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Abstract
The purpose is to compare quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) metrics
with imaging tumor size for early prediction of breast cancer response to neoadjuvant chemotherapy (NACT) and
evaluation of residual cancer burden (RCB). Twenty-eight patients with 29 primary breast tumors underwent DCE-MRI
exams before, after one cycle of, at midpoint of, and after NACT. MRI tumor size in the longest diameter (LD) was
measuredaccording to theRECIST (ResponseEvaluationCriteria InSolid Tumors) guidelines. Pharmacokinetic analysesof
DCE-MRI data were performed with the standard Tofts and Shutter-Speed models (TM and SSM). After one NACT cycle
the percent changes of DCE-MRI parameters Ktrans (contrast agent plasma/interstitium transfer rate constant), ve
(extravascular and extracellular volume fraction), kep (intravasation rate constant), and SSM-unique τi (mean intracellular
water lifetime) are good to excellent early predictors of pathologic complete response (pCR) vs. non-pCR, with univariate
logistic regression C statistics value in the range of 0.804 to 0.967. ve values after one cycle and at NACTmidpoint are also
good predictors of response, with C ranging 0.845 to 0.897. However, RECIST LD changes are poor predictors with C =
0.609 and 0.673, respectively. Post-NACT Ktrans, τi, and RECIST LD show statistically significant (P b .05) correlations with
RCB. The performances of TM and SSM analyses for early prediction of response and RCB evaluation are comparable. In
conclusion, quantitative DCE-MRI parameters are superior to imaging tumor size for early prediction of therapy response.
BothTMandSSManalysesareeffective for therapy responseevaluation.However, the τi parameterderivedonlywithSSM
analysis allows the unique opportunity to potentially quantify therapy-induced changes in tumor energetic metabolism.
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Introduction
Neoadjuvant chemotherapy (NACT) is commonly used as standard
of care treatment for locally advanced breast cancer with the primary
clinical goals of downstaging the disease, improving operability, and
allowing breast conserving surgery [1,2]. Though NACT does not
improve overall survival in comparison with postoperative adjuvant
therapy [3–5], one advantage of NACT is to provide the opportunity
for assessment of pathologic response to the treatment. Pathologic
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complete response (pCR) or minimal residual disease following
NACT has been shown to be prognostic for survival [6–9]. The
majority of the patients, however, do not achieve pCR with the pCR
rate reported in the range of 6% to 45% depending on breast cancer
subtypes and treatment regimens [6,7,10,11]. Furthermore, the
pathologic response status is generally determined only from the
surgical specimen after NACT completion. Therefore, there is a
genuine and unmet need for reliable and minimally invasive imaging
methods to provide early prediction of response to NACT. In the
emerging era of precision medicine, early prediction of NACT
response may allow rapid, personalized treatment regimen alterations
for non-responding breast cancer patients and spare them from
potential short and long term toxicities associated with ineffective
therapies. Additionally, accurate evaluation of residual disease after
NACT is vital for surgical decision making and could result in surgical
treatment plans more tailored to individual patients.
Imaging tumor size change with guidelines such as RECIST

(Response Evaluation Criteria In Solid Tumors) [12] is routinely used
in clinical trial settings to assess tumor response to treatment.
However, size change in response to therapy is often found to
manifest later than changes in underlying tumor functions [13–16],
such as vascularization and vascular permeability, cellularity, and
metabolism. Recognized as a minimally invasive imaging method for
evaluation of perfusion and permeability, dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) is increasingly used in
research and early phase clinical trial settings to measure and,
importantly, predict tumor response to treatment [13,14]. Over the
last decade, substantial evidence has accumulated [17–19] showing
the utility of DCE-MRI for assessment and early prediction of breast
cancer response to NACT. Despite large variations in DCE-MRI data
acquisition protocol details (temporal resolution, spatial resolution
and coverage, acquisition time length, etc.) and data analysis methods
(semi-quantitative vs. quantitative pharmacokinetic analysis of signal
intensity time-course data), many studies have shown that changes in
several semi-quantitative [20–25] or quantitative [26–35] DCE-MRI
metrics during the course of NACT can provide good early prediction
of pathologic response after one to two NACT cycles, and valuable
clinical evaluation of overall response and prognosis. In correlating
DCE-MRI parameters with pathologic response endpoints, most
studies use binary discrimination of pCR and non-pCR with few [23]
reporting relationships between post-NACT imaging metrics and
pathologically measured residual disease burden, which could have
important implications for surgical decision making. Among studies
that performed quantitative pharmacokinetic analyses of DCE-MRI
data, most employed the nuclear medicine, tracer kinetic model based
Tofts model (TM) [36,37] with inherent neglect of the effects of
intercompartmental water exchange kinetics. The water molecule is
not the signal molecule in nuclear medicine imaging, but in
DCE-MRI it is. Considering the two-compartment model of intra-
and extra-cellular spaces, for example, since contrast agent (CA)
molecules generally reside in the extracellular space, the cross-cell
membrane water exchange kinetics needs to be accounted for when
converting MRI signal intensity change to tissue CA concentration
change in pharmacokinetic analysis of DCE-MRI data.
In this paper we report our initial results in DCE-MRI assessment

of breast cancer response to NACT. The DCE-MRI data were
analyzed using both the TM and the Shutter-Speed model (SSM),
which takes into account the finite intercompartmental water
exchange kinetics [38,39]. DCE-MRI parameters, including the
SSM-unique τi parameter (mean intracellular water lifetime), an
inverse measure of cellular metabolic activity [40,41], were evaluated
and compared between the TM and SSM and with imaging tumor
size measurement, for early prediction of pathologic response to
NACT and assessment of residual disease.
Materials and Methods

Patient Cohort and Study Schema
In this institutional review board–approved and HIPAA-compliant

study, twenty-eight women who were diagnosed with 29 grade 2 to 3
invasive breast tumors (one patient had two independent primary tumors)
and to undergo NACT were consented to participate in a longitudinal
research MRI study that includes DCE-MRI. Twenty one (22 primary
tumors) of the 28 patients were treated with standard of care therapy
regimens that include four cycles of doxorubicin-cyclophosphamide every
2 weeks followed by four cycles of a taxane every 2 weeks, or six cycles of
the combination of all three drugs every 3 weeks. The targeted agent,
trastuzumab, was added to the regimen for tumors with positive HER2
(human epidermal growth factor receptor 2) receptor status. The other
seven patients (seven primary tumors) were enrolled in theNACT ISPY-2
trial (http://ispy2.org), where patients were randomized to receive
standard of care regimen or standard of care regimen plus experimental
drugs. The ISPY-2 standard of care regimen starts with a taxane, followed
by doxorubicin-cyclophosphamide. If used, the experimental drug is
usually added to the taxane. Four of the seven patients were placed in the
treatment arm with experimental drugs: three (patient 7, 12, and 13,
Table 1) received neratinib, a tyrosine kinase inhibitor, and the other
(patient 24) received ganitumab, a human monoclonal antibody against
type 1 insulin-like growth factor receptor (IGF1R). The clinicopathologic
characteristics of the studied patient cohort are presented in Table 1.

The MRI exams for this research study were performed pre-NACT
(Visit 1, V1), after one cycle of NACT (V2), at midpoint of NACT
(V3; usually after 3 or 4 cycles of NACT, or before change of NACT
agents), and after NACT completion but prior to surgery (V4). The
ISPY-2 trial includes a different MRI protocol conducted at the same
four time points. For the 7 patients who participated in the ISPY-2
trial, care was taken to ensure there were at least 24 hours between the
research and ISPY-2 MRI studies to allow CA, used in both, clearance
from the body. For the V2 – V4 studies, the MRI scan was
undertaken at least 7 days after the administration of the previous
NACT cycle to allow time for drug effects.

DCE-MRI Data Acquisition
All breast MRI studies were performed using a 3 T Siemens Tim

Trio system with the body coil and a four-channel bilateral
phased-array breast coil as the transmitter and receiver, respectively.
In each MRI session, following pilot scans and pre-CA axial
T2-weighted MRI with fat-saturation and axial T1-weighted MRI
without fat-saturation, axial bilateral DCE-MRI images with
fat-saturation (using the approach of water excitation only) and full
breast coverage were acquired with a 3D gradient echo-based TWIST
(Time-resolved angiography WIth Stochastic Trajectories) sequence,
which employs the strategy of k-space undersampling during
acquisition and data sharing during reconstruction [42]. Compared
to conventional full k-space sampling gradient echo sequences, the
TWIST sequence enables acceleration of image acquisition and
preserves signal-to-noise ratio, while the image artifacts can be
minimized using appropriate k-space undersampling and view sharing

http://ispy2.org


Table 1. Clinicopathologic Characteristics of the Study Patient Cohort Treated with Neoadjuvant Chemotherapy

Patient
Number

Age (yr) Tumor
Type

Tumor
Grade

Pre-treatment
Size (cm)

Receptor
Status(ER,PR,HER2)

Treatment Regimen Pathologic
Response

RCB Class

1 27 IDC 2 3.7(Mammo) −, −, + Docetaxel + carboplatin + trastuzumab non-pCR III
2 27 IDC 2 1.3(MRI) +, +, + Docetaxel + carboplatin + trastuzumab pCR 0
3 61 IDC 3 2.4(MRI) −, −, − Adriamycin + cyclophosphamide, then paclitaxel non-pCR I
4 39 IDC 2 2.6(MRI) +, +, + Paclitaxel + trastuzumab, then cyclophosphamide + adriamycin pCR 0
5 63 IDC 2 2.3(US) −, −, + Docetaxel + carboplatin + trastuzumab pCR 0
6 56 IDC 3 4.4(US) −, −, − Paclitaxel, then cyclophosphamide + adriamycin non-pCR I
7 62 IDC 3 2.1(Mammo) −, −, − Carboplatin + neratinib, then cyclophosphamide + adriamycin non-pCR II
8 65 IDC 2 2.1(Mammo) +, +, − Cyclophosphamide + adriamycin, then paclitaxel non-pCR II
9 46 IDC 2 2.5(Mammo) +, +, − Cyclophosphamide + adriamycin + docetaxel non-pCR II
10 33 IDC 2 2.0(US) +, +, + Docetaxel + carboplatin + trastuzumab non-pCR II
11 41 IDC 2 3.0(MRI) +, +, - Cyclophosphamide + adriamycin + docetaxel non-pCR II
12 35 IDC 2 2.8(MRI) −, +, + Paclitaxel + neratinib, then cyclophosphamide + adriamycin pCR 0
13 39 IDC 3 2.7(MRI) +, −, + Paclitaxel + neratinib, then cyclophosphamide + adriamycin non-pCR I
14 42 IDC

IDC
2
2

1.6(US)
1.8(US)

+, +, +
+, −, −

Doxorubicin + cyclophosphamide, then docetaxel + trastuzumab non-pCR
non-pCR

II
I

15 34 IDC 2 5.0(MRI) +, +, − Paclitaxel, then cyclophosphamide + adriamycin non-pCR II
16 45 ILC 2 11.8(MRI) +, +, − Paclitaxel, then cyclophosphamide + adriamycin non-pCR III
17 38 IDC 3 3.6(US) −, −, + Docetaxel + carboplatin + trastuzumab non-pCR III
18 59 IDC 3 2.0(US) +, +, + Docetaxel + carboplatin + trastuzumab non-pCR II
19 46 IDC 3 1.7(US) −, −, + Docetaxel + carboplatin + trastuzumab non-pCR I
20 59 IDC 2 3.0(MRI) −, −, + Paclitaxel + trastuzumab, then cyclophosphamide + adriamycin pCR 0
21 51 IDC 2 3.2(Mammo) +, +, − Cyclophosphamide + Adriamycin + docetaxel non-pCR I
22 75 ILC 2 2.5(Mammo) −, −, − Adriamycin + cyclophosphamide, then paclitaxel non-pCR II
23 34 IDC 3 2.1(MRI) −, −, + Adriamycin + cyclophosphamide, then paclitaxel + trastuzumab non-pCR I
24 32 IDC 3 5.9(MRI) +, +, − Paclitaxel + ganitumab, then cyclophosphamide + adriamycin non-pCR II
25 44 IDC 2 2.8(MRI) +, +, − Adriamycin + cyclophosphamide, then paclitaxel non-pCR I
26 37 IDC 3 9.8(MRI) −, −, − Cyclophosphamide + Adriamycin + docetaxel non-pCR II
27 48 IDC 3 2.9(Mammo) −, +, − Adriamycin + cyclophosphamide, then paclitaxel non-pCR III
28 31 IDC 3 1.6(US) −, +, − Adriamycin + cyclophosphamide, then paclitaxel non-pCR I

IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; Pre-treatment size: imaging tumor size in the longest diameter before treatment; Mammo: mammography; US: ultrasound; ER: estrogen
receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; pCR: pathologic complete response; RCB: residual cancer burden.
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strategies [42]. DCE-MRI acquisition parameters included 10o flip
angle, 2.9/6.2 ms TE/TR, a parallel imaging acceleration factor of 2,
30 to 34 cm FOV, 320×320 in-plane matrix size, and 1.4 mm slice
thickness. The total acquisition time for a DCE-MRI series was
~10 minutes for 28 to 38 image volume sets of 96 to 128 slices each
with 14.6 to 20.2 s temporal resolution. The variations in number of
image volumes, number of slices per volume, and temporal resolution
were due to differences in breast size. The intravenous injection of the
CA, Gd(HP-DO3A) [ProHance (Bracco Diagnostic Inc.)]
(0.1 mmol/kg at 2 mL/s), by a programmable power injector was
timed to commence after acquisition of two baseline image volumes,
followed by a 20-mL saline flush.

For quantification of the pre-CA T1 value, T10, proton
density-weighted images were acquired immediately before and
spatially co-registered with the DCE-MRI scan [42,43]. The data
acquisition sequence and parameters were the same as for the
DCE-MRI scan except for 5° flip angle and 50 ms TR.

DCE-MRI Data Analysis
Breast tumor regions of interest (ROIs) were drawn by two

experienced breast radiologists on post-CA (approximately 90 to
120 s after the CA injection) multi-slice DCE images covering the
entire contrast-enhanced tumor. They also measured the longest
diameter (LD) of the tumor from these images using the RECIST
guidelines [12]. To avoid within-subject inter-observer variations, all
images from the longitudinal study of a given patient were interpreted
by one radiologist.

For the purpose of pharmacokinetic modeling of DCE-MRI data,
the tumor ROI- and voxel-based T10 value was determined by
comparing signal intensities between the proton density-weighted
images and the baseline images from the DCE series [42,43]. The
ROI-averaged and voxel (within the tumor ROI) DCE-MRI
time-course data were separately fitted with different pharmacokinetic
models: once with the one-compartment-two-parameter TM [36]
and once with the two-compartment-three-parameter fast-exchange-
regime (FXR)–allowed SSM [38]. Equations (1) and (2) represent the
pharmacokinetic time-course expressions for the TM and FXR-SSM,
respectively:

R1 tð Þ ¼ r1 Ktrans
Zt
0

Cp t0ð Þ exp −Ktrans=ve t–t0ð Þ� �
dt0

8<
:

9=
;þ R10; ð1Þ
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2R1i þ r1K
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0
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–
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0
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#
;
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where R1(t) is the tissue longitudinal relaxation rate constant, Cp(t′) is
the arterial plasma CA concentration time course, or arterial input
function (AIF), R1i is the intrinsic intracellular longitudinal relaxation
rate constant, R10 (=1/T10) is the pre-CA tissue R1, r1 is the tissue
CA relaxivity, K trans is the rate constant for CA plasma-to-interstitium
transfer, ve is the volume fraction of extravascular and extracellular



Table 2. Early Prediction of Pathologic Response (pCR vs. non-pCR)

MRI Metric pCR non-pCR ULR C value

Mean ± SD Mean ± SD P value

V21% Ktrans(TM) −64% ± 9% −14% ± 41% .098 0.967
V21% kep(TM) −77% ± 9% −20% ± 44% .050 0.957
V21% Ktrans(SSM) −71% ± 9% −16% ± 50% .052 0.957
V21% τi 41% ± 26% −11% ± 25% .018 0.946
V2 ve(SSM) 0.78 ± 0.10 0.60 ± 0.14 .073 0.897
V21% ve(TM) 80% ± 60% 35% ± 42% .026 0.880
V21% ve(SSM) 72% ± 41% 19% ± 28% .033 0.880
V2 ve(TM) 0.70 ± 0.37 0.29 ± 0.11 .018 0.864
V3 ve(TM) 0.63 ± 0.31 0.32 ± 0.15 .035 0.845
V3 ve(SSM) 0.81 ± 0.11 0.63 ± 0.15 .088 0.845
V1 τi (s) 0.53 ± 0.16 0.81 ± 0.26 .047 0.826
V31% ve(SSM) 80% ± 54% 27% ± 30% .041 0.810
V21% kep(SSM) −77% ± 12% −11% ± 94% .092 0.804
V31% ve(TM) 141% ± 115% 65% ± 85% .070 0.804
V31% RECIST LD −35% ± 21% −26% ± 20% .438 0.673
V21% RECIST LD −15% ± 16% −10% ± 11% .320 0.609

ULR: univariate logistic regression; SD: standard deviation; P value: two-sample t test; TM: Tofts
model; SSM: Shutter-Speed model.
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space, and τi is the mean intracellular water molecule lifetime. Both
model fittings return K trans and ve parameter values, and the CA
intravasation rate constant, kep, can be calculated as kep = K trans/ve.
However, only the SSM fitting returns the τi parameter. Since the
TM neglects the finite intercompartmental water exchange kinetics,
assuming the water exchange MR system is always in the fast-ex-
change-limit condition, the linear relationship between R1(t) and
tissue CA concentration, Ct(t), shown in Equation (3) and implicit in
Equation (1), is used:

R1 tð Þ ¼ r1Ct tð Þ þ R10� ð3Þ
The SSM accounts for the finite water exchange kinetics during the CA
passage through the tissue of interest, and consequently R1(t) is not
linearly related to Ct(t). The FXR-SSM takes into account transcyto-
lemmal water exchange kinetics in the two-compartment model of intra-
and extra-cellular compartments (in the extravascular space), but assumes
single exponential longitudinal MR signal decay [38,39,41,44].
A population-averaged AIF was used for pharmacokinetic analysis

of DCE-MRI data for each patient and each visit. This AIF was
obtained by averaging individually measured AIFs from an axillary
artery in a previous sagittal breast DCE-MRI study with higher
temporal resolution [44], which employed the same CA injection
protocol, including dose, injection rate, and injection vein (ante-
cubital vein). Following the TM and SSM fittings of the DCE-MRI
data, voxel-based parametric maps of the derived pharmacokinetic
parameters were generated. The mean whole tumor pharmacokinetic
parameter value estimated with each model at each visit was calculated
as the average of single-slice ROI parameter values from the multiple
image slices covering the whole tumor, weighted by the number of
voxels in each ROI. For each imaging metric, including pharmaco-
kinetic parameters and RECIST LD, the percent changes for later
visits relative to V1, V21% (V2 relative to V1), V31%, and V41%,
were calculated.

Pathological Analysis
The status of pathologic response (to NACT) for each breast tumor

was determined by pathological analysis of the post-NACT resection
specimen. The pathology parameters measured from the resection
specimen under light microscopy include: cross sectional tumor size
in two dimensions (d1, d2, measured [in mm] grossly and confirmed
microscopically), estimated invasive tumor cellular density (finv),
number of involved lymph nodes (LN), and the greatest tumor
dimension (dmet) in the largest involved node. The Residual Cancer
Burden (RCB) index value was calculated using Equation (4)
published by Symmans et al [9]:

RCB ¼ 1:4 f inv � d1d2ð Þ1=2
h i0:17

þ 4 1−0:75LN
� �

dmet

h i0:17
ð4Þ

A complete pathologic response (pCR) is defined as the absence of
residual invasive tumor (RCB = 0). A pathologic non-response (pNR)
is defined as tumor cell density in resection specimen equal to or
greater than that in core biopsy specimen. Pathologic partial response
(pPR) is defined as findings intermediate between pCR and pNR.
Non-pCR includes both pPR and pNR and can be further stratified
into RCB classes based on RCB index values [9]: RCB-I: 0 b RCB ≤
1.36; RCB-II: 1.36 b RCB ≤ 3.28; RCB-III: RCB N 3.28. Since the
MRI metrics were measured from the primary breast tumor only, the
in-breast component of RCB (the first term on the right hand side of
Equation (4)) [23] was also computed for correlation with the MRI
results. The same RCB index value ranges were used for defining
in-breast RCB classes.

Statistical Analysis
Descriptive statistical analysis was conducted to summarize the

pharmacokinetic parameter (returned by each model fitting) and
RECIST LD values at each visit, as well as the percent changes of
these imaging metrics relative to baseline (V1). In assessing the ability
for early prediction of therapy response, the univariate logistic
regression (ULR) analysis was used to correlate V1, V2, V3 MRI
metrics, and the corresponding V21% and V31% changes, with
dichotomous pathologic response endpoints, pCR vs. non-pCR. A
ULR C statistics value, a measure equivalent to the area under the
receiver operating characteristic curve, in the range of 0.9 to 1.0
indicates an excellent predictor; 0.8 to 0.9, a good predictor; 0.7 to
0.8, a fair predictor; b0.7, a poor predictor. A two-sample t test was
used to evaluate the differences in imaging metrics and the
corresponding percent changes between the pCR and non-pCR
groups. In assessing the ability for evaluation of RCB (and in-breast
RCB) following NACT completion, the ULR analysis was used to
estimate the capabilities of V4 and V41% MRI metrics for
discriminating RCB (and in-breast RCB) class, while the Spearman
correlation (SC) analysis was used to correlate V4 and V41% MRI
metrics with RCB (and in-breast RCB) index values.
Results
As shown in Table 1, pathological analyses of the surgical specimens
revealed that 5 patients (5 primary tumors) achieved pCR following
NACT, while the other 23 patients (24 primary tumors) all had pPR, or
non-pCR. The RCB class for each tumor is also presented in Table 1.

Early Prediction of Pathologic Response
Table 2 lists the mean ± SD whole tumor MRI metric values of the

pCR and non-pCR groups and the corresponding ULR C statistics
values for early prediction of pCR vs. non-pCR. Only the absolute
pharmacokinetic parameters and the V21% and V31% changes with
C ≥ 0.8, representing good to excellent early predictors, are listed. The
C values for V21% and V31% RECIST LD changes are presented for
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comparison. The V21% changes in tumor K trans(TM), K trans(SSM),
kep(TM), and τi provide excellent (C N 0.9) early discrimination of
pCR and non-pCR, while V2 and V3 ve estimated from either
pharmacokinetic model, and their corresponding V21% and V31%
changes, are good (0.8 b C b 0.9) markers for early prediction of
response. The V21% and V31% changes in RECIST LD, however,
are poor (C b 0.7) early predictors of response. Except for the
RECIST LD changes, the differences in all other listed metrics
between the two response groups are statistically significant (P b .05)
or approaching significance. Other than τi at V1, which is a good
early predictor of response with a C value of 0.826, no other
pre-NACT MRI metrics have a C value greater than 0.7. Figure 1A
shows the mean ± SD column graph of V21% changes in K trans(TM),
K trans(SSM), kep(TM), ve(TM), ve(SSM), τi, and RECIST LD for
the pCR and non-pCR groups. Note the substantially larger
differences in the pharmacokinetic parameters between the two groups
compared to RECIST LD. Figure 1B shows a similar graph for absolute
TM and SSM ve values of the two patient groups at V2 and V3.

To demonstrate differences in early changes of tumor pharmaco-
kinetic parameters following NACT initiation, Figure 2 shows
examples of K trans(SSM), ve(SSM), and τi maps at V1 and V2 for a
pCR (Figure 2A, patient 12) and a non-pCR (Figure 2B, patient 3)
patient. The color tumor parametric maps are in image slices
approximately through the center of the tumor in every case, and the
color scales are kept the same through the two visits for each tumor.
Figure 1. Column graphs of the (A) mean V21% change values of
RECIST LD and several DCE-MRI metrics (Ktrans, ve, kep, and τi,
estimated from the TM and SSM pharmacokinetic analyses) and
(B) mean V2 and V3 ve values (TM and SSM) for the pCR (black
column) and non-pCR (gray column) patient groups. The error bar
represents the standard deviation (SD). V21%: percent change of
MRI metric at visit 2 (V2, after one NACT cycle) relative to visit 1 (V1,
pre-NACT); V3: visit 3, midpoint of NACT.
There are no noticeable changes in the three parametric maps from V1 to
V2 for the non-pCR, while the considerable decrease in Ktrans(SSM) and
increases in ve(SSM) and τi are clearly visible for the pCR.

MRI evaluation of RCB after NACT
Table 3A presents the ULR C statistics values of several

post-NACT MRI metrics for differentiating RCB and in-breast
RCB classes of 0, I, II, and III. Only the metrics with C ≥ 0.7 (fair or
better markers of RCB class) for in-breast RCB classes are listed,
which include absolute values of V4 K trans(SSM), K trans(TM),
kep(SSM), kep(TM), τi, and RECIST LD. The discriminative abilities
of these metrics are improved slightly when in-breast RCB class is
used in place of RCB class. There is not a single V41% change metric
that is at least a fair marker of RCB or in-breast RCB class.

The SC coefficient, R, and the P value for statistical significance are
summarized in Table 3B for correlation between RCB (and in-breast
RCB) index value and post-NACT MRI metric value. Only those
metrics with P b 0.1 are listed. As is the case of correlation with RCB
class, the strength of SC is generally improved slightly when the
in-breast RCB index value is used, and no V41% metric has a SC P
value smaller than 0.1. The positive correlations between RCB and
V4 RECIST LD, K trans(SSM), and K trans(TM) are statistically
significant (P b .05) for both RCB and in-breast RCB values. The
inverse correlation between RCB and V4 τi is significant (P = .041)
for the in-breast RCB, while approaching significance (P = .074) for the
RCB value. The positive correlation between RCB and V4 kep(SSM) is
near statistical significance for both the RCB and in-breast RCB values.
Figure 3 shows examples of linear regressions between the RCB (and
in-breast RCB) index values and the V4 MRI metrics of RECIST LD
(Figure 3A), Ktrans(SSM) (Figure 3B), and τi (Figure 3C).

Discussion
Consistent with several previous studies [26–35] using DCE-MRI to
assess breast cancer response to NACT, our initial findings from this
study of a 28-patient cohort show that changes in tumor functions as
measured by quantitative DCE-MRI are considerably more reliable
early predictors of pCR compared to changes in imaging tumor size
after only one of six or eight cycles of NACT. This suggests that
therapy-induced tumor functional changes precede changes in tumor
size. The percent changes of the K trans, ve, and kep parameters, as well
as the SSM-unique τi parameter, are good to excellent early predictors
of pathologic response. Additionally, the absolute values of ve after
one NACT cycle (V2) or at NACT midpoint (V3) are also good early
predictors of response. Imaging tumor size measurement under the
RECIST guidelines is the current standard of care for evaluation of
tumor response to treatment. However, our results reveal that changes
in RECIST LD after one NACT cycle, or even at midpoint of NACT
(Table 2), are poor early predictors of response. For example, under
the condition of 100% sensitivity for prediction of pCR (i.e.,
correctly classify all five pCRs in the study cohort), the specificities are
92% and 17% for V21% K trans(TM) and V21% RECIST LD,
respectively, meaning misclassification of only two out of 24
non-pCR tumors as pCRs when using V21% K trans(TM) as the
imaging metric versus 20 out of 24 non-pCRs as pCRs when using
V21% RECIST LD as the imaging metric. The ability of minimally
invasive imaging parameters, such as the DCE-MRI parameters, to
accurately provide early prediction of therapy response may have
profound importance in the emerging era of precision and
personalized medicine. Early identification of non-responders to a



Figure 2. V1 (pre-NACT) and V2 (after one NACT cycle) color parametric maps of Ktrans(SSM), ve(SSM), and τi from a pCR (A, left breast,
patient 12) and a non-pCR (B, right breast, patient 3) breast tumor. The maps were generated for tumor ROIs defined on multiple image
slices, and the ones on the image slice through the central portion of the tumor are displayed here. For each tumor, the color scale of each
DCE-MRI metric is kept the same between the two visits for easy visualization of NACT-induced changes.
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therapy regimen may allow rapid decision making in adjusting the
treatment plan, e.g., changing drugs and/or undergoing surgery early,
to spare these patients from the morbidity caused by ineffective and
toxic chemotherapy agents. This will have significant positive impact
on healthcare cost savings and patient wellbeing. Using this cohort as
an example, if V21% K trans(TM) had been used as the imaging
marker for early prediction of therapy response in clinical care, 22 out
of 24 non-pCRs would have been correctly classified after only one
NACT cycle and could have been treated with different therapy
regimens or stratified for novel therapy trials.
Accurate imaging assessment of RCB after NACT can lead to

better staging for surgery and more informed decision making in
breast conservation surgery versus mastectomy. Though RECIST LD
is not a good early predictor of pathologic response, its value
measured after NACT completion (V4) is indicative of the RCB class
and index value (Tables 3A and 3B; Figure 3A). The post-NACT
DCE-MRI parameters that are fair to good markers of RCB class and
correlate significantly with RCB index value include K trans (estimated
from either of the two models) and τi. Unsurprisingly, since the MRI
metrics were measured from the primary tumor only, the correlations
with RCB are slightly improved when the in-breast RCB class and
value are used (Tables 3A and 3B; Figure 3). With a larger patient
cohort, meaningful multivariate analysis may be performed to
potentially identify a combination of imaging metrics including
Table 3A. Discrimination of Post-NACT RCB Class

MRI Metric ULR C value

RCB class In-breast RCB class

V4 Ktrans(SSM) 0.801 (0.680, 0.922) 0.837 (0.734, 0.940)
V4 Ktrans(TM) 0.797 (0.669, 0.925) 0.833 (0.708, 0.958)
V4 τi 0.783 (0.647, 0.919) 0.792 (0.634, 0.950)
V4 RECIST LD 0.727 (0.586, 0.868) 0.732 (0.538, 0.870)
V4 kep(SSM) 0.697 (0.540, 0.854) 0.719 (0.520, 0.890)
V4 kep(TM) 0.694 (0.553, 0.835) 0.705 (0.527, 0.857)

Imaging results are missing from a pCR patient (patient 20), who declined the V4 MRI study due to
personal reasons. The values in the parentheses are 95% confidence intervals (CIs).
both tumor size and DCE-MRI functional parameters that can
provide even more accurate measure of RCB.

Since cytotoxic drugs such as doxorubicin, cyclophosphamide, and
paclitaxel were used throughout the NACT regimen for each patient
studied, it is to be expected that increases in ve after one NACT cycle or
at NACT midpoint are found to be good early predictors of response.
The therapy-induced cancer cell death presumably leads to decrease in
the extravascular, intracellular volume fraction, vi (≡1 – ve), which is
dominated by decrease in cell density [41], and hence increase in ve.
However, at the early stage of NACT a decrease in vi is not necessarily
associated with a decrease in perfused tumor area, or contrast-enhanced
MRI tumor size, the basis for RECIST LD measurement. This
hypothesis on why the ve percent change is a good early predictor of
response while the RECIST LD percent change is a poor predictor
needs to be further tested in future studies. On the other hand, the
post-NACT (V4) RECIST LD is a better measure of RCB than ve. This
could be due to the fact that the RCB calculation (Equation (4))
includes dominant contribution from the product of cross sectional
tumor sizes d1 and d2 measured from the resection specimen, while the
association of vi (or 1 – ve) with finv is not as distinct - the former
measures overall cell density [41] while the latter characterizes invasive
cancer cell density.

The percent deceases in K trans and kep after one NACT cycle are
good to excellent early predictors of response, suggesting these
Table 3B. Spearman Correlation of Post-NACT RCB Index Value with MRI Metric Value

MRI Metric RCB In-breast RCB

R P R P

V4 RECIST LD 0.532 .009 0.485 .019
V4 Ktrans(SSM) 0.463 .022 0.643 .001
V4 Ktrans(SM) 0.463 .022 0.618 .002
V4 τi −0.380 .074 −0.429 .041
V4 kep(SSM) 0.366 .078 0.376 .070

R: Spearman correlation coefficient; P b 0.05 indicates statistically significant correlation.
Imaging results are missing from a pCR patient (patient 20), who declined the V4 MRI study due to

personal reasons.



Figure 3. Scatter plots of pathologically measured RCB and in-breast RCB index values (from post-NACT resection specimens) against
post-NACT (V4) MRI metrics: (A) RECIST LD, (B) Ktrans(SSM), and (C) τi. The straight line in each panel represents a linear regression. The
Spearman correlation coefficient R and P values for the three imaging metrics are listed in Table 3B and shown in each panel. Note the
inverse relationship between RCB (and in-breast RCB) and τi. Imaging results are missing from a pCR patient (patient 20), who declined
the V4 MRI study due to personal reasons.
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imaging metrics of perfusion and permeability may be sensitive
parameters for prediction of NACT response. The therapy-induced
changes in these microvascular properties are probably due to NACT
secondary effects [14], since none of the standard of care or
experimental drugs used in this cohort is known to be antiangiogenic.
It has been suggested [45] that cytotoxic chemotherapy agents may
affect tumor vasculature by interfering with endothelial cell function
without causing endothelial cell death or interfering with a specific
portion of the angiogenic cascade. The results from this study and
others [26–34] indicate that it is the early changes in K trans and kep,
not the perfused tumor area as measured by RECIST LD, that are
good predictors of therapy response. This observation supports the
hypothesis that the chemotherapeutics effects tumor vasculature
without causing endothelial cell death [45]. One interesting finding is
that though the V31% change in ve is still a good early predictor of
response (Table 2), the V31% changes in K trans and kep are degraded
to only fair predictors of response (not shown). For example, V31%
K trans(TM) and V31% K trans(SSM) have ULR C values of 0.756 and
0.750, respectively. The decrease in the predictive ability is because
the pCRs have such larger decreases in K trans and kep at V2 compared
to non-pCRs that, by V3 (NACT midpoint), the percent changes
(relative to baseline, V31%) in thesemetrics of the non-pCRs, though still
smaller, draw near to those of the pCRs. Therefore, it is important to
detect early microvascular changes with DCE-MRI, as they are better
indicators of complete response to NACT than later changes.

The τi parameter is used to account for the effects of
transcytolemmal water exchange kinetics and unique to the SSM
method. A recent NMR spectroscopy study of yeast cell suspension
[40] shows that the reciprocal of τi, kio (≡1/τi), the first-order rate
constant for equilibrium cellular water efflux, is positively associated
with cellular ATP levels. The in vivo association of cellular ATP
decrease with kio decrease was demonstrated by a DCE-MRI and 31P
MR spectroscopy study of a murine melanoma model treated with
lonidamine [46]. A series of enzymatic and genetic manipulations on
cell suspensions, perfused tissue, in vivo animal models, and human
data have shown that kio measures the homeostatic turnover of the cell
membrane Na+,K+-ATPase [NKA] [41]. Previously, it has not been
possible to measure homeostatic NKA activity in vivo. In this study
the V21% change in breast tumor τi is an excellent early predictor of
pathologic response (Table 2). The pCRs show significant increase in
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τi (or decrease in kio) compared to non-pCRs after one NACT cycle,
consistent with a substantial decrease in tumor metabolic activities
early after NACT initiation being generally a good indicator of
complete response. It is interesting to note that the pCR group has
smaller pre-NACT (V1) τi values and thus greater metabolic turnover
than the non-pCR group (Table 2), and V1 τi is the best predictor of
response (a good metric with ULR C = 0.826) of all the V1 MRI
metrics. The post-NACT (V4) τi is well correlated with the RCB
index value in an inverse relationship (Table 3B and Figure 3C).
These findings suggest that, over the course of the entire NACT
regimen, the good responders have greater increases in τi, or decreases
in metabolic activity, than the poor responders. In fact, from V1 to
V4 the mean τi value of the pCR group is increased from 0.53 to
1.45 s, while that of the non-pCR group remains stable (0.81 to
0.82 s). The importance of τi as an imaging parameter for evaluation
of breast cancer response to NACT is further confirmed by a
pre-clinical DCE-MRI study of a genetically engineered mouse model
of human breast tumor [47], which shows τi increase with almost no
vi change following treatment with an experimental targeted,
non-cytotoxic drug.
The DCE-MRI data acquired in this study were analyzed with

both the TM and SSM. For the three parameters that can be
estimated with both models, K trans, ve, and kep, the percent changes
of these parameters in the early stage of NACT and the absolute
values after NACT have similar capabilities for early prediction of
response and evaluation of RCB, respectively, when comparing the
two models. This is likely due to the fact that the underestimation of
the K trans and ve parameters in malignant tumors by the TM relative
to the SSM is generally systematic [27,44]. The systematic parameter
variations between the two models were largely cancelled in percent
change calculation, or caused parameter values of each tumor to shift
in the same direction when estimated from one pharmacokinetic
model or the other. As a result, TM and SSM analyses performed
equally well in early prediction and evaluation of therapy response. Li
et al. [28] reported similar findings for early prediction of breast
cancer response to NACT. Nonetheless, water exchange across tissue
compartments is a real physiological phenomenon. Therefore, the
SSM analysis approach should be used when T1-weighted DCE-MRI
data are acquired with a protocol that is sensitive to water exchange,
which usually also results in better signal-to-noise ratio [48].
Furthermore, the SSM analysis allows estimation of the metabolic
activity imaging metric kio, adding a metabolic dimension to
DCE-MRI, which is conventionally considered only as a functional
imaging method for assessment of tissue microvasculature. As
discussed above, the τi (or kio

−1) parameter is a very good marker for
early prediction of response and accurate assessment of residual
disease. The ability to characterize synergistic microvascular proper-
ties and cellular energetic metabolism simultaneously may harbor
great promise for SSM DCE-MRI as an imaging tool to study the
tumor microenvironment, and its response to treatment.
This study has several major limitations. First, with only 29

primary breast tumors, the sample size of the study cohort is small.
The discriminative ability of a metric tends to be overestimated when
the sample size is small. This is possibly the reason why the ULR C
values of several DCE-MRI metrics obtained in this study for early
prediction of breast cancer response to NACT are greater than the
equivalent area under the receiver operating characteristic curve values
reported by similar studies with larger cohort sizes [22,23,26,28,29].
Thus, it is important to validate the initial findings from this cohort
with a larger patient population, especially for new findings specific to
this study such as changes in ve and τi as early predictors of response.
Second, as a result of small sample size, the imaging results are not
stratified by receptor status-based breast cancer molecular subtypes in
correlation with pathology endpoints. The number of patients is
simply not adequate to draw meaningful conclusions in early
discrimination of pCR and non-pCR or evaluation of RCB for
each breast tumor subtype, and make comparisons between the
subtypes. As such, the initial findings reported here reflect the average
results from a general breast cancer population undergoing NACT.
With continuing subject accrual, we will be able to examine and
compare the utility of DCE-MRI for evaluation of therapy response
in each breast cancer subtype in the future. Additionally, the small
sample size also precludes meaningful multivariate analysis of the
MRI metrics for further improvement in assessing therapy response.
Third, mean tumor MRI metric values were used in this study for
correlation with the pathology endpoints. It is well known that
malignant tumors are heterogeneous in nature [41] and responses to
treatment are likely heterogeneous as well. However, the heteroge-
neity in breast tumor functional changes in response to NACT was
not captured in computing mean DCE-MRI parameter values.
Recent studies show that texture analysis of tumor heterogeneity
manifest in either raw image data [49–51] or parametric maps of
kinetic features [52,53] can be a valuable tool for evaluation of breast
cancer therapy response. With voxel-based parametric maps of
DCE-MRI metrics already generated in this study, texture analysis of
these maps could potentially be performed. Measurement and
integration of changes in both mean values and texture features of
DCE-MRI metrics may further improve the robustness of quanti-
tative DCE-MRI for assessment of therapy response.

In conclusion, in this DCE-MRI study of 29 primary breast
tumors undergoing NACT, we have shown that changes in
quantitative functional MRI metrics estimated by either TM or
SSM analysis of DCE-MRI data provide substantially better early
prediction of pathologic response to NACT than changes in imaging
tumor size as measured by RECIST LD. Along with post-NACT
RECIST LD, several post-NACT DCE-MRI parameters are good
markers of RCB. The TM and SSM analyses perform equally well for
early prediction of response and evaluation of RCB. However, the
SSM method provides additional assessment of tumor metabolic
activity changes in response to NACT, and the SSM-unique τi
parameter is the only pre-therapy MRI metric that provides good early
prediction of response. Future translation of quantitative DCE-MRI into
clinical practice may help facilitate personalized treatment regimens for
individual breast cancer patients and more informed decision making in
breast conservation surgery vs. mastectomy.
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