (syntenic coessentiality rate observed minus maximum expected from RNAi coessentiality or random
chance) and copy number variability (CNV; blue is higher variability) for chromosomal band neighborhoods across the genome. (C) Gini importance, a measure of the
power of a feature to reduce model uncertainty, of gene-level features in a Random Forest regression model trained to predict locus bias. (D) The neighbor subtraction
preprocessing approach for locus correction (see the Materials and Methods section and Fig S2) reduces the burden of locus-biased false positives in CRISPR
coessentiality analysis. (E) Presumed false positives (syntenic correlations beyond threefold expected by either chance or RNAi coessentiality) comprise 23% and 3% of
the average gene’s top 50 ranked correlations before and after correction, respectively. (F) Locus-corrected CRISPR coessentiality data identifies more true positive
experimental interactions than non-corrected CRISPR coessentiality, RNAi coessentiality, and transcript co-expression datasets. (G, H) The coessentiality profile of highly
locus-biased genes before and after locus correction reveals increased prioritization of known relationships and a reduction in locus-associated false positives. P-
value from hypergeometric test.
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duplicate gene cluster, half the median essentiality score of 40
neighbor genes is subtracted from the pre-correction gene’s initial
essentiality estimate (Fig S2C). We note that these adjustment
parameters (e.g., number of neighbors) were determined through
unbiased benchmarking (Materials and Methods section). The
sliding window correction approach serves to effectively smooth
out fitness effects of targeting a given chromosomal locus while
preserving the relative fluctuations in essentiality directly attrib-
utable to the target gene. Critically, neighbor subtraction pre-
processing substantially reduced the abundance of syntenic
correlations in CRISPR coessentiality analysis (Figs 2D and S2A).
Stated differently, false positive coessential relationships–defined
for this purpose as syntenic correlations in threefold excess of
those expected from chance or RNAi coessentiality—made up 23%
of the average gene’s top-ranked correlations before correction,
but only 3% after correction (Fig 2E).

To ensure that removal of systematic locus bias through
neighbor subtraction did not reduce the ability of CRISPR coes-
sentiality to identify true positive interactions, we benchmarked our
corrected coessentiality dataset against curated interaction da-
tabases (i.e., CORUM protein complex members, STRING high-
confidence experimental interactions, and gene set enrichment
analysis [GSEA] pathway gene sets). We find that locus correction
did not reduce the ability of CRISPR coessentiality to robustly detect
true biological interactions, instead conferring a modest im-
provement in predictive power (Figs 2F and S2B). Importantly, locus
correction yielded meaningful improvements even for the most
biased genes, such as the 1,019 genes which had 100% syntenic
coessentiality amongst their top coessential relationships before
correction. For example, the top pre-correction correlations for PC
(pyruvate carboxylase; the enzyme which converts pyruvate to
oxaloacetate) and KLF1 (a hematopoietic lineage transcription
factor) comprised only genes located in close physical proximity on
the same chromosome. However, after correction, the top corre-
lations for these genes were enriched for carbohydrate metabolism
and hematopoietic differentiation, respectively (both overlap P-
values < 1 × 10−5) (Fig 2G and H). Altogether, these data indicate that
locus bias correction robustly improves the signal-to-noise ratio in
CRISPR-based coessentiality analyses.

Construction of bottom-up genetic networks reveals insight into
gene function and specialization

To expand the reach of coessentiality analysis to the whole ge-
nome, we sought to use our locus-bias-adjusted coessentiality
matrix to create a compendium of “bottom-up” coessentiality
networks centered upon each protein-coding gene in the genome.
Briefly, for each gene, the top 30 ranked correlations and anti-
correlations were incorporated as “primary nodes” in an undi-
rected, unweighted network. Then, the top five correlations for each
primary node were determined, with any of these genes connected
to multiple primary nodes being incorporated in the network as
“secondary nodes” which serve to functionally cluster the primary
nodes into functional modules. In general, we found the rank
thresholds of 30 (primary) and 5 (secondary, positive only) to best
reveal biological signal while maintaining visibility of individual
genes. However, rank parameters are entirely customizable in the

FIREWORKS web portal. As a control, we created “noise” fitness
profiles for 10,000 simulated genes by randomly sampling essen-
tiality scores observed in the Project Achilles screening dataset and
then subjected these simulated genes to the same network con-
struction process. At an empiric false discovery rate cutoff of 0.5%,
every protein-coding gene in the genome had significantly stronger
associations with its primary nodes than could be attributable to
chance, indicating that the bottom-up coessentiality network is
broadly applicable and not limited to genes with strong or highly
variable fitness effects (Fig 3A).

To investigate the organization and composition of bottom-up
networks across the genome, we used Louvain’s algorithm to group
each gene’s network into modules (Blondel et al, 2008). Briefly, this
approach assigns genes to modules in a manner which maximizes
the density of connections inside modules relative to connections
outside modules. We found great heterogeneity in the degree to
which networks segregated into highly interconnected modules (i.e.,
network modularity). Networks with low-modularity scores typically
originated from specialized components of large molecular assem-
blies where all network components are thoroughly interwoven in
one large community. Examples of low-modularity networks in-
clude NDUFAF8, MRPL11, and PEX26, which are components of
mitochondrial complex I, the mitochondrial ribosome, and the
peroxisome (Fig 3B and C)—obligate members of molecular ma-
chines which form large clusters in top-down network analyses
(Boyle et al, 2018; Pan et al, 2018; Kim et al, 2019; Wainberg et al, 2019
Preprint). On the other hand, high-modularity networks often
originated from genes with multifaceted roles in pathways dy-
namically regulated by multiple signals, such as RHEB, PPP1R15B,
and GAPDH (Fig 3B). The dense modules within these bottom-up
networks provide clear insight into the biology of the source node
factors. For example, RHEB is negatively connected to a module
containing the TSC1-TSC2 complex and positively connected to a
module representing the mTORC1 complex, consistent with RHEB’s
known function to activate mTORC1 in a manner inhibited by TSC1/2
(Fig 3D). As another example, PPP1R15B encodes a phosphatase
which functions to terminate the integrated stress response (ISR), a
generalized remodeling of translation activated by mechanistically
diverse stressors. The PPP1R15B network contains modules
reflecting stressors known to feed into the ISR (nutrient, metabolic,
and proteotoxic stress), proteins which directly activate the ISR
(EIF2AK4 and ATF4), and effectors downstream of ISR termination
(EIF2B4) (Fig S3). Altogether, these data indicate that bottom-up
coessentiality network analysis is a viable and broadly applicable
approach to gain insight into the biology of individual genes.

Nomination of surrogate therapeutic targets for undruggable
proteins

Many proteins implicated in human disease have structures which
are challenging to target pharmacologically. For example, onco-
genic drivers such as MYC and KRAS have remained largely im-
pervious to targeted therapies despite decades of intensive,
interdisciplinary research (Dang et al, 2017). We hypothesized that
the coessentiality network of these challenging targets—which, by
definition, contain genes particularly essential to cells dependent
on that challenging target—would include genes which are
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exploitable by available drugs and may thus serve as indirect
targets. To facilitate rapid screening of coessentiality networks for
genes containing known drug interactions, we integrated data from
a drug–gene interaction database (Cotto et al, 2018) into our
bottom-up coessentiality networks. Even at stringent rank
thresholds, most networks across the genome contained genes
targeted by existing drugs, many of which have reported mecha-
nisms of action (Fig 4A). From this framework, we queried the
networks of an array of attractive drug targets across fields such as
cancer biology, aging, and neurodegeneration, finding that many
were highly coessential with a gene targeted by existing drugs (Fig
4B and Table S1).

Supporting the validity of the coessentiality approach to nom-
inate indirect therapeutic targets, several drugs identified by our
integrative coessentiality analysis of attractive targets have been
explicitly designed for this purpose or have demonstrated success
in drug repurposing. For example, inhibitors of EGLN1, a protein
which regulates the stability of Hypoxia Inducible Factor 1α (HIF1A)
and is HIF1A’s second-ranked anticorrelation, are being explored to
activate a hypoxia response in the treatment of renal anemia
(Maxwell & Eckardt 2016). As another example, RAF1/c-Raf, the
direct downstream effector of KRAS and KRAS9 top-ranked corre-
lation, is the target of many inhibitors designed to hamper Ras-
driven tumorigenesis (Burotto et al, 2014). Finally, inhibition of CDK7,
a transcriptional cyclin-dependent kinase which functions down-
stream of MYC and is MYC’s 10th-ranked correlation, causes marked
regression of aggressive, MYC-driven neuroblastomas in mice
(Chipumuro et al, 2014).

Critically, our approach also identifies several gene-drug asso-
ciations which have not been previously explored and may thus
represent novel therapeutic strategies. For example, to an even
greater extent than CDK7, MYC-dependent cells are co-dependent on
WNK1 (coessential rank 2; Fig 4C), a kinase inhibited by the small
molecule PP121 (Yagi et al, 2009). Further supporting the possibility of
targeting MYC-dependent cancer cells through WNK1 inhibition, we
find evidence in an orthogonal drug repurposing screen (Corsello
et al, 2020) that cells with high expression of MYC or dependence on
MYC have increased sensitivity to PP121 treatment (Fig 4D). Finally, we
experimentally validated the interaction between MYC and PP121,
finding that MYC deletion decreases cellular sensitivity to PP121 in
fibroblasts (Fig 4E). Altogether, these data demonstrate the power of
integrative coessentiality analysis to uncover alternative therapeutic
approaches for classically challenging drug targets.

Context-specific rewiring of genetic networks uncovered by
differential coessentiality

In general, coessentiality analyses encompassing all available cell
lines provides the greatest representation of biological contexts,
and thus the greatest power to uncover functional relationships
between genes. However, genetic networks are dynamically regu-
lated depending on cellular context (Bandyopadhyay et al, 2010). In
turn, coessentiality signal for certain context-specific genetic in-
teractions may be obscured by pooling fitness profiles from all cell
lines. As an example, oncogenic driver mutations are known to
rewire cellular signaling. For instance, downstream effectors in the

Figure 3. Construction of a bottom-up coessentiality network for every gene in the genome.
(A) A standard bottom-up coessentiality network, as described in text, was created for every gene in the genome as well as 10,000 simulated fitness profiles created
from random sampling of gene essentiality data. The average absolutemagnitude of the Pearson correlation for the primary connections observed from actual genes was
all stronger than at least 99.5% of simulated networks. (B) Modularity of each gene’s bottom-up coessentiality network after application of Louvain’s algorithm for
community detection. Examples of low-modularity and high-modularity networks are highlighted. (C) NDUFAF8, a component of complex I in the electron transport
chain, is an example of a low-modularity network dominated by genes related to oxidative phosphorylation. (D) RHEB, a small GTPase involved inmTORC1 regulation, is an
example of a high modularity network containing many clusters of densely interconnected genes. The red module represents genes involved in mTORC1 activation
downstream of RHEB and the bluemodule represents the TSC1-TSC2 complex which negatively regulates RHEB to inactivatemTORC1 signaling. Note that double looping
(two connections between a given gene pair) indicates that the correlation relationship is among the top-ranked for both genes at the specified rank thresholds (here, 30
for primary nodes and 5 for secondary nodes).
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MAPK pathway (e.g., Ras, Raf, and MEK; Fig 5A) are commonly subject
to activating mutations in tumors in a manner which renders
upstream epidermal growth factor receptor (EGFR) activation in-
consequential for downstream MEK-ERK signaling (Burotto et al,
2014). Of the 739 cell lines used in our pan-cancer analyses, 96
contain a missense (presumed activating) mutation in BRAF. We
thus computed a genome-scale correlation matrix for both BRAF-
WT and BRAF-mutant cell lines. To identify coessential relation-
ships specific to or enriched in the BRAF-mutant context, we
generated a differential correlation matrix by subtracting the BRAF-
WT matrix from the BRAF-mutant matrix.

Intriguingly, relationships between genes involved in the MAPK
pathway were among the most differentially coessential in the
BRAF-mutant context as compared with BRAF-WT cells (Fig 5B).
Consistent with an autonomous signaling role driven by consti-
tutive BRAF activation, in BRAF-mutant cells, downstream MAPK
effectors BRAF, MAP2K1 (MEK1), and MAPK1 (ERK2) have markedly
reduced fitness correlations with upstream MAPK pathway genes
such as EGFR, GRB2, and KRAS (Fig 5B). These findings are made
obvious in the context-specific coessentiality networks of major
MAPK family members, which depict dense interconnections be-
tween all pathway members in BRAF-WT cells but a disconnect
between upstream (EGFR and Ras) and downstream (BRAF, MEK,
and ERK) genes in BRAF-mutant cells (Fig 5C). Differential network
analysis (Ideker & Krogan 2012) directly identifies the relationships
selectively lost in BRAF-mutant cells, such as that between
EGFR and BRAF, and provides an explanation why pan-cancer

coessentiality analysis fails to identify strong relationships be-
tween EGFR/KRAS and downstream MAPK pathway genes (Fig 5C,
bottom right panel). Together, these data demonstrate that dif-
ferential and subset-specific coessentiality network analysis can
reveal context-specific genetic interactions undetectable in pan-
cancer coessentiality analyses.

Integration of multiomic data to understand and target
contextual gene essentiality

As each cell line in the Project Achilles fitness screening dataset has
also undergone extensive multiomic characterization (e.g., tran-
scriptomics, proteomics, and metabolomics), we reasoned that
integration of multiomic data could provide insight into the mo-
lecular mechanisms underlying genetic dependence on a given
factor. In addition, because precision medicine approaches often
use -omic data to identify the patients most likely to respond to a
given therapy, signatures of gene dependence may be useful in the
clinical translation of therapies which target selective genetic
dependencies. As a case study, we investigated Heat Shock Factor 1
(HSF1), a multifaceted transcription factor which oversees cytosolic
protein homeostasis (Mendillo et al, 2012; Filone et al, 2014; Scherz-
Shouval et al, 2014). We built a pan-cancer coessentiality network
for HSF1 (Fig 6A), which was enriched for genes involved in protein
homeostasis (e.g., HSPA4/Hsp70, DNAJB6/Hsp40, HSPA14/Hsp110,
and FKBPL), but also contained genes involved in transcription (e.g.,
ELP1 and ELP2) and cell cycle regulation (e.g., CENPA and CEP135).

Figure 4. Integration of drug–gene interaction data to identify surrogate therapeutic targets for challenging proteins.
(A) Proportion of bottom-up coessentiality networks in the genome which contain at least one protein with a known gene-drug interaction in the Drug-Gene Interaction
Database at the specified rank threshold. For (A), only positive primary nodes are considered. Reported mechanism of action refers to drug–gene interactions
characterized with mechanisms such as “inhibitor” or “activator.” (B) Presence of drug–gene interactions with reported mechanism of action for the top 15 ranked
correlations and anticorrelations for a panel of attractive therapeutic target proteins. (C) An example bottom-up network for a challenging therapeutic target, MYC,
which has a coessential knockout phenotype with several genes targeted by existing drugs (red nodes). (D) Cancer cell dependence on and expression of MYC are
associated with greater sensitivity to the WNK inhibitor PP121. P-value from Pearson correlation. (E) Viability of MYC KO (HO15.19) or parental MYC WT (TGR-1) rat fibroblasts
treated with PP121 at the indicated concentrations. Three biological replicates per dose.
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Next, we built networks for HSF1 within major cellular lineages,
finding no substantial enrichment for a given process in any subset
(data not shown). Rather, the protein homeostasis genes were
consistently correlated with HSF1, suggesting that this canonical
role of HSF1 is highly conserved across tissue types and genetic
backgrounds (Fig S4).

To better understand the contexts that drive cellular depen-
dence on HSF1, we compared the transcriptome, metabolome, and
proteome for cells highly dependent on HSF1 (>75th percentile
essentiality) as compared with relatively HSF1-independent cell
lines (<25th percentile) across major cancer subsets. Across mul-
tiomic signatures, the most striking enrichment involved over-
expression of protein synthesis genes in HSF1-dependent cells of
several cancer subsets (Fig 6B). This was particularly the case in
acute myeloid leukemia (AML), where nearly every gene overex-
pressed in the HSF1-dependent set of AML lines encoded a protein
involved in translation (16 of 23 genes, enrichment P = 1 × 10−22; Fig
6C). Fittingly, protein levels of T308-phosphorylated Akt were ele-
vated in these cell lines, together indicating a high-translation
phenotype which does not neatly correlate with known genetic
or clinical subtypes of AML. Remarkably, a previous report dem-
onstrated that inhibiting translation initiation with rocaglates in-
activates HSF1, suppressing the high-translation malignant state in
a manner which most potently impacted AML cells (Santagata et al,
2013). Our data corroborate the observation that protein synthesis
demands confer HSF1 dependence in AML, but further suggest that
not all AML lines are similarly dependent on this link between HSF1
and translation. Rather, there is a spectrum of this phenotype in
AML, which bears clinical consideration given the ongoing explo-
ration of rocaglates/translation initiation inhibitors for the treat-
ment of AML and various other tumors (Cunningham et al, 2018).
Indeed, the mRNA signature of translation and HSF1 dependence in
AML stratifies AML patients into distinct prognostic groups (Fig 6D).

Together, these data demonstrate the utility of multiomic data
integration to better understand the genetic dependencies upon
which coessentiality analyses are based and to generate signatures
which may be applied to patient samples.

Discussion

Genes which function in the same biological process often display
similar phenotypic variation (e.g., transcript abundance or mutant
viability) across biological contexts. As such, the function and
interacting partners of individual genes can be predicted by identi-
fying genes with highly correlated phenotypic profiles (Hughes et al,
2000; Dudley et al, 2005). In recent years, high-quality CRISPR-Cas9
screening libraries have provided an unprecedented ability to pre-
cisely define the functional consequences of individual gene loss, at
genome-scale, in human cells. Fittingly, genome-scale or “top-down”
coessentiality network analyses using CRISPR-Cas9 fitness screening
datasets have recently emerged as a powerful strategy to identify
the functions of and relationships between human genes (Wang et
al, 2017; Boyle et al, 2018; Pan et al, 2018; Rauscher et al, 2018; Kim et
al, 2019; Wainberg et al, 2019 Preprint; Bayraktar et al, 2020).

Despite their clear value, top-down coessentiality network analyses
are most effective assigning function to genes which operate in obligate
cooperation with other members of the same process. In turn, many
genes—particularly critical regulatory hubswith a complicatednetwork of
effectors or roles in multiple biological processes—lack clear module
membership or functional enrichment in top-down analyses. On the
other hand, we find that bottom-up coessentiality networks centered
upon these complicated genes (e.g., RHEB and PPP1R15B) provides clear
insight into their functionality. As such, our method for bottom-up
network analysis is likely to be particularly useful for investigators

Figure 5. Context-specific and differential
coessentiality network analysis identifies MAPK
pathway rewiring by BRAF mutations.
(A) Schematic illustration of several key proteins in the
MAPK signaling pathway. Genes in the pathway have
multiple paralogs; highlighted paralogs in subsequent
graphs for Ras, Raf, MEK, and ERK are KRAS, BRAF,
MAP2K1, and MAPK1. (B) Ranked Pearson correlations
of critical MAPK pathway genes in cell lines without a
BRAF mutation (BRAF-WT; n = 643) or with a BRAF
missense mutation (n = 96). Ranks are used to make
Pearson correlations directly comparable with
different sample sizes. Modules featuring differential
correlations are highlighted. (C) Bottom-up
coessentiality networks for select MAPK pathway genes
reveals tight interconnections between all pathway
members in BRAF-WT cells but a discordant
relationship between genes upstream of BRAF in BRAF-
mutant lines. Differential network analysis highlights
relationships lost in BRAF-mutant cells, such as that
between EGFR and BRAF, explaining the obscured
signal in pan-cancer coessentiality analysis for these
genes.
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whose gene(s) of interest do not form robust clusters in published
coessentiality resources. However, we emphasize that the bottom-up and
top-down approaches are not mutually exclusive. For example, RHEB sits
in a highly interconnected module related to mTORC1 in one published
coessentiality network (Boyle et al, 2018). If the function of RHEB was not
already known, one might create a bottom-up network centered upon
RHEB, revealing its nature as a critical intermediate between the TSC1-
TSC2 complex and the mTORC1 complex (Fig 3D).

In addition to the source node centric, bottom-up nature of our
approach, FIREWORKS offers several novel features and analysis
strategies. By developing a preprocessing correction to adjust for
locus bias, we reduce the pervasive burden of locus-associated
false positive correlations in CRISPR-based coessentiality analysis.
Our sliding window correction approach also improved the per-
formance of CRISPR coessentiality to predict genes with known
functional and physical interactions. The greatest performance
improvements came for genes such as PC and KLF1, whose coes-
sentiality networks before correction contained only genes in the
same chromosomal neighborhood, but after correction yielded
highly significant enrichment for established partner genes. We
emphasize that our approach reduces bias which persists despite

several processing steps designed to mitigate systematic error, as
described (Dempster et al, 2019 Preprint). In practice, additional
approaches to reduce systematic biases in coessentiality analysis
include the use of multiple source nodes as the basis for a network
investigating a single process. In such a network design (which is
easily implemented in our web tool), primary nodes shared be-
tween source nodes may be considered the highest confidence
associations. In addition, we encourage the use of our secondary
node approach to create functional clusters in bottom-up net-
work data. GSEA (Subramanian et al, 2005), encompassing posi-
tional gene sets as well as biological pathway gene sets, of these
network modules is well equipped to reveal the processes that
underlie the shared fitness phenotype within a group of genes,
whether positional (uncommon after our locus adjustment approach)
or biological.

Another novel feature of our tool lies in the rapid integration of
gene-drug interaction data, which we explore in the context of
indirect targeting of “undruggable” proteins. Particularly for cancer
drivers such as MYC, indirect targeting—that is, modulation of genes
which are critical for that driver’s effect on cellular signaling but
which also can be targeted with small molecules—have yielded

Figure 6. Integration of multiomic data reveals
increased HSF1 dependence in a biosynthetically
active subset of acute myeloid leukemia (AML).
(A) The HSF1 coessentiality network, comprising positive
connections to rank 30 and 5 potential secondary
nodes per gene, is enriched for genes involved in the
heat shock cytosolic proteostasis response. P-value
from hypergeometric test. (B) Creation of mRNA,
protein, and metabolite signatures of HSF1-
dependence (lines with >75th percentile essentiality
versus <25th percentile essentiality) across cancer
subsets containing at least 10 cell lines. Enrichment
P-values (hypergeometric overlap test) for the most
enriched signatures in each subset are shown. (C)
Integration of cancer cell line encyclopedia multiomic
data to characterize AML cell l`ines stratified by HSF1
dependence (upper versus lower quartile) reveals
that HSF1 is most essential in a biosynthetically active
subset of AML cell lines. (D) The mRNA signature of
translation and HSF1-dependence in AML stratifies
AML patients into distinct prognostic groups. P-value
from Cox proportional hazards test.
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several promising results (Chen et al, 2018). However, the scope of
indirect targeting is limited to the small union of genes which are
established co-functional partners with a challenging target and
which have a druggable structure. By integrating unbiased coes-
sentiality data with a drug–gene interaction database, we found
that many pharmacologically challenging targets are putatively co-
functional with genes which have known inhibiting or activating
drugs. Supporting the validity of these predictions, many indirect
targets uncovered in our networks have already demonstrated
success in pre-clinical models (e.g., HIF1A-EGLN1, KRAS-RAF1, and
MYC-CDK7). In addition, we experimentally validated one novel gene-
drug interaction (MYC-PP121, Fig 4E) using a traditional chemical-
genetic approach. Given that many genes have 10 or more putative
drug interactions in their network, emerging methods to perform
multiplexed chemical-genetic profiling may be a useful approach to
identify the highest-fidelity indirect targeting strategies (Brockway
et al, 2020). Critically, while cancer coessentiality data are most di-
rectly applicable to cancer targets, the coessentiality-directed tar-
geting approach may not be limited to oncology. Indeed, proteins of
therapeutic interest in other fields, such as the low density lipoprotein
receptor (cardiology) or Presenilin-1 (PSEN1, involved in upstream
processing of amyloid; neurology) have coessentiality networks
enriched for genes involved in their functional pathways, several of
which have known drug interactions. Altogether, we propose that
integrative coessentiality network analysis is a powerful hypothesis-
generating tool which may bolster drug repurposing and precision
medicine efforts.

Coessentiality analyses require a sufficiently diverse represen-
tation of biological contexts such that most genes have meaningful
variations in essentiality across contexts (i.e., greater variation than
attributable to experimental error). However, where natural vari-
ation is used to achieve contextual breadth, such as in the current
practice of using cancer cell line collections, the factors which drive
cellular dependence on an individual gene or pathway are difficult
to parse. This is in contrast with co-functional approaches where,
for example, the same strain of yeast is grown in hundreds of
different environmental contexts (Hillenmeyer et al, 2008). We
demonstrate that integration of multiomic data from the same
cancer cell lines used in coessentiality analysis can provide insight
into the contextual factors underlying reliance on a given gene. For
example, HSF1 essentiality in AML and melanoma is tightly linked
with a protein synthesis phenotype, consistent with a previous
report detailing how protein synthesis rates are coupled with HSF1
activation (Santagata et al, 2013; Alasady & Mendillo 2020). Beyond
mechanistic considerations, multiomic data may aid in the trans-
lation of drug–gene interaction data. Particularly for genes without
obvious genomic drivers of essentiality (e.g., mutations or amplifi-
cations), attempts to target cells or tumors dependent on a given
factor may benefit frommultiomic data integration to assist inmodel
selection and patient stratification. For example, if one were to target
HSF1 or an HSF1-coessential gene in AML, one would expect tumors
with high expression of ribosome and translation genes to be the
most likely to respond.

The principal functionality of the FIREWORKS portal leverages
pan-cancer coessentiality analysis, which maximizes discovery
power by representing the highest number of biological contexts.
However, with the understanding that some genetic interactions

are context-specific and may not emerge in pan-cancer coes-
sentiality analyses, we provide tools for context-specific network
creation. We emphasize that this approach is most suitable for
questions of genetic interactions which are specific or differentially
regulated in a given context. That is, if an individual studies gene X
and works primarily in breast cancer, pan-cancer network analysis
will likely provide the best biological insight into gene X, which can
then be experimentally tested in breast cancer cells. However, if
gene X is normally regulated by a gene universally deleted in breast
cancer (or by estrogen, etc.), breast lineage-specific network
analysis may reveal alternative regulation mechanisms or other
context-specific interactions obscured in pan-cancer analyses. A
valid concern with context-specific coessentiality analyses, which
draw from a less diverse representation of cell lines, is a reduced
power to detect functional interactions. Based on subsampling
analyses (Fig S5), we recommend a loose threshold of 12 cell lines
per group to minimize this power reduction to the extent possible.
Indeed, the first study to demonstrate the power of the CRISPR
coessentiality approach used only 14 myeloid leukemia cell lines,
but still uncovered several important biological discoveries (Wang
et al, 2017). More generally, in all custom coessentiality analyses, the
investigator must determine their tolerance for false positives
versus false negatives. For example, expanding a network to rank 50
may allow for better resolution of the generalized function of a
query gene, whereas restricting a network to rank 5 (or a specified
correlation magnitude) will yield only the highest confidence as-
sociations, which may be more likely to represent direct functional
interactors (e.g., physical interactors).

To facilitate the broad application of bottom-up, integrative
coessentiality network analysis, our approach is implemented in an
interactive web application (fireworks.mendillolab.org). On the web
portal, extensive customization of analysis is possible to facilitate
strategies targeted toward a wide spectrum of biological questions.
Networks created in the FIREWORKS portal take ~3 s to build and
can either be downloaded for further customization in any network
analysis/visualization software or saved directly from the web
portal as high-resolution, publication-quality images. Critically, as
genetic fitness screening data continues to accumulate, the power
of bottom-up coessentiality network analysis will only improve. The
current iteration of FIREWORKS represents 739 cancer cell lines, and
the web portal will be updated with regular feature additions and in
parallel with the Broad Institute’s DepMap data releases. With
several novel analysis strategies and a decreased barrier to access
in FIREWORKS, we envision integrative coessentiality analysis be-
coming a commonplace tool to probe the human genome.

Materials and Methods

Public dataset curation and processing

Gene essentiality data derived from CRISPR-Cas9 genome-scale
loss-of-function screening of 739 cancer cell lines using a modified
Avana library (Doench et al, 2016) as part of Project Achilles was
obtained from the Broad Institute’s DepMap portal (20q1 release;
https://figshare.com/articles/DepMap_20Q1_Public/11791698/3).
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CERES scores (Meyers et al, 2017) were used to quantify the fitness
effect of individual gene loss, with “essentiality” in this article
represented as the CERES score multiplied by −1. For example, a highly
essential gene might have a CERES fitness effect of −2 and thus an es-
sentiality score of two. The standard CERES gene effect estimate from the
Broad’sDepMapportalhasundergoneseveralbiasadjustments, including
removal of confounding principal components, as described (Meyers et al,
2017; Boyle et al, 2018; Dempster et al, 2019Preprint). RNAi gene essentiality
data from 712 cancer cell lines, encompassing three independent RNAi
screening projects (McFarland et al, 2018), were obtained from (https://
figshare.com/articles/DEMETER2_data/6025238/6). Processed RNA-seq,
reverse phase protein array, copy number, and metabolomic data were
obtained from the DepMap data portal (https://depmap.org/portal/
download/). These data are described in detail in Ghandi et al (2019).
Cancer cell line drug sensitivity data from the PRISM drug repurposing
project are obtainable from https://figshare.com/articles/PRISM_
Repurposing_19Q3_Primary_Screen/9393293 (Corsello et al, 2020).
Genome positions and chromosomal band annotations for indi-
vidual genes were obtained from BioMart (Smedley et al, 2009).
Duplicate gene family data was downloaded from the Duplicated
Gene Database (http://dgd.genouest.org/listRegion/homo_sapiens/
all%3A0.x/5/) (Ouedraogo et al, 2012). STRING experimental interac-
tionswereobtained fromhttps://string-db.org/cgi/download.pl (Szklarczyk
etal, 2019).mRNA co-expression data fromCOXPRESdb (Obayashi et al,
2019) were downloaded from https://figshare.com/files/10975364.
GSEA gene sets were obtained from http://software.broadinstitute.org/
gsea/msigdb (Liberzon et al, 2015). CORUM core protein complex
member data were obtained from http://mips.helmholtz-muenchen.de/
corum/#download (Giurgiu et al, 2019). Drug-gene interaction data was
obtained from the Drug-Gene Interaction DataBase at http://www.
dgidb.org/data/interactions.tsv (Cotto et al, 2018).

Quantification of locus bias and Random Forest regression

To determine locus bias for individual genes in CRISPR coes-
sentiality analysis, we assessed each gene’s top 100 ranked cor-
relations in the Project Achilles fitness screening dataset and
determined the proportion of those correlate genes which were
located on the same chromosome. Bias was quantified as observed
syntenic coessentiality rate minus expected, where expected was
the maximum syntenic coessentiality rate between random chance
(determined by number of genes on the chromosome relative to
size of the genome) or RNAi coessentiality. To better understand the
factors driving locus bias in CRISPR coessentiality data, we trained a
machine learning model to predict the bias of individual genes
using the following features: gene expression in cancer cell lines
(mean and minimum), essentiality score in Achilles CRISPR screens
(variance, mean, and maximum), copy number variance of the gene,
and its chromosomal band, gene length, and duplicate gene status.
This model yielded a decision tree which primarily used three
features to predict locus bias with ~17% mean absolute error: local
copy number variance, essentiality score variance, and mean gene
expression (Fig S1C and D). We chose a Random Forest model
because it tolerates feature collinearity and mixed categorical/
continuous data and because it allows quantification of the im-
portance of each input feature to the model’s predictive success.
We found best predictive performance, as determined by mean

absolute error on the test dataset (25% of input data), in a model
comprising only the following features: local copy number variance,
essentiality score variance of the gene across CRISPR-Cas9 screens,
and mean expression of the gene in cancer cell line encyclopedia
RNA-seq datasets. Specifically, we used sklearn.ensemble.RandomFor-
estRegressor with n_estimators set to 100. An example tree created with
the max_depth parameter set to three was exported for visualization
using Graphviz and Pydot.

Generation of locus-adjusted gene coessentiality matrices

CRISPR Noncorrected refers to the correlation matrix created from
the CERES gene effect estimates from the Broad DepMap, which has
undergone extensive normalization and denoising as described
(Dempster et al, 2019 Preprint). Neighbor subtraction, the best-
performing locus bias adjustment approach as described in the
main text, was performed as follows. The median essentiality score
for each gene’s 40 nearest neighbors (20 upstream, 20 downstream)
was determined and halved. This locus essentiality score was then
subtracted from the corresponding gene’s initial essentiality es-
timate before genome-scale, pairwise correlations. Of note, this
correction was applied to all genes except for duplicated gene
families located within 2.5 MB of each other (n = 3,543), as these
genes often have shared functions and were often also correlated
in RNAi data. The number of neighbor genes used, as well as other
parameters in the neighbor subtraction pipeline, were tested
empirically to identify the best-performing version of the neighbor
subtraction approach as in Figs 2E–G and S2B and described below.
Other locus correction approaches were performed as follows.
Biased PCA and Band PCA refer to PCA-based normalization pro-
cedures, where PCA was performed on an input matrix and the top
principal components were subtracted from the original CERES
gene effects matrix before performing correlation analyses. The
input matrix for Biased PCA was all genes with substantial locus
bias (>75% of coessential genes located on the same chromosome)
and for Band PCA was a matrix containing the median essentiality
score for chromosomal band across cell lines. The correlation
matrices used for benchmarking removed two principal compo-
nents, but we found no substantial change in performance whether
1, 2, 3, 5, 10, or 15 principal components were used (data not shown).
Band Corr Subtract was calculated as follows: to determine the
adjusted correlation of Gene X versus Gene Y, the Pearson corre-
lation of Gene X’s chromosomal band signature versus Gene Y was
subtracted from the correlation of Gene X and Gene Y. Band Re-
moval and Band Penalty refer, respectively, to either removing
(setting correlation to zero) or penalizing (dividing correlation
coefficient by two) genes in the same chromosomal band region.

Benchmarking the true discovery rate of different correlation
approaches

To assess the ability of different locus bias approaches to predict
true positive interactions, we adapted a benchmarking strategy
described previously (Pan et al, 2018). Briefly, true positive inter-
actions for a given gene are identified from curated datasets, and
the rank at which those genes are identified in each correlation
method is obtained. Cumulative distribution functions were then
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determined for the identification success rate of true positives as a
function of rank threshold. STRING experimental interactions were
restricted to high-confidence interactions (score > 0.7). GSEA gene
sets included in benchmarking analyses were the following sets:
hallmark (H), KEGG pathways (C2), REACTOME (C2), GO Biological
Process (C5), and GO Molecular Function (C5). CORUM complexes
including only “core” high-confidence complex components.

Coessentiality network construction and statistical analysis

Rank-based networks were constructed from a single or set of input
genes, using a soft rank threshold for each analysis, that is, correlations
below the specified rank were not included. Edges are not weighted by
correlation strength or rank. Networks were visualized in Cytoscape
v3.7.2 (https://cytoscape.org/) (Shannon et al, 2003). Networks used a
standard force-directed layout with manual adjustments made where
needed to improve legibility. As described in the main text, control/
simulated genes were created by randomly sampling sets of 739 gene
effect estimates from the Project Achilles dataset. The rationale for this
approach is that, by choosing a rank-based network creation ap-
proach, every gene (independent of the biological validity of its signal-
to-noise ratio in the DepMap dataset) will have the same number of
fitness correlations at a given rank threshold. Thus, by creating genes
strictly from noise, we could determine the magnitude of correlation
coefficient which could be explained by chance at a given rank
threshold and false discovery rate cutoff. Similarly, because a “noise”
gene may (by chance) have a similar fitness profile to a highly
interconnected set of genes, such as components of a large molecular
assembly (e.g., the mitochondrial ribosome), some networks would
also be expected to have high numbers of internal edges (connections
between non-isolated genes in the network) strictly as a function of
chance. Thus, we determined the number of internal edges (here,
defined as edges between nodes which have more than one total
connection in the network) present in each “noise” network as a
backdrop to identify networks with truly enriched functional modules.
Louvain modularity (Blondel et al, 2008) for each bottom-up network
was determined using the Python modules Networkx and Python-
Louvain.

Drug-gene interaction data integration

Because not all interactions in the Drug-Gene Interaction DataBase
(DGIDB; Cotto et al, 2018) have an annotated mechanism, these
interactions were excluded in all analyses where direct MOA is
reported. MOAs were classified as follows, with bracketed cate-
gories being the term annotated in DGIDB: inhibitor (gating in-
hibitor, inhibitor, blocker, antisense oligonucleotide, antagonist/
inhibitor, allosteric modulator/antagonist, vaccine, partial agonist,
antagonist, antibody, channel blocker/gating inhibitor, inverse
agonist, negative modulator, suppressor, channel blocker, anti-
sense, inhibitory allosteric modulator, and activator/channel
blocker), activator (stimulator, activator, agonist, cofactor, in-
ducer, agonist/allosteric modulator, activator/antagonist, and
positive allosteric modulator), or other (binder, agonist/antagonist,
allosteric modulator, and modulator). We note that interactions
classified as other often comprised complex interactions, for ex-
ample, selective modulation of the estrogen receptor by tamoxifen.

“Both” indicates that a given gene/protein has an activating and an
inhibitory drug interaction. In the FIREWORKS web portal, only
interactions with an annotated mechanism are reported.

Cellular viability assay

Cell viability was estimated using the colorimetric, WST-8 tetra-
zolium salt-based, Cell Counting Kit-8 (CCK-8) from Dojindo Mo-
lecular Technologies (SKU: CK04). For HO15.19 rat fibroblast cells
(MYC KO), 2,000 cells/well were seeded in 96-well plates. For TGR-1
(parental MYC WT), 1,000 cells/well were seeded in 96-well plates.
3 d after treatment with PP121 (SelleckChem S2622), CCK-8 solution
was added, and plates incubated for 3 h. Absorption was measured
at 450 nm using plate reader (Perkin Elmer Victor 3V).

Cell line multiomic data integration and descriptive comparisons

For descriptive comparisons of different cell lines stratified by
dependency signatures, the cell lines with 75th percentile or higher
dependency on that gene were compared with cell lines having 25th

percentile or lower dependency. Subsets of cancer cell lines with at
least 15 cell lines were considered for subset multiomic analyses to
mitigate false positive discoveries from underpowered analyses.
Enrichment of signatures, as computed for HSF1-associated mul-
tiomic signatures, was determined using a hypergeometric test of
gene overlap between GSEA gene sets and the signature genes/
proteins. Because our primary end point in multiomic signature
analysis is in GSEA or further development of a patient gene sig-
nature, differential abundance was assessed by a simple two-tailed
t test with a lenient significance threshold of 0.005 (transcriptomic)
or 0.05 (proteomic and metabolomic) data. However, we note that
P-value thresholds are customizable in the FIREWORKS portal and
should be considered in the context of the number of cell lines
included in a subset analysis.

Analysis of AML patient survival

Log-normalized RNA-sequencing data were obtained for AML pa-
tients from The Cancer Genome Atlas Pan-Cancer Atlas as acces-
sible at cBioPortal (Cerami et al, 2012). Of 200 patients, 161 had
mRNA abundance estimates available for genes in the high-
translation signature which were overexpressed in HSF1-
dependent AML cell lines (EIF3L, RPL3, EEF1D, RPL34, FNBP4,
RPS13, RSPH4A, RPS12, BRD8, CCNI, RPL27, RPL32, RPS3A, RPL10,
RPL7A, EEF1A1, RPS14, USP38, RPS23, ZNF33B, HSD17B11, RPS29, and
EEF1G). The median log-RSEM of these genes was taken for each
case as the value of the mRNA translation signature, and patients
were stratified at the median expression value for the signature for
survival analysis. Kaplan–Meyer plotting and statistical analysis
(Cox proportional hazards test) were performed in the Python
package Lifelines v0.24.9.

Gene set enrichment analysis

GSEA was performed using the Molecular Signature Database as
accessible at http://software.broadinstitute.org/gsea/msigdb/annotate.
jsp (Subramanian et al, 2005; Liberzon et al, 2015). The gene sets queried
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were as follows: hallmark (H), positional (C1), KEGG pathways (C2),
REACTOME (C2), GO Biological Process (C5), and GO Molecular Function
(C5). The ranked gene set enrichment plots in Fig 2Hweremade in Python
using a modified version of the seaborn.rugplot function in Python, with
enrichmentP-values calculatedusing a two-sample Kolmogorov-Smirnov
test implemented in scipy.stats.ks_2samp.

Data and code availability

All codes used in this manuscript are available at https://github.com/
mendillolab. Our interactive web application to construct and integrate
bias-adjusted coessentiality networks for a given set of input genes is
available at https://fireworks.mendillolab.org.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000882.
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