
fphar-09-00630 June 11, 2018 Time: 16:11 # 1

REVIEW
published: 12 June 2018

doi: 10.3389/fphar.2018.00630

Edited by:
Bey Hing Goh,

Monash University Malaysia, Malaysia

Reviewed by:
Yanqi Ye,

University of North Carolina at Chapel
Hill, United States

Gunnar Houen,
State Serum Institute (SSI), Denmark

*Correspondence:
Pratyoosh Shukla

pratyoosh.shukla@gmail.com

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 28 March 2018
Accepted: 25 May 2018

Published: 12 June 2018

Citation:
Dangi AK, Sinha R, Dwivedi S,

Gupta SK and Shukla P (2018) Cell
Line Techniques and Gene Editing

Tools for Antibody Production:
A Review. Front. Pharmacol. 9:630.

doi: 10.3389/fphar.2018.00630

Cell Line Techniques and Gene
Editing Tools for Antibody
Production: A Review
Arun K. Dangi1†, Rajeshwari Sinha2†, Shailja Dwivedi3†, Sanjeev K. Gupta3† and
Pratyoosh Shukla1*

1 Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University,
Rohtak, India, 2 Independent Researcher, New Delhi, India, 3 Advanced Biotech Lab, Ipca Laboratories Limited,
Mumbai, India

The present day modern formulation practices for drugs are based on newer tools and
techniques toward effective utilization. The methods of antibody formulations are to be
revolutionized based on techniques of cell engineering and gene editing. In the present
review, we have discussed innovations in cell engineering toward production of novel
antibodies for therapeutic applications. Moreover, this review deciphers the use of RNAi,
ribozyme engineering, CRISPR-Cas-based techniques for better strategies for antibody
production. Overall, this review describes the multidisciplinary aspects of the production
of therapeutic proteins that has gained more attention due to its increasing demand.
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INTRODUCTION

Antibodies, especially monoclonal antibodies (mAbs) and derived products like antibody-drug
conjugates, Fc-fusion proteins and antibody fragments are widely known for their many diagnostic
and therapeutic applications (Mahmuda et al., 2017). mAbs constitute the largest group of
recombinant proteins that find applications in several diseases such as cancers, autoimmune
diseases (rheumatoid arthritis), cardiovascular diseases, etc (Wang C. et al., 2017; Wang Y. et al.,
2017; Marston et al., 2018). Thus, it is now a dominant product class within the biopharmaceutical
market. As of early 2017, there were about 68 mAbs approved by the US FDA (Cai, 2017). The
early approaches for generation of mAbs by hybridoma technology were limited by challenges
such as hybridoma instability and the development of human anti-mouse antibodies, which led
to their rejection by the patient’s immune system (Kunert and Reinhart, 2016; Wang et al., 2016).
Furthermore, during the manufacturing process, several parameters such as reducing time to
market, production in large quantities to meet the continuous increasing market demands, cost
effectiveness, etc. are major issues which limits its worldwide utility (Li et al., 2010).

So far, the most preferred platforms for expression of any biopharmaceutical, including
antibodies has been mammalian cells. This is largely attributed to their ability to produce large
volumes of therapeutic antibodies and adaptability in large-scale production systems (Kunert
and Reinhart, 2016). Most importantly, mammalian cells are able to carry out desired protein
folding and post-translational modifications identical to those in human systems (Wells and
Robinson, 2017). Thus, chances of their rejection by patients are low. Other than mammalian
cells, alternative expression systems include Pichia pastoris, Aspergillus niger, and Escherichia coli
(Shriver-Lake et al., 2017; Magana-Ortiz et al., 2018; Nylen and Chen, 2018. These have been
explored for expression of smaller antibody fragments (Li et al., 2010; Kunert and Reinhart, 2016),
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but these expression platforms have limitations like formation of
inclusion bodies, which greatly hamper the final product yield,
inability for post-translational modifications and codon bias.
Thus, mammalian cells are most preferable (Gupta and Shukla,
2017b).

Further, advances in cell engineering make it more convenient
to engineer the mammalian cells (Gupta et al., 2017b; Jazayeri
et al., 2018). Engineering is basically used for regulating cellular
apoptosis, cell cycle progression to avoid early cell death,
control of cellular chaperones and ribozymes for proper post-
translational modification of antibodies (Fischer et al., 2014;
Vallée et al., 2014; Baek et al., 2017). Further, metabolic
engineering can help balancing in-flux to utilized cellular energy
toward antibody production. Recent discoveries and advances
in gene editing nucleases like zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs) and
CRISPR/Cas systems (Figure 1) enable cell engineering more
easy and cheaper (Gupta and Shukla, 2017a). These nucleases
can alter the original genetic makeup of the cell by editing
its genes toward achieving specific goals. Several studies have
demonstrated the successful use of these nucleases in cell
engineering (Kipniss et al., 2017; Moreno and Mali, 2017;
Hashemi, 2018).

This review provides information about conventional and
modern cell engineering techniques for more efficient antibody
production. Overall, the review emphasizes different RNAi,
ribozyme engineering and CRISPR-Cas-based techniques for
better mAb production strategies.

CELL ENGINEERING TOWARD
PRODUCTION OF NOVEL ANTIBODIES
FOR THERAPEUTIC APPLICATIONS

The most prominent mammalian host cell lines for recombinant
mAb expression include the chinese hamster ovary (CHO),
mouse myeloma derived NS0 and Sp2/0 cells, human embryonic
kidney cells (HEK293), and human embryonic retinoblast-
derived PER.C6 cells (Beck et al., 2008). CHO cells are believed
to be the most used “workhorse” for today’s industrially
produced recombinant products (Bahadori et al., 2017). One
of the approaches toward obtaining enhanced production
efficiency and improved quality of antibodies from mammalian
cell lines is through engineering of the host cell (Wells
and Robinson, 2017). Various types of cellular and genetic
engineering techniques are therefore directed at modifying
features specific to the host cells (Black et al., 2017; Yusufi
et al., 2017). These may include approaches to manipulate
growth of the cell, prevent death of the cell, promote post-
translational modifications etc. This is achieved largely by
regulation of apoptosis, metabolic engineering, engineering cells
for growth at lower temperature, chaperone engineering and
glyco-engineering, which are discussed below.

Regulating Apoptosis in Cells
Apoptosis refers to programmed cell death induced during
high stress conditions. Prevention of apoptosis in an antibodies

expressing cell line will therefore increase cell viability, suppress
cell death, extend cell culture life-span and increase productivity
of target antibody product (Fischer et al., 2015a). In view of
this, strategies to delay the onset of apoptosis, over-expressanti-
apoptotic genes and down-regulate pro-apoptosis genes have
been developed (Zustiak et al., 2014; Zhang et al., 2018). Over
expression of anti-apoptotic genes such as Mcl-1, 30Kc6, Bcl-2,
Bcl-w, Bcl-xL, Aven, E1B-19K and suppression of pro-apoptosis
genes such as Bax, Bok, Bak in mammalian host cells have
been documented to increase therapeutic protein production,
including mAbs (Kim et al., 2012; Baek et al., 2017; Zhang
et al., 2018). A recent study reported an 82% increase in
production yield of antibody in CHO cells co-transfected with
Bcl-x L, and 34% increase in CHO cells co-transfected with
Mcl-1 (Zhang et al., 2018). Delaying the onset of apoptosis can
be achieved by strategies such as periodic nutrient feeding, use
of alternate carbon sources like galactose in place of glucose or
use of adenosine (Costa et al., 2010). Inhibition of apoptosis by
exosomes in CHO cells has been recently reported (Han and
Rhee, 2018). Inhibition of the expression of caspases, which
have an important role in the regulation of apoptosis, is another
promising strategy (Costa et al., 2010; Zamaraev et al., 2017).

Regulating Cell Cycle Progression
Inhibition of cell cycle progression is another approach which
could lead to higher cell viability, density and productivity
in mammalian cell cultures. Toward this, approaches such as
inducible expression of cell-cycle regulating factors (p27 and
p21cip1) and use of rapamycin have been shown to slow down the
progression through cell cycle (Costa et al., 2010). Ibarra et al.
(2003) showed that arresting the cell cycle in G1 phase of the
NS0 6A1/4–9F myeloma cell line through inducible expression of
p21cip1 increased IgG4 antibody production. Cell cycle arrest has
also been achieved through inhibition of cyclin-dependent kinase
(CDK) or over expression of CDK inhibitor. A small molecule,
cell cycle inhibitor (CCI) was able to induce complete G0/G1
arrest in CHO cell cultures through selective inhibition of cyclin
CDK 4/6 and led to improved specific productivity by twofold
to threefold (Du et al., 2015). It has also been predicted that
the mammalian target of rapamycin (mTOR) based engineering
of mammalian cell lines can significantly influence production
levels of therapeutic proteins in the long term (Dreesen and
Fussenegger, 2011; Dadehbeigi and Dickson, 2015).

Engineering of Chaperones
Chaperones and foldases have a critical role in mediating the
folding of mAbs, produced by recombinant cell lines (Nishimiya
et al., 2013). Engineering of chaperones has thus been found to
influence production levels of antibodies through alterations in
the translational capacity for the recombinant protein product
(Pybus et al., 2014). Over expression of protein disulphide
isomerase (PID), an enzyme that catalyzes the formation of
disulphide bonds, moderately increased expression of mAb
from CHO cells (Borth et al., 2005; Mohan et al., 2007).
Another binding protein, BIP, associated with the folding
pathway of secretory proteins, when over-expressed alone or in
combination with PID, was reported to decrease mAb expression
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FIGURE 1 | A schematic overview of technology revolution from conventional to modern cell engineering.

(Borth et al., 2005). Over-expression of X-box binding protein 1
(XBP1), another protein linked to the unfolded protein response,
could be used as a strategy for enhancing recombinant protein
production only when protein accumulation has surpassed the
secretory capacity of the host cell (Ku et al., 2008).

Post-translational Modifications
N-glycan structures on antibodies have been demonstrated
to have a crucial role in its bioactivity and are linked to
improvement in efficacy and safety of the mAb (Pancera
et al., 2013). Common mechanisms of action of therapeutic
mAbs are through the elicitation of antibody-dependant cell
cytotoxicity (ADCC) and complement-dependent cytotoxicity
(CDC). Any alterations to the N-glycan structure on antibodies
can therefore influence such antibody-specific mechanisms.
Antibodies produced in CHO cells are characterized by very low
levels of bisecting-N-acetylglucosamine (GlcNAc) and high levels
of core fucosylation. N-acetylglucosaminyltransferase III (GnT-
III), when over-expressed has been found to increase the bisecting
GlcNAc content to eventually improve ADCC (Davies et al.,
2001; Popp et al., 2018). Decreasing or eliminating the fucose
content on antibodies has also been known to enhance the ADCC
activity. Non-fucosylated therapeutic antibodies have also been
touted as the next generation of therapeutic antibodies (Mori
et al., 2007). Toward this, one of the commonly used methods

involves knocking out the fucosyltransferase gene (FUT 8) from
CHO cells resulting in expression of non-fucosylated antibody
molecules. The ADCC activity markedly improved in case of
fucose-deficient mAbs (Shields et al., 2002; Yamane-Ohnuki et al.,
2004; Chung et al., 2012).

Metabolic Engineering
Accumulation of ammonia and lactate during recombinant
CHO cell culture is common. This usually takes place due to
the presence of glutamine and glucose in the culture medium
and may cause adverse effects on the growing cells and
the recombinant product secreted. Metabolic engineering has
therefore been used to inhibit the accumulation of such toxic
metabolic by-products. The over-expression of the glutamine
synthetase (GS) gene in CHO cells enabled cells to grow in
a glutamine-free medium, thus significantly reducing ammonia
generation as a of byproduct in the culture (Zhang et al.,
2006). Similarly, over-expression of enzymes such as ornithine
transcarbamylase or carbamoyl phosphate synthetase I (enzymes
associated with the urea cycle) has been found to bring down
ammonia production within the culture medium (Park et al.,
2000). In order to reduce lactic acid accumulation, various genetic
modulation strategies that have been investigated include over-
expression of pyruvate carboxylase (Henry and Durocher, 2011;
Vallée et al., 2014; Gupta et al., 2017a) or disruption of pyruvate
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dehydrogenase kinases/lactate dehydrogenase A (LDH-A) (Kim
and Lee, 2007; Zhou et al., 2011). LDH-A down regulation
along with the GS system in the mAb-producing CHO cell line
successfully reduced both ammonia and lactate levels in culture
(Noh et al., 2017).

Engineering Cells for Hypothermic
Growth
Reducing the cell-culture temperature to improve recombinant
protein yields in CHO cells has been well documented. Lowered
temperature leads to arrest of growth of cells, prolonging
cellular viability and increasing cellular size. Genetic engineering
strategies have therefore been developed to improve the volume
of recombinant protein production at low temperatures (Mohan
et al., 2008; Costa et al., 2010). Expression of cold stress genes,
such as cold-inducible RNA-binding protein (CIRP) is altered
when mammalian cells are exposed to lower temperatures. Stable
over-expression of CIRP at 37◦C showed improvement in the
productivity and yields of recombinant interferon-γ in the CHO
cell line (Tan et al., 2008).

Cell line engineering therefore has great potential for
improving CHO cell expression systems, particularly for

therapeutic antibody production (Table 1). The benefits of cell
line engineering are however not limited to antibody production
only, but have also been explored in production of other
biopharmaceutical products such as other recombinant proteins,
vaccines, fusion proteins, growth factors etc. (Xiao et al., 2014;
Genzel, 2015; Johari et al., 2015; Sandig et al., 2017). Cell
engineering approaches have also been used to obtain a desired
attribute or quality in the target product produced by a cell,
reduce those host cell proteins which could act as impurity
and adversely impact the final product during downstream
processing, or identify of an optimal site in host cell genome in
order to target a transgene to that location (Gadgil, 2017).

RIBOZYME ENGINEERING IN ANTIBODY
FORMULATION

RNAs not only serve to establish linkages between genetic
information and proteins, but also play a key role as active
regulators of gene expression. MicroRNAs (miRNAs) are one
such class of RNA regulatory molecules. These are short non-
coding RNAs, which are capable of regulating entire cellular
pathways by post-transcriptionally modulating expression of

TABLE 1 | Cell engineering approaches toward the production of novel antibodies for therapeutic applications.

Cell engineering approach Strategies involved Result Reference

Regulation of apoptosis in cells Delay onset of apoptosis Limit cell-apoptosis Costa et al., 2010

Over-expression of
anti-apoptotic genes

Costa et al., 2010; Baek et al.,
2017; Zhang et al., 2018

Inhibition or down-regulation of
pro-apoptosis genes

Han and Rhee, 2018

Regulation of cell cycle
progression

Inducible expression of
cell-cycle regulating factors

Cell cycle arrest Ibarra et al., 2003; Costa et al.,
2010

Inhibition of cyclin-dependent
kinase (CDK) or over
expression of CDK inhibitor

Du et al., 2015

Use of mTOR- based
engineering of mammalian cell
lines

Slowed progression through cell cycle Costa et al., 2010; Dreesen and
Fussenegger, 2011;
Dadehbeigi and Dickson, 2015

Engineering of chaperones and
foldases

Over expression of protein
disulphide isomerase

Increased formation of disulphide
bonds in proteins

Borth et al., 2005; Mohan et al.,
2007

Post-translational modifications Knocking out the
fucosyltransferase gene (FUT 8)
from CHO cells

Enhanced ADCC activity Shields et al., 2002;
Yamane-Ohnuki et al., 2004;
Chung et al., 2012

Metabolic engineering Over-expression of glutamine
synthetase gene in CHO cells

Reduction in ammonia generation as
by-product within culture

Zhang et al., 2006

Over-expression of ornithine
transcarbamylase, carbamoyl
phosphate synthetase I

Park et al., 2000

Over-expression of pyruvate
carboxylase

Reduction in lactic acid accumulation
as by-product within culture

Henry and Durocher, 2011;
Vallée et al., 2014; Gupta et al.,
2017a

Down-regulation of pyruvate
dehydrogenase kinases/ lactate
dehydrogenase A

Kim and Lee, 2007; Zhou et al.,
2011

Engineering cells for
hypothermic growth

Stable over-expression of cold
stress genes, such as
cold-inducible RNA-binding
protein

Improvement in the productivity and
yields of recombinant protein

Tan et al., 2008
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FIGURE 2 | miRNA manipulation in CHO cells leading to improved therapeutic protein productivity.

numerous genes. miRNAs are associated with relevant cellular
processes such as apoptosis, cell proliferation, or biosynthesis
of proteins. Host cell engineering using miRNAs represents
an important tool to overcome limitations in industrial cell-
line development. miRNAs also provide better advantages over
single-gene manipulation due to their ability to affect expression
of multiple genes. Moreover, miRNAs, unlike cellular engineering
(which relies largely on overexpression of regulatory proteins),
are not translated into proteins. Thus, requirement of the
translational machinery for miRNA over-expression is not there
and there is no translational burden to the production cell line,
even as the miRNAs regulate important cellular physiological
processes (Druz et al., 2012; Hackl et al., 2012; Jadhav et al.,
2013; Patel, 2017; Jazayeri et al., 2018). In recent years, available
literature has focused on the identification of miRNAs to improve
recombinant protein production (Fischer et al., 2014; Jadhav
et al., 2014; Loh et al., 2014; Kelly et al., 2015), or enhanced cell
growth (Barron et al., 2011; Druz et al., 2013; Sanchez et al.,
2014). Manipulation of miRNA levels in CHO cells has been
shown to improve product yield by increasing proliferation and
specific productivity, resisting apoptosis and enhancing oxidative
metabolism (Figure 2). Some of the recent studies on the effect
of miRNA manipulations in CHO cells have been summarized in
Table 2 below.

The Table 2 shows that miRNAs have largely been subjected
to stability or over-expression in CHO cell lines, leading to
improved protein productivity. For example, CHO cells, which

have been engineered to express miR-557, a pro-productive
miRNA, have shown an increase in product yield without
compromising product quality (Fischer et al., 2017). Expression
of miR-30 and miR17 in CHO cells have also led to enhanced
specific productivity (Fischer et al., 2014; Jadhav et al., 2014).
A study assessing the effect of over-expression of miR-7 on
the proteome of CHO cells showed that the cell’s productivity
increased with increasing levels of miR-7, albeit at the cost of
cell growth (Meleady et al., 2012). Sanchez et al. (2014) have
reported an increase in protein production by CHO cells, when
miR-7 activity was disrupted using sponge decoy vectors. On
the contrary, stable inhibition of mmu-miR-466h-5p in CHO
cells has been found to increase resistance to apoptosis and
also improve protein production (Druz et al., 2013). Such stable
manipulations of miRNA expression can also enable CHO cells
to reach a higher cell viability and cell density in comparison to
their controls.

miRNA-based cell line engineering provides an opportunity
for access to numerous sophisticated therapeutic proteins,
including antibodies. While this approach has not yet found
a way into routine industrial production processes, there
lies a significant potential for their future application in
industrial manufacturing cell lines, ultimately contributing to
successful biopharmaceutical drug development. While miRNAs
are deemed to have multiple applications in medicine and
biotechnology, a better understanding of their mechanism at
the molecular level is needed to harness their potential toward
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TABLE 2 | Recent studies on the effects of miRNA manipulations in CHO cells.

miRNA Fate in host cell (CHO cells) Key observations Reference

cgr-miR-7 Over expression Increase in cell’s specific productivity Barron et al., 2011

miR-17 Over expression Increased cell proliferation; no negative impact on cell’s specific productivity Jadhav et al., 2012

miR-557, miR-1287 Stable expression Enhanced viable cell density and specific productivity of therapeutic IgG1 Strotbek et al., 2013

Mmu-miR-466h-5p Stable inhibition Improved resistance to apoptosis; improved protein production Druz et al., 2013

miR-30 family Stable over expression Improvement in cell’s bioprocess performance Fischer et al., 2014

miR-17 Stable over expression Enhanced cellular growth; cell’s specific productivity increased by two fold Jadhav et al., 2014

miR-17, miR-1b, miR-92a Over expression Enhanced cellular productivity Loh et al., 2014

miR-2861 Enhanced cellular productivity Fischer et al., 2015b

miR-557 Stable expression Significant increase in yield of final product Fischer et al., 2017

the development of industrially relevant therapeutic protein-
producing cell factories.

ADVANCED GENE EDITING TOOLS

With the discovery and emergence of modern gene-editing tools,
manipulation of production hosts has become relatively easy.
It is now possible to maneuver the genome of industrial yeast
and mammalian host cells, thereby allowing the development
of potential and cost-effective recombinant therapeutic proteins.
While previously developed gene editing tools such as TALENs
and ZFNs continue to remain useful, the emergence of another
new technology, the CRISPR-Cas system is opening new avenues
in gene editing opportunities as described below (Sander and
Joung, 2014).

Zinc Finger Nucleases (ZFNs)
Most commonly and primitive endonucleases are ZFNs which
are artificially designed restriction enzymes (Yang et al.,
2017). Zinc finger proteins (ZFPs) derived from eukaryotic
transcription factors, which act as a DNA binding domain of
ZFN and the nucleotide chopper domain Folk 1 is derived
from Flavobacterium okeanokoites (De Souza, 2012). The ZFPs
are composed of 30 amino acids which creates two anti-
parallel β-sheets opposite an alpha-helix (De Souza, 2012).
Each cleavage domain is attached with three to six ZFPs,
which are specially designed for a target site. Usually, ZFPs
have 18 base pair specificity and DNA-binding domains
have 9 base pair specificity, which makes them robust and
very precise for target-specific gene editing (Sander et al.,
2011b). Till date, the ZFNs have been successfully utilized
for HDR-mediated gene knock-in (KI) and non-homologous
end joining (NHEJ) based Knock-out (KO) approaches to
many prokaryotic and eukaryotic targets (Carroll, 2011).
For example CHO cells are modified by KI of GS and
dihydrofolate reductase (DHFR) genes, which makes them
suitable for consistent protein production in therapeutic
biopharmaceutical industries. Even though, after successful
experiments, ZFNs are not considered for industrial use
now a days due to certain restrictions like: A. All possible
nucleotide genomic sequences can’t be targeted, B. Specificity
of sequence can be interrupted by neighboring protein domains

(Sander et al., 2011b). Apart from these, designing of folks and
ZFPs are very complicated and costly which makes it less
preferred.

Transcription Activator-Like Effector
Nucleases (TALENs)
Transcription activator-like effector nucleases are a moderately
innovative gene-editing tool. TAL proteins are the major part
of TALENs, which are secreted from the pathogenic bacteria
Xanthomonas (Li et al., 2012). TALENs have tandem repeats
of 34 amino acids with specific recognition and binding
efficiency. The TAL has the capability of recognizing a single
nucleotide, which is very specific and not influenced by other
domains present around it. The TALENs based gene editing
tool is relatively more effective and frequently used for knock-
in and knock-out events. Similarly, like ZFNs, TALENs also
have two-site two protein domains, which create cuts and
second TAL repeats, which helps protein domains to find
a specific site for binding and making a notch (Christian
et al., 2010). TALENs leave sticky ends to the DNA, which
minimize the off-target results (Aryan et al., 2013). Efficiency
of targeted KO with TALENs is 30 to 100% while KIs range
from 1 to 10%. Many animals like zebrafish, chickens, frogs,
rats, and mammalian cells are genetically modified through
TALENs (Sander et al., 2011a; Aryan et al., 2013; Kondo et al.,
2014).

CRISPR-Cas
CRISPR-Cas is based on the natural defense mechanism in
bacteria, which they use for the control of pathogens. Cas9
endonuclease from Streptococcus pyogenes has been one
of the most studied with respect to CRISPR-Cas systems
(Ran et al., 2015). Cas9 endonuclease binds to a complex of
CRISPR RNA (crRNA) and another transactivating crRNA
(tracrRNA). The crRNA guides the Cas9 endonuclease
activity to cut both strands of target DNA at particular
sequences (Briner et al., 2014). The ability of CRISPR-Cas
9 to target the Cas9 endonuclease to specific genomic loci,
enabling DNA cleavage at specific sites has allowed it to
being considered as an adept tool in gene editing (Doudna
and Charpentier, 2014). CRISPR-Cas-mediated gene repair,
disruption, insertion or deletion is thus finding applications
in several areas of biomedical research, medicine, agriculture
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and biotechnology (Hwang et al., 2013). Recent studies utilizing
CRISPR-Cas-based systems for genetic manipulations in
animals, fish and plant models have been summarized in
Table 3.

The CRISPR-Cas system has not only enabled gene editing
but also has applications across several areas such as gene
therapy, development of tissue and animal disease models, drug
discovery, deciphering plant disease resistance, transcription
regulation, genome imaging, and epigenetic modification (Xiong
et al., 2016). CRISPR-Cas-based gene editing has been used for
development of animal models, that mimic human diseases. Such
models provide an opportunity to predict possible outcomes of
clinical trials and simultaneously verify the safety and accuracy
of drugs against the particular disease. Recently, CRISPR-Cas9
technology has been used to establish large animal models that
can mimic human neurodegenerative diseases for enhanced

understanding of pathogenesis of such diseases (Tu et al., 2015).
The CRISPR-Cas9 system has also been used for successful
correction of diseases or disease-causing mutations in animal
models (Wu et al., 2013; Long et al., 2014). In a recent report
by Cai et al. (2016) it was summarized how the CRISPR-Cas9-
based genome editing technology is opening doors for treatment
of diverse human diseases. The technology has recently been
applied for the study or treatment of human diseases such
as muscular dystrophy, hemophilia, thalassemia, cystic fibrosis
etc. The CRISPR-Cas system has been used for correction of
the dystrophic gene in Duchenne muscular dystrophy (DMD)
patient-derived induced pluripotent stem cells and restoration of
the dystrophin protein in the cells (Li et al., 2015). The tool has
been used for immunology-based applications, which may lead
to designing of treatment regimens of diseases like HIV-AIDs
(Hu et al., 2014; Liao et al., 2015). It has also been exploited for

TABLE 3 | CRIPSR-Cas based gene editing techniques used for manipulation of various organisms.

Model organism CRISPR-Cas based gene
manipulations

Observations/Remarks Reference

Zebrafish Genetic modifications in embryo of
zebrafish

Similar efficiency to ZFN and TALENs Hwang et al., 2013

Zebrafish Insertion of CreERT2 transgene at otx2
gene locus

otx2:CreER T2 transgenic fish
developed; valuable tool for future
studies

Kesavan et al., 2018

Mouse Simultaneous disruption of five genes
(Tet1, 2, 3, Sry, Uty - 8 alleles) in
embryonic stem cells of the mouse

High efficiency observed Wang et al., 2013

Mouse Editing of specific regions of the
Duchenne muscular dystrophy gene
using AAV vectors

Expression of Cas9 enables direct
editing of the mutation, deletion of
multiple exons or gene correction

Bengtsson et al., 2017

mdx Mouse Correction of the dystrophin gene
(Dmd) mutation

2-100% correction of the Dmd gene
achieved

Long et al., 2014

Mouse Deletion of the GAA repeats from
frataxin gene

Restoration of frataxin gene activity and
protein level

Ouellet et al., 2017

Mouse Mutation of Pten and p53 in mouse liver Development of models for liver cancer Xue et al., 2014

Mouse Dip2a gene deletion and
β-galactosidase (lacz) reporter gene
insertion

Development of mouse models and
studies on gene function

Zhang L. et al., 2015

Mouse EGFP transgene or Crygc gene
mutation in Spermatogonial Stem Cells
(SSCs)

Spermatogenesis observed in mutated
SSCs after being transplanted into
seminiferous tubules of infertile mouse
testes.

Wu et al., 2015

Duchenne muscular dystrophy
(DMD) patient-derived induced
pluripotent stem cells (iPSCs)

Correction of dystrophin gene Restoration of the dystrophin protein in
patient-derived iPSCs

Li et al., 2015

Human pluripotent stem cells
(hPSCs)

Development of an episomal
vector-based CRISPR/Cas9 system
which enables generation of up to
100% Insertion/Deletion rates

Highly efficient gene knockout in hPSCs Xie et al., 2017

Indica rice line IR58025B Deleted DNA fragments in the gene
Dense And Erect Panicle1 (DEP1)

Relatively high frequency Wang Y. et al., 2017

Tomato plants Somatic mutations in SlIAA9 gene Morphological changes in leaf shape
and seedless fruit observed in mutants

Ueta et al., 2017

Maize plants Gene sequence ARGOS8 edited Increased yield of maize grain under
stress conditions such as drought

Shi et al., 2017

Oilseed crop Camelina sativa Mutagenesis of 3 delta 12 desaturase
(FAD2) genes

Reduction in polyunsaturated fatty acid
levels; increased oleic acid
accumulation in oil

Morineau et al., 2017
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its potential to KI or KO specific genes in model organisms for
studying genetic diseases (Platt et al., 2014; Kang et al., 2015).

The CRISPR–Cas system also has a big part to play in
revolutionizing the role that gene editing plays in drug discovery.
However, CRISPR–Cas-facilitated drug discovery is presently
largely limited to basic research (Golkar et al., 2016; Luo,
2016). CRISPR’s potential is believed to span each stage of
the drug discovery process and will predictably affect the
next generation drugs by accelerating drug target identification
and validation, discovery of biomarkers, and development
of novel therapies (Fellmann et al., 2017; Lu et al., 2017).
Alternatively, CRISPR-Cas can also be used in order to
generate disease genotypes or phenotypes for use in drug
discovery. CRISPR/Cas-based gene editing tools can also play
a potential role in antiviral drug development (Chen et al.,
2018). Mutations in Hepatitis B virus (HBV) DNA, brought
about by the CRISPR-Cas system, inhibit replication and
expression of the HBV and may constitute a new therapeutic
strategy for HBV infection (Zhen et al., 2015). Similarly, human
primary CD4+ T cells have shown HIV-1 resistance owing
to disruption of the human CXCR4 gene by CRISPR/Cas9-
mediated genome editing (Hou et al., 2015). In addition to
the above, CRISPR-Cas system has been implicated in slowing
down the spread of antibiotic resistance genes. The system has
the ability to limit major routes of horizontal gene transfer
and even destroy plasmids thereby restricting the spread of
drug resistance (Golkar et al., 2016). This ability of the
CRISPR/Cas system also holds potential to be exploited in clinical
settings.

In addition to their role in designing disease treatment
regimens or drug discovery, advanced gene editing technologies
such as CRISPR-Cas9 also hold significant potential for the future
in that they will provide new opportunities to stably engineer host
cells for antibody production. This has been explored in some
of the recently published research. CRISPR/Cas9 based genome
editing has been used for knockout of GS-encoding gene resulting
in improved recombinant protein production in CHO cells (Grav
et al., 2017). The inactivation of GDP-fucose transporter gene
in CHO cells by ZFNs, TALENs and CRISPR-Cas9 has been
reported to lead to production of fucose-free antibodies (Chan
et al., 2016).

However, TALENs and ZFNs are starting to prove their worth
in human gene targeting and editing. The biotech company
Sangamo Biosciences (California, United States) has stepped
forward its ZFN in in vivo gene editing research into the clinic,
and the US Food and Drug Administration (US-FDA) has
permitted a HIV program in somatic cells (non inherited cells),
which has cured more than 80 HIV-infected patients so far (Xu
et al., 2017). Meanwhile, TALENs are recently used in the clinic
to engineer immune cells to help fight leukemia in a young
girl (Le, 2015). Despite these successes, many researchers found
CRISPR as a less onerous and more efficient tool as compared to
other two gene editing tools described above. The cost savings
of the new method is also substantial. Thus, genome editing
approaches therefore present a tremendous scope for being
exploited for the production of novel antibodies with varying
applications.

CONCLUSION AND FUTURE
PROSPECTIVE

Although, mammalian cells are employed for production of
more effective mAbs for diagnostics and treatment of many
severe and life-threatening diseases, certain limitations prevent
their dominancy (Zhu, 2012; Ye et al., 2016). Advances in cell
engineering approaches at various stages, therefore enables cells
to be used as a sole and improved platform for production of
complex natured mAbs. Some of the exiting cell engineering
approaches have been discussed in this review. These include by
regulation of apoptosis, metabolic engineering, and engineering
cells for growth at lower temperature, chaperone engineering
and glyco-engineering. Engineering of cells toward regulation
of the apoptosis or cell-cycle progression can result in longer
cell viability and higher cellular productivity. Specific cellular
chaperones and foldases can be engineered for proper folding
of nascent polypeptide chains to an antibody (Zhang et al.,
2018). Other approaches are targeted for reduction of metabolic
by-product accumulation, enhancing cellular productivity at
lower cell-culture temperatures or obtaining a desired attribute
or quality in the target protein product. Additionally, cell
line engineering has also contributed to the production of
other biopharmaceutical products, reduction of impure host
cell proteins, etc. Host-cell engineering using micro-RNAs
also represent a recent and important strategy that can help
improve recombinant therapeutic protein production. There lies
immense scope for exploring miRNA based cell-line engineering
in industrial protein production processes. Discovery of novel
gene editing tools including ZFNs, TALENs and CRISPR/Cas
have made the cell engineering more convenient to achieve
specific goals (Gupta and Shukla, 2017a). Among these three,
the CRISPR/Cas9 system is now gaining its own importance
in curing human genetic diseases as well as host engineering
for potential biopharmaceutical production (Ran et al., 2015).
With the advent of the CRISPR/Cas9 tool, it is now possible to
target the human genome at specific sites to cure various life
threatening genetic diseases such as HIV, Leukemia, Sickle cell
anemia etc. This tool has also been potentially used for human
gene therapy with success. As CRISPR/Cas9 technology is still in
a nascent phase, certain limitations need to be overcome. Off-
target effects are the major ones which may cause undesirable
editing or mutation in the host cell genome (Zhang X.H. et al.,
2015). The designing of sgRNA should be very specific for a
particular gene; otherwise, it can edit off-targets (non-specific),
which may cause unwanted editing or mutation in the host
genome (Doench et al., 2016). Availability of the PAM sequence
is also very important because the Cas9 protein recognizes only
the PAM (NGG) sequence at the time of binding to insure
the spacer’s attachment. If any mutation occurs in the PAM
sequence during in vitro processing, the cleavage of the target
DNA will be restricted. Therefore, specificity is a must for the
locus identification as well as the designing of the sgRNA. It
can be predicted that, the CRISPR/Cas9 platform can one day
partially replace the drugs, because scientists have developed this
tool for treating critical diseases such as cancers, HIV leukemia
etc. (Doudna and Charpentier, 2014). However, the CRISPR
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modifies a gene, the change is permanent. The other limitation
is availability of CRISPR, since it comes from bacteria; if it
stays in the body for too long, it might trigger a deleterious
immune response (Seed et al., 2013). Many ethical issues have
already been raised against germ-line cell editing with CRISPR,
because it can affect evolution and can raise the ethical and
justice issues. It is essential to have strong ethics for the
use of CRISPR or any other gene editing tool. These tools
have the capability of KI or KO on specific genes at loci for
metabolic engineering as well as improved protein production
and product quality, which in turn can be beneficial in reducing
drug production costs and increased affordability for a large
population.
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