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Abstract: The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by
multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of
cellular responses including cytokine and chemokine release, cell survival and differentiation, the
activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that
contain specific domains essential for the receptor’s varied functions. Alternative splicing produces
P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter
P2X7R function. The modification of the structure and function of the P2X7R may adversely affect
cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have
been associated with several cancers. This review summarizes recent advances in understanding the
structure and function of AS P2X7 isoforms and their associations with cancer and potential role in
modulating the inflammatory response.

Keywords: P2X7R; alternative splicing; ATP; cancer; inflammation

1. Introduction

P2X receptors are an ancient family of proteins that are expressed in both primitive and
advanced life-forms, including protozoa, algae, flatworms, fish, birds, and mammals [1–5].
They are purinergic membrane receptors that assemble as cation channels following the
binding of extracellular adenosine 5′-triphosphate (ATP) [1]. P2X receptors are classified
into seven subtypes, P2X1 to P2X7, that are each translated from different genes. P2X7
receptors (P2X7R), encoded by the gene P2RX7, are unique from the other subtypes in both
their structure and function [2,6].

In mammalian cells, P2X7Rs are widely expressed, with high expression in haematopoi-
etic cells including monocyte/macrophages, dendritic cells, mast cells, lymphocytes,
eosinophils, and basophils [7]. Expression in such a diverse array of life-forms and tissues
suggests that these receptors have a fundamental role in normal cell physiology and home-
ostasis. The importance of the P2X7R in normal health and development can be inferred
from the phenotypic features of the three lines of P2rx7 knock-out mice that have been
generated [8–10]. These mice strains recorded lower levels of interleukin (IL)-1β [8,10],
reduced sensitivity to inflammatory and neuropathic pain, and one had an osteoporotic
phenotype [9,11].

A unique property of P2X7Rs is the modulation of their activity based on ATP con-
centration. At low ATP concentrations the receptor forms a cation channel. At high ATP
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concentrations the receptor forms a non-selective pore that allows molecules up to 900 Da
to pass through the membrane, consequently inducing cell apoptosis [12]. Many other
cellular responses are triggered when ATP binds to the receptor including cytokine se-
cretion, the shedding of cell surface molecules, cell proliferation, and the attenuation of
P2X7R-dependent phagocytosis [13–16]. The mechanisms by which the receptor engages
in such a diverse array of responses is unknown. It has been hypothesised that alternative
splicing, which allows one gene to produce multiple isoforms, enables alternatively spliced
(AS) P2X7 isoforms to form receptors that engage in variable cellular roles by altering
P2X7R structure and function. This review will provide a detailed assessment of our cur-
rent understanding of the effects of the alternative splicing of P2RX7 messenger ribonucleic
acid (mRNA) on the receptor’s structure, function, and disease associations. In addition,
the reader is referred to other recent reviews on the P2X7R [16,17].

2. Structure of the P2X7R

Prior to 2019, preliminary models of the P2X7R were developed using x-ray crystal-
lography and homology modelling, but these methods were limited by their inability to
define the structure of intracellular domains of the receptor [18–21]. In 2019, McCarthy et al.
developed cryogenic electron microscopic structures of the open and closed states of the
rat P2X7R. These structures provided the first insight into the complete P2X7R structure,
including the intracellular domains and ATP-binding sites (Figure 1A,B) [22].
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dinger, Inc., New York, NY, USA [23]. 

Figure 1. Model of the full-length human P2X7R. (A) Structure of the trimeric P2X7R within an
epithelial membrane model. The three P2X7 subunits are shown in magenta, cyan and green ribbon
representations. The epithelial membrane is shown in yellow. (B) A zoomed in view of a P2X7R
ATP-binding site located between two P2X7 subunits in the extracellular domain of the receptor. ATP
is shown in orange interacting with N292, R294, and K311 on one subunit and K64 and 66 on the
adjacent P2X7 subunit. Structural model produced using PyMOL software version 2.5.2, Schrödinger,
Inc., New York, NY, USA [23].

Each P2X7 subunit that forms the trimeric P2X7R is a product of the human P2RX7
gene, located on chromosome 12 [24]. The full-length P2X7A subunit, comprised of
595 amino acids, is translated from a 13 exon mRNA transcript [24]. P2X7A has an ex-
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tracellular domain located between two transmembrane domains (TM1 and TM2), with
intracellular amino and carboxy termini (Figure 2A) [20,25,26]. Three P2X7 subunits as-
semble to form the P2X7R channel which is lined by TM2 segments that are responsible
for channel opening and ion selectivity [27–29]. Three ATP-binding sites are located at
the interface between adjacent P2X7A subunits (Figure 1B) [30]. Brief exposure to extra-
cellular ATP, released from several cellular sources in response to cell stress and tissue
damage, induces the rapid opening of a cation channel. Ca2+ and Na+ moves into the
cell while K+ moves out of the cell [31]. Repeated or prolonged ATP activation results
in an irreversible increase in membrane permeability by forming a larger pore, allowing
hydrophilic molecules up to 900 Da to pass through the cell membrane [31–33]. However,
patch-clamp electrophysiology studies performed by Riedel et al. have shown that single
channel kinetics and permeation properties do not change during prolonged receptor
activation, challenging the idea of pore dilation [34]. Li et al. found that the characteristic
shift in equilibrium, or reversal potential found with prolonged P2X7R activation, resulted
from time-dependent alterations in the concentration of intracellular ions rather than the
opening of a larger pore [35]. Furthermore, substituted cysteine accessibility mutagenesis
experiments and single channel studies have provided no evidence of pore formation
following prolonged ATP activation [36]. Consequently, the existence of other pathways
has been postulated to explain permeability to relatively large cations such as NMDG+

and ethidium+ [37–39]. P2X7R activation is a major physiological stimulus for the release
of IL-1β, matrix metallopeptidase 9, CD23, tumour necrosis factor (TNF) α, transforming
growth factor α, and proteolytic cleavage of soluble IL-6 receptor [40–42]. In the absence
of extracellular ATP, the P2X7R functions as a macrophage scavenger receptor [43]. As a
result of these functions, P2X7Rs have central roles in inflammatory signalling pathways
and innate immune responses [17].
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using PyMOL software version 2.5.2 [23]. 
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first subunit, are encoded by exon 2 and are predicted to form hydrogen bonds with ATP 
phosphate groups [6,20]. In the adjacent P2X7 subunit, ATP interacts with N292 and R294, 
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Figure 2. Overview of the regions constituting the P2X7A subunit. (A) Ribbon representation of
the P2X7A subunit structure. The intracellular amino and carboxy termini are shown in purple,
the transmembrane domains (TM1 and TM2) are shown in orange, and the extracellular domain
is shown in green. (B) The exonic structure of the full-length P2RX7 messenger ribonucleic acid
(mRNA) (exons 1 to 13) that encodes the 595 amino acid P2X7A subunit. The amino acid exon
boundaries are numbered above the exonic structure (i.e., exon 1 encodes amino acids 1 to 42 of the
P2X7R protein, exon 2 encodes amino acids 43 to 99, and so on). The corresponding P2X7A subunit
regions that are translated from the mRNA are illustrated below the exonic structure with the colours
aligning to the regions shown in (A). (C) Domains of interest located within the carboxy terminal
of the P2X7A subunit including the C rich domain, actin filament binding domain, SH3 binding
domain, TNFR1 death domain, trafficking domain, and LPS domain. Structural model produced
using PyMOL software version 2.5.2 [23].

3. P2X7R Domains
3.1. Amino Terminal

Preceding TM1, a short amino terminal region consisting of residues 1 to 27 is encoded
by exon 1 (Figure 2A,B). The amino terminal contains a protein kinase C phosphorylation
consensus site [TX(K/R)] that is conserved in all P2X subtypes [44]. This site has been
proposed to play a role in ATP-mediated receptor activation and desensitisation [45].

3.2. Extracellular Domain

The extracellular domain, comprising residues 51 to 333, contains the orthosteric
ATP-binding sites [46,47]. The location of conserved residues required for ATP-binding
in each of the subunits has been inferred from the agonist-bound crystal structure of the
zebrafish P2X4 receptor [20]. The ammonium groups of K64 and K66, located within the
first subunit, are encoded by exon 2 and are predicted to form hydrogen bonds with ATP
phosphate groups [6,20]. In the adjacent P2X7 subunit, ATP interacts with N292 and R294,
which are encoded by exon 8 and K311, which is encoded by exon 9 (Figure 2B) [47,48].

In addition to the ATP-binding sites, crystallisation and mutagenesis studies have iden-
tified an allosteric binding pocket for P2X7R antagonists in the extracellular domain, princi-
pally mediated by hydrophobic interactions with F95, F103, M105, F293, and V312 [19,49].
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In addition, two series of residues that are unique to the P2X7R, a loop insertion (residues 73
to 79) and residues T90 and T94, have been associated with potent antagonist binding [50].

3.3. Carboxy Terminal

Compared to other P2X receptor family members, the P2X7R has a unique, long
cytoplasmic carboxy terminal. In addition to the formation of the large conductance
pore [51,52], the carboxy tail is critical for signalling that it is independent of channel or
pore formation [51,53,54]. Several lipid and protein binding motifs that potentially interact
with adaptor and/or effector proteins have been identified in this domain that extends
from residues 357 to 595 (Figure 2C) [55]. A P-X-X-P motif has been identified at residues
441 to 460. This cellular sarcoma tyrosine kinase homology 3 (SH3) binding epitope allows
the carboxy terminal to bind to signalling proteins that contain SH3 domains [56]. P2X7Rs
have therefore been linked to processes associated with the SH3 domain including cell
growth regulation, phagocytosis, and cytoskeleton control [43,57,58].

Residues 436 to 531 have sequence similarity to a segment of the TNF receptor
1 (TNFR1), including the death domain [55]. The TNFR1 death domain located on the
P2X7R may interact with the adaptor molecule, the TNF receptor-associated death domain,
which is the first step in signal transduction leading to activation of apoptosis-mediating
caspases [59,60]. Consequently, P2X7R-induced apoptosis may be stimulated by several
cell death pathways, including the efflux of K+ ions through the P2X7R pore that results in
c-Jun N-terminal kinase phosphorylation [61], and pore-independent signal transduction
via the carboxy terminal TNFR1-associated death domain [62].

The carboxy-terminal is important for receptor trafficking and binding to cytoskeletal
proteins. These processes have been attributed to the trafficking domain from residue 551 to
581, the actin filament binding domain spanning from residue 389 to 405 that has homology
to Mycoplasma genitalium cytoadherence high molecular weight protein 3, and a membrane
protein—cytoskeleton linking domain from residue 494 to 508 that is homologous to the
ankyrin containing protein C18H2.1, which is involved in linking membrane proteins to
the cytoskeleton [55,63,64]. The long carboxy terminal is therefore critical to facilitating
localization of the receptor.

The P2X7R carboxy terminal has a lipopolysaccharide (LPS) domain that spans from
residues 573 to 590, resembling the LPS-binding region of serum LPS-binding proteins.
This domain is responsible for neutralising LPS-associated endotoxic activity [65].

In addition to domain-specific functions that are distinct from P2X7R pore activity, the
carboxy terminal contains a cytoplasmic cysteine rich (C rich) domain and a cytoplasmic
ballast that are required for P2X7R pore formation [51]. Palmitoylation of the C rich
domain modulates the receptor function by binding cysteine residues to cholesterol in the
surface membrane, enabling interactions between the P2X7R and membrane phospholipid
rafts [22,66–68]. These cysteines are encoded by exon 13, and in the rat P2X7R consist
of C residues 477, 479, 482, 498, 499, 506, 572 and 573, with another C552 residue in the
human and mouse P2X7R [22]. The attachment to the lipid raft is a key regulator of
P2X7R desensitisation [22] and channel opening [67,68]. The last 120 amino acids of the
carboxy terminal make up the cytoplasmic ballast. This ballast has been implicated in the
P2X7R’s pore dilation and initiating cytolytic signal transduction, likely via the dinuclear
zinc ion complex and high-affinity guanosine nucleotide binding site located within the
ballast [22,69,70].

4. Alternative Splicing

Alternative splicing is a universal regulator of gene expression that from a single gene
generates various mRNAs which differ in their untranslated regions or protein coding
sequences. Alternative splicing mechanisms include skipping exons (the removal of cassette
exons), retaining introns, selecting mutually exclusive exons, and using alternative 5′ and 3′

splice sites that affect the boundaries between introns and exons, contributing to transcript
diversity. A functional protein may not result from alternative splicing for several reasons
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including the generation of a non-coding transcript, unstable RNA, the alteration of RNA
localisation that prevents translation, or the generation of a non-coding RNA that competes
with regulators of coding RNAs [71]. There is increasing evidence that alternative splicing
can affect all aspects of ligand-gated ion channel function including channel gating, ion
sensitivity, and ligand binding [72].

Alternative splicing is common, and the use of genome-wide scanning is found in over
95% of human multi-exon genes [73,74] The relative abundance of different AS isoforms
is determined by several factors including splice site strength, cis-regulatory sequences
in pre-mRNAs, the expression of trans-acting factors such as RNA binding proteins and
splicing factors, and the alteration of cis-regulation splicing [71]. Cis-regulation of splicing
is altered by inherited genetic variations including single nucleotide polymorphisms (SNPs)
due to high sequence sensitivity [75].

Variations in P2X7R function between human subjects can therefore be explained by
both the inheritance of SNPs [76,77] and the formation of AS isoforms [6,69,78,79]. To
date there are over 20 P2RX7 mRNA isoforms listed in the National Center for Biotech-
nology Information (NCBI) and Ensembl databases (Table 1). There is no standardised
nomenclature for P2RX7 mRNA or P2X7 AS isoforms. The NCBI database lists isoforms as
variant numbers and Ensembl as P2X7 numbers, which do not correspond to the alphabetic
order originally used by Cheewatrakoolpong et al. [69]. However, because the alphabetic
nomenclature is commonly referred to in the literature, we have aligned the NCBI and
Ensembl transcript numbers to the corresponding alphabetised isoform (Table 1). There
are eight P2X7 protein AS isoforms listed by UniProtKB, although many other mRNA
isoforms may be translated if alternative start codons are used (Table 1 and Figure 3). Of
the known P2RX7 mRNA AS isoforms, we and others have found five that translate to
proteins in cell model systems [6,69,79]. P2RX7A is a full-length mRNA that contains
13 exons and no introns (Figure 3) [69]. The protein translated from P2RX7A mRNA is the
canonical form described earlier in the review, comprising an intracellular amino terminal
followed by a TM1, extracellular domain, TM2, and a carboxy terminal [69]. P2RX7B
transcribes the intron located between exon 10 and 11 in the deoxyribonucleic acid (DNA)
sequence that introduces a premature stop codon [69]. The resulting P2X7B protein lacks
the carboxy terminal encoded by exons 11, 12 and 13, and has 18 alternate amino acids
inserted after residue 346 [69]. As well as the inclusion of intron 10, P2RX7E mRNA skips
exons 7 and 8 and is translated to a protein with a truncated carboxy terminal and lacks the
critical residues required for ATP binding [69]. P2RX7J is translated to a 258 amino acid
protein that lacks part of the extracellular domain encoded by exons 9 and 10, the entire
TM2 encoded by exons 10 and 11, and the carboxy terminal encoded by exons 11, 12 and
13, acquiring 10 unique residues in its new carboxy terminal domain [79]. P2RX7L, like
P2RX7E, lacks exons 7 and 8 that encode part of the extracellular domain containing the
ATP binding site [6].
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Table 1. Alignment of NCBI and Ensembl transcript isoforms to the commonly used alphabetised naming convention for P2X7R transcripts. Eight protein isoforms
are listed on UniProtKB (Q95572-1 to -8) corresponding to the commonly used nomenclature (A–H) as well as four computationally mapped potential isoform
sequences. Underlined amino acid numbers indicate sequences translated from the primary start codon. All other numbers refer to P2X7-like proteins that would be
translated if alternative start codons were used. Several transcript isoforms are missing in the alphabetised nomenclature: P2X7I has been described as a transcript
isoform [13] but has no transcript accession number in NCBI or Ensembl. P2X7I relates to the mutation at the intron 1 donor splice site rs35933842 [80]; P2X7K
is a variant containing an alternative intracellular amino terminal and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene [81]. A
human equivalent has not been identified; P2X7M has not been assigned to any transcript but could be assigned to ∆E2/Predicted isoform X2. a Transcripts
AK225163.1, AK290405.1, BC011913 also match P2X7A; b Transcript BC007679.2 matches P2X7D; c This sequence of amino acids matches Q99572-3 exactly. d This
amino acid sequence matches Q99572-6 exactly; e Described by Sun et al. [78]; f These sequences are the same; g Transcript BC121158.1 matches Variant 4; h Transcript
AK090866.1 matches Variant 7; i These amino acid sequences are the same; j This transcript (520 bp) aligns exactly to bases 54–573 of Predicted Variant X3; k This
transcript (546 bp) aligns partially with P2X7-213 and Predicted Variant X3.

NCBI ENSEMBL UniPRotKB Possible P2X7-Like Proteins with at
Least 1 TMD

Common mRNA
Isoform Name

Accession
Number

Other Transcripts with
Corresponding Exonic Structure Transcript

Name Accession Number Accession
Number

Number of
Amino Acids

Predicted
Molecular

Weight (kDa)Transcript
Name

Accession
Number

A
P2X7 receptor Y09561

P2X7-202 ENST00000328963.10 Q99572-1 595 68.6
GQ1801221 Variant 1 NM_002562.5 a

B AY847298.1 Variant 5 NR_033951.2 P2X7-203 ENST00000535250.5 Q99572-2 364 41.8

C AY847299.1 Variant 6 NR_033952.2
P2X7-212 ENST00000541716.5 Q99572-3 128 14.7

113 13.4

D AY847300.1 Variant 8 NR_033954.2 b
P2X7-201 ENST0000261826.10 J3KN30 149 17.1

Q99572-4 425 49.2

E AY847301.1 P2X7-204 ENST00000535600.2 Q99572-5 275 31.3

F AY847302.1 Variant 10 NR_033956.2
P2X7-210 ENST00000541022.5 128 c 14.7

Q99572-6 306 35.5

G AY847303.1 Variant 2 NR_033948.2
P2X7-208 ENST00000539606.5 F5H2X6 127 14.7

Q99572-7 274 31.4

H AY847304.1 Variant 3 NR_033949.2
P2X7-207 ENST00000538011.5 F5H2X6 127 14.7

Q99572-8 505 58.2
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Table 1. Cont.

NCBI ENSEMBL UniPRotKB Possible P2X7-Like Proteins with at
Least 1 TMD

Common mRNA
Isoform Name

Accession
Number

Other Transcripts with
Corresponding Exonic Structure Transcript

Name Accession Number Accession
Number

Number of
Amino Acids

Predicted
Molecular

Weight (kDa)Transcript
Name

Accession
Number

J DQ399293.1 Variant 9 NR_033955.2
P2X7-211 ENST00000541564.5 F5H8E7 258 29.3

306 d 35.5

L MK465687.1 Predicted variant X1 XM_047428912.1 506 58.0

Predicted variant X2 XM_011538419.4 491 56.7

∆E2 e - -

N MK465688.1
207 23.5

344 f 40.1

O MK465689.1
213 24.3

272 31.9

P MK465690.1 258 29.3

Q MK465691.1
128 c 14.7

306 d 35.6

Variant 4 NR_033950.2 g P2X7-209 ENST00000539695.5 148 17

Variant 7 NR_033953.2 h
P2X7-206 ENST00000537312.5 F5H237 47 i 5.5

260 29.9

P2X7-213 j ENST00000545434.5 F5H237 47 i 5.5

P2X7-205 k ENST00000535928.5 F5H237 47 i 5.5

Predicted Variant X3 XM_017019367.3
47 i 5.5

344 f 40.2
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Figure 3. P2RX7 mRNA isoforms and predicted proteins. Diagrammatic representation of the exons
(open numbered boxes) comprising each transcript (mRNA variant names are listed on the left of
each transcript). The thin line joining exon 10 to exon 11 represents the retained intron 10. N3 and N4
are alternative exons; p7 indicates that part of the sequence for exon 7 is missing. Thick black lines
represent the proteins that could be translated beginning at the primary start codon in exon 1 or at an
alternative site.

P2RX7H (also referred to as P2RX7-V3) is also a key AS isoform that has been associ-
ated with cancer. It is a long non-coding RNA (lncRNA) that contains an extra exon referred
to as N3 [82]. LncRNAs are recognised as key regulators of oncogenic pathways [83], and
are involved in proliferation, replicative immortality, resistance to growth suppressors,
angiogenesis, resistance to apoptosis, and cancer metastasis [84].

The P2X7K AS isoform has been found in mice (mP2X7K) and rats. This isoform
escapes deletion in the GlaxoSmithKline P2X7R-deficient mouse line, which was generated
by inserting a lacZ/Neo reporter cassette into exon 1 of P2rx7 [9]. This occurs because
P2rx7k has an alternative exon 1 located in the intronic region between exons 1 and 2 of
the P2rx7 gene that replaces the first 42 amino acid residues of P2X7A with 39 different
amino acid residues. An alternative amino terminal and TM1 are translated in the mP2X7K
protein [81]. A second P2rx7 gene deletion mouse has been generated by Pfizer by inserting
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a neomycin cassette into exon 13 [8]. Two AS isoforms, mP2X7 13b and mP2X7 13c, which
are not found in humans, escape disruption in the Pfizer mouse. Like the human P2X7B AS
isoform, mP2X7 13b and mP2X7 13c have alternate carboxy termini due to alterations in
exon 13. The first AS isoform, mP2X7 13b, terminates at T431 and the second, mP2X7 13c,
has an extra 11 amino acids in the carboxy terminal [85].

To date, P2X7A has been found to form heterotrimeric receptors with the P2X7B, P2X7J,
and P2X7L subunits, and mP2X7K with mP2X7A [6,52,79,81]. Heterotrimeric P2X7Rs
composed of different combinations of AS isoform subunits have been found to affect
several functions of the P2X7R. In vitro, P2X7B potentiates receptor function when co-
assembled with full-length P2X7A (Figure 4) and transfected into human embryonic kidney-
293 (HEK293) cells [52]. The deletion of the long carboxy terminal in P2X7B appears
to enable the receptor to retain the growth-promoting activities of P2X7A, stimulating
cell proliferation in response to ATP while losing the cytotoxicity that is related to pore
formation [52]. When co-expressed with P2X7A in HEK293 and Madin-Darby canine
kidney cell lines, P2X7J acts as a dominant-negative isoform on P2X7A [79]. It forms a non-
functional P2X7A/P2X7J heterotrimer that is trafficked to the plasma membrane but fails
to undergo apoptosis [79]. mP2X7A/mP2X7K receptors are functional [86]; however, as
P2X7K AS isoforms have only been identified in rodents to date, they will not be discussed
further. P2X7A/P2X7L receptors are functional but have reduced pore formation, likely
because P2X7L lacks an ATP-binding site [6].
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Figure 4. Ribbon representation of the heterotrimeric (P2X7A)2/P2X7B receptor. The P2X7B subunit
is shown in green, lacking the carboxy terminal as highlighted by the green circle, while the P2X7A
subunits are shown in pink and blue. Molecular surface representations of the P2X7A carboxy termini
are shown in pink and blue. The structural model has been produced using PyMOL software version
2.5.2 [23].

5. Inherited Variation in P2RX7 mRNA Splice Sites

The contribution of inherited genetic variation to the diversity of mRNA AS isoforms
is well established, and variations in pre-mRNA sequences can affect several cis-acting
regions that control alternative splicing [87]. SNPs that occur at the highly conserved donor
and acceptor di-nucleotides predictably affect splicing, and when these occur near verified
exon boundaries, they are annotated in databases such as the NCBI Single Nucleotide
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Polymorphism Database (dbSNP) [88,89]. However, a large proportion of SNPs also
occur at sites where the effect on splicing is less clear, including less conserved sites close
to the intron/exon boundaries, the intronic branch-point, and within intronic or exonic
splicing enhancer or suppressor sequences [90,91]. The complexity of isoform expression is
further increased by allele-specific alternative splicing whereby genetic variations that are
present in either allele may be expressed at different levels [92]. Allele-specific alternative
splicing can be complete, where one allele encodes one isoform and the other results in the
alternative isoform, or partial, where different alleles encode different percentages of more
than one isoform [92–94].

Our group was the first to describe an inherited splice site mutation (rs35933842, G > T)
located at position +1 in the first intron of P2RX7 that resulted in a P2X7 protein null allele
in 1–2% of the Caucasian population [80]. Disruption of the guanosine-5′ donor splice site
with this SNP prevents splicing out of intron 1. The corresponding transcript likely becomes
a target for nonsense-mediated mRNA decay since a premature stop codon is located a
short distance within the included intron sequence. Since the inheritance of rs35933842
generates a null allele, only one allele can be translated to a protein, meaning that subjects
who are heterozygous for function altering SNPs become functionally homozygous [80].

Inherited, allele-specific alternative splicing likely contributes to the significant vari-
ability in the patterns of AS isoform mRNA expression observed between individuals. We
recently studied the association between a haplotype block (rs208307, rs208306, rs36144845,
rs208308, rs208309, and rs275655596) tagged by rs208307 (641-5 C > G), which is located
at an acceptor splice site in intron 6, and the expression of exon 7 and exon 8 deletion
(EX7_EX8del) mRNA transcripts in normal human subjects [6]. Consistent with allele-
specific alternative splicing, the levels of EX7_EX8del mRNA were found to be different
depending on whether subjects were homozygous or heterozygous for the minor allele at
rs208307. The mean allele frequency for the rs208307 SNP was 0 in subjects who did not
express the EX7_EX8del mRNA. Comparatively, the mean allele frequency for those who ex-
pressed EX7_EX8del mRNA was 0.5 (p < 0.0001). The association between the EX7_EX8del
mRNA and the haplotype can be explained by exon skipping that was reported in vitro
in P2X7-transfected HEK293 cells when this haplotype was present [6]. Allele-specific
alternative splicing, therefore, likely plays a role in the genetic regulation of the mRNA
levels of the two known EX7_EX8del AS isoforms, P2X7E and P2X7L. It is anticipated that
SNPs in other cis-acting regions that control alternative splicing affect the mRNA levels of
other AS isoforms.

It is now known that the vast majority of trait- or disease-associated nucleotide vari-
ant loci are in intronic and intergenic non-coding regions [95]. Intronic variants mainly
regulate biological activities by affecting mRNA splicing [96], and at present there are
over 400 P2RX7 intronic SNPs (minor allele frequency >0.005) entered in the dbSNP
database [97].

6. Role of P2X7R Isoforms in Cancer

Following the discovery and characterisation of P2X7R AS isoforms that interact
with full-length P2X7A subunits and alter receptor function, there has been an interest
in the trophic effects of these isoforms and cancer cell proliferation. Extracellular ATP is
increased in the tumour microenvironment [98], and, consequently, an associated increase
in P2X7R activation is expected. It has been proposed, based on structure and associated
function, that P2X7B and P2X7H isoforms may predispose to cancer. P2X7B has a truncated
carboxy termini, abolishing its ability to induce cell apoptosis, ultimately resulting in cell
proliferation. P2X7H acts as a lncRNA, regulating oncogenic pathways as described earlier
in the review [82,83].

6.1. Adenocarcinoma of the Lung

Lung cancers are divided into small-cell carcinoma and non-small-cell carcinoma
based on histology, prognosis, and response to specific therapies [99]. Adenocarcinoma
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is the most common type of non-small-cell-carcinoma and is comprised of malignant
epithelial cells with glandular differentiation [99]. P2X7R expression has been detected
in adenocarcinoma and squamous cell carcinoma of the lung with one study finding no
difference in expression between the two histological subtypes [100]. Benzaquen et al.
found that lung adenocarcinoma cells expressed P2X7A, P2X7B, and additional bands from
56 to 80 kDa that could correspond to other AS isoforms when analysed using western blot
and the L4 monoclonal antibody that binds to the extracellular domain of P2X7Rs [101].
Immune cells that were positive for leukocyte common antigen (CD45+) in the tumour
microenvironment had lower levels of P2X7R pore function compared to CD45+ cells
outside the tumour area. This difference in function may be explained by higher levels of
P2X7B mRNA in immune cells in the tumour microenvironment compared to normal lung
tissue [101].

6.2. Neuroblastoma

Neuroblastomas arise from neural crest cells located in the adrenal medulla or sympa-
thetic chain. They are the most common extracranial cancers in childhood and patients are
divided into low, intermediate, and high-risk. High-risk patients make up half of newly
diagnosed patients and have poor survival outcomes (60% of patients have a survival
duration of five years) compared to low risk patients (95% of patients have a survival
duration of more than five years) [102].

Neuroblastomas commonly metastasise to the bone marrow. Ulrich et al. found that
bradykinin contributes to metastasis by increasing the sensitivity of C-X-C chemokine
receptor type 4 to stromal cell-derived factor-1, increasing the sensitivity of P2X7Rs to ATP,
and increasing P2X7B expression to a greater extent than P2X7A [103]. Bradykinin induced
P2X7B isoform expression would allow neuroblastoma cells to use high extracellular ATP
concentrations in the bone marrow as a growth and seeding stimulus while resisting
apoptosis [103].

6.3. Osteosarcoma

In the bone, P2X7Rs are expressed by osteoclasts, osteoblasts, and osteocytes [104–106].
Osteosarcomas are the most common form of bone cancer and likely arise from trans-
formed multipotent mesenchymal stem cells that develop into several bone differentiation
lineages [107]. Clinical outcomes are generally poor and are related to complex genetic and
epigenetic factors [108]. A recent study suggested that P2X7B expression in osteosarcoma
cells greatly enhanced tumour growth and favoured metastasis [109]. However, the appli-
cation of P2X7B antagonists has not been associated with the expected tumour suppressive
effects [110]. Differences in results between studies may be explained by the different cell
lines used and an inadequate representation of tumour microenvironments, triggering
inconsistent expression of P2X7B in different experiments. As the expression of P2X7R
isoforms are highly flexible, changes in isoform expression patterns between individuals
requires further research.

6.4. Cervical Cancer

Cervical cancer is one of the most common cancers diagnosed in women [111], and
virtually all cases are caused by infection with human papillomavirus (HPV) [112], such
that screening for HPV subtype 16 oncoprotein has a higher sensitivity than cytological
testing [113]. HPV contributes to the development and progression of cervical cancer by
disrupting alternative splicing [114]. P2X7J has been identified in human cervical squamous
cell carcinoma cells and normal cervical cells, although it is likely widely expressed [79].
Feng et al. observed the higher expression of P2X7J in cancerous compared to healthy cells.
When observing the expression of P2X7A compared to P2X7J, the higher expression of
P2X7J was found in cervical cell carcinoma cells, with the ratio reversed in normal cervical
cells [79]. As a non-functional isoform, P2X7J likely contributes to cell proliferation by
preventing cell apoptosis that is associated with the unmutated full-length P2X7A. Overall,
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HPV and P2X7J have been independently associated with cervical cancer, but it would be
interesting to also study an association between HPV and P2X7J expression.

6.5. Melanoma

A melanoma is a skin cancer that affects melanocytes, a type of cell that originates
from neural crest cells [115]. Native human melanoma cells and cell lines have been found
to express functional P2X7R that, when exposed to an agonist, induced apoptosis [116,117].
AS isoforms, however, have only been studied in uveal melanoma where an association was
found between uveal melanoma and the AS isoform P2X7RH that acts as a lncRNA [82].
LncRNAs have no protein-coding potential but are implicated in several cellular processes
with distinct regulatory roles, including tumorigenesis [118,119]. Pan et al. reported high
levels of P2RX7H (Table 1) mRNA in uveal melanoma cell lines, and the downregulation of
P2RX7H inhibited cell migration and colony formation [82]. Furthermore, in a xenograft
model in nude mice, stable knockdown using P2RX7H short hairpin RNA (shRNA) in
the metastatic uveal melanoma cell line, MUM2B, suppressed tumour growth [82]. These
studies show that P2RX7H likely has a role in uveal tumour progression and is potentially
an informative biomarker and therapeutic target.

6.6. Glioblastoma Multiforme

Glioblastoma multiforme is a rare type of brain cancer that most commonly presents
after the age of 65 [120]. It arises from a complex interplay of genes that results in the
proliferation of cells arising from an astrocyte lineage [121]. The standard treatment is
surgery followed by radiotherapy and chemotherapy, however treatment failure frequently
occurs. The median overall survival is approximately one year and the relative survival
rate at five years is 5% [122]. Monif et al. [123] detected P2X7Rs in glioma tumour cells
and microglia that surround the glioblastoma tumours [123]. These receptors were able
to form a pore that was inhibited by the P2X7R antagonists, oxidised ATP and brilliant
blue G (BBG), reducing microglia and glioma cell numbers [123]. Ryu et al. reported
similar results, observing the upregulation of P2X7Rs in glioma cells using a C6 glioma
murine model of glioblastoma [124]. Intravenous BBG, which crosses the blood brain
barrier, inhibited tumour growth. There was no effect on astrogliosis that suggested the
effect of BBG on tumour growth was specific to glioma cells rather than an effect on
microglia [124]. The results of these two studies seem counterintuitive, as pore activity
should logically be associated with cell apoptosis while inhibiting pore activity should
result in cell proliferation.

Tamajusuku et al. [125] and Fang et al. [126] reported contrasting results to
Monif et al. [123], and Ryu et al. [124], and Tamjusuku et al. [125] found that ATP and
BzATP induced apoptosis in GL261 murine glioma cells that was reduced by the stable
RNA interference of P2X7Rs and treatment with oxidised ATP [125]. Similarly, Fang
et al. [126], using the same C6 glioma cells as Ryu et al. but transplanted into rats rather
than mice, reported that P2X7R shRNA or treatment with BBG was associated with tumour
growth by directly promoting cell proliferation and angiogenesis [126].

To address these discordant results, Kan et al. [127] in 2020 used the P2X7R antagonist
AZ10606120 against the U251 human glioblastoma cell line and native human glioma
cells [127]. In this study, there were no reductions in tumour cell numbers with BBG
or oxidised ATP in either U251 cells or human glioma samples. However, AZ10606120
significantly reduced U251 and native human glioma tumour cell numbers and was more
effective than the conventional chemotherapeutic agent, temozolomide, in U251 cells [127].
The differences between tumour cell numbers when treated with the different P2X7R
antagonists (BBG, oxidised ATP and AZ10606120) can be attributed to the higher selectivity
and potency of AZ10606120 with a half maximal inhibitory concentration (IC50) of 10 nM,
compared to 200 nM for BBG and 100 µM for oxidised ATP [128–130].

The differential expression of P2X7R AS isoforms may also contribute to conflicting re-
sults from studies in glioblastoma multiforme. Zanoni et al. [131] found that the differential
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expression of P2X7A and P2X7B affected sensitivity to ATP-induced cytotoxicity in glioma
cell lines [131]. High P2X7A-expressing GB40 cells were more sensitive to ATP-induced
cytotoxicity compared to low P2X7A-expressing GB48 cells [131]. Irradiation caused pyrop-
tosis, cell death, and DNA damage in GB40 and GB48 cells, but high P2X7A-expressing
GB40 cells were more susceptible to ATP-induced cytotoxicity than the GB48 cells. Fur-
thermore, irradiation-selected radiation-resistant clones in both cell lines expressed higher
levels of P2RX7B mRNA and lower levels of P2RX7A mRNA [131]. Zanoni et al. [131]
proposed that the irradiation of glioma cells increased the ratio of P2X7B to P2X7A, con-
tributing to radiation resistance and tumour recurrence [131]. The results are promising
but further research is required to see whether these findings cross over into in vivo studies
and whether P2X7B antagonists would be effective additives to radiation therapy.

6.7. Leukaemia

A range of leukaemias express P2RX7 mRNA, and higher positive rates and relative
expression levels have been found in acute myeloid leukaemia (AML), acute lymphoblastic
leukaemia, chronic myeloid leukaemia, and myelodysplastic syndrome patients compared
to normal donor bone marrow mononuclear cells [132]. In AML, P2RX7 mRNA levels
varied between subtypes, with higher P2X7R expression in monoblastic and erythroid
leukaemias compared to less differentiated leukaemias including acute promyelocytic
leukaemia [132]. Higher P2X7R expression was further correlated with poorer prognosis
and lower response rates after induction chemotherapy in AML [132].

In terms of P2RX7 AS mRNA in AML, Pegoraro et al. observed higher P2RX7A
and P2RX7B mRNA levels in AML cells compared to myelodysplastic cells, a precursor
to AML [133]. Interestingly, P2RX7B mRNA levels were higher in patients at relapse,
and the use of a remission-inducing therapy, daunorubicin, was associated with higher
levels of P2RX7B and lower levels of P2RX7A mRNA. In cell culture, AML cells were
less likely to undergo apoptosis when treated with daunorubicin if P2RX7B mRNA levels
were high. These data were reproduced in a murine model using a human promyelocytic
cell line where treatment with a P2X7R antagonist (AZ10606120) in combination with
daunorubicin resulted in a decrease in both P2RX7A and P2RX7B mRNA and protein
levels [133]. The same authors had previously shown that daunorubicin induced ATP
release from AML cells [134]. Daunorubicin may therefore differentially mediate pore
formation and apoptosis in cells that express high levels of P2X7A, resulting in the selection
of apoptosis resistant AML cells that express high levels of P2X7B. Overall, these studies
support a role for P2X7R AS isoforms in AML relapse and resistance to chemotherapy,
supporting the possibility that using P2X7R antagonists in combination with chemotherapy
may overcome the development of resistance.

7. Huntington’s Disease

Huntington’s disease is an autosomal dominant, inherited condition that is caused by
a mutation in the Huntingtin gene [135]. Normally, exon 1 of the gene has 6 to 35 CAG re-
peats. In Huntington’s disease, exon 1 has more than 39 CAG repeats [135]. The Huntingtin
mutation has been correlated with cell apoptosis in the striatum neurons, resulting in invol-
untary movements, a decline in cognition, and changes in mood [136]. The P2X7R has been
proposed to participate in neuronal apoptosis by increasing the membrane permeability
to Ca2+ ions [137]. In a study performed by Ollà et al., post-mortem Huntington’s disease
brains were found to have higher levels of P2RX7 mRNA and P2X7R protein compared
to controls [136]. When AS isoforms were observed, P2X7A and P2X7B AS isoforms were
found to be upregulated in Huntington’s disease. The increase in P2X7A corresponds
with the receptor’s ability to induce neuronal apoptosis. The upregulation of P2X7B ap-
pears paradoxical at first as this isoform cannot induce cell apoptosis. Ollà et al. proposed
that the upregulation of P2X7B may be a protective mechanism against cell apoptosis in
Huntington’s disease, or alternatively a result of inflammation [136]. It is important to
also consider whether the participants had upregulated P2X7R expression before disease
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presentation, whether it was the result of the disease, or whether it was the result of taking
a medication. Further research is required to support the results from the study.

8. Inflammation

Several mechanisms have been proposed for pathophysiological roles of the P2X7R
in inflammation. A well-established mechanism is through the P2X7R—NOD-, LRR- and
Pyrin domain-containing Protein 3 (NLRP3) inflammasome—proinflammatory cytokine
axis [138]. Several studies have demonstrated the early accumulation of ATP following
cellular injuries, including via the release of ATP through pannexin-1 following autophagic
cell apoptosis, causing activation of P2X7Rs [9]. As a result, K+ efflux activates the as-
sembly of the NLRP3 inflammasome complex, leading to the activation of caspase-1 and
maturation of IL-1β. The transmembrane movement of other cations resulting from P2X7R
activation is also essential for the release of pro-inflammatory cytokines [10]. In human
macrophages and immune cells, this inflammatory axis is believed to be part of a two-step
model which requires the highly concentrated exogenous ATP and LPS as a priming stimu-
lant [11]. However, evidence has suggested that in primary circulating monocytes, a single
stimulant is enough to trigger an endogenous release of ATP for downstream cascades [13].
A less established mechanism is the activation of the NLRP3 inflammasome through the
production of reactive oxygen species that is stimulated by a P2X4/P2X7/pannexin-1 com-
plex. Hung et al. found that eliminating any component of the complex abolished NLRP3
inflammasome activation, suggesting that alterations to the complex would influence the
immune response [139,140].

Monocytes are bone marrow derived cells that are critical for cellular innate immu-
nity. After detecting infection, blood monocytes migrate into tissues and differentiate into
macrophages. Macrophages initially produce a pro-inflammatory response that following
pathogen clearance changes to an anti-inflammatory and wound healing response [141].
Monocyte or macrophage receptor binding to micro-organisms elicits phagocytosis or
cytokine secretion through changes in gene expression and alternative splicing [142,143].
In vitro, gram-negative bacteria-derived LPS binding to toll-like receptor 4 elicits this
inflammatory response in polarized “M1” macrophages that is enhanced by interferon
γ [144]. Polarisation of anti-inflammatory “M2” macrophages, which are divided into M2a
to M2d subcategories, occurs via IL-4 for tissue repair, allergic and anti-parasitic responses,
IL-1β for humoral immunity and T-helper 2 response, or IL-10 for anti-inflammatory re-
sponse and tissue repair [145]. The ability to polarise monocytes and macrophages in
the laboratory using a limited number of cytokines hints at the even greater plasticity of
macrophages at sites of inflammation in the body. To study the effect of macrophage polar-
isation, Pelegrin et al. used an in vitro polarisation gradient of cytokines and endotoxins
to generate a five stage M1 through M2 polarisation model [146]. In the early M1 states,
intracellular IL-1β concentration was high and all stimuli, except ATP, continued to activate
the inflammasome and release IL-1β. In later polarisation states, ATP no longer signalled
to caspase-1 activation that was mediated by a direct reduction in reactive oxygen species
production and trapping of the inflammasome complex actin cytoskeleton clusters. Pele-
grin et al. concluded that uncoupling of P2X7R from caspase-1 activation may be a trigger
in the switch from a pro-inflammatory M1 to anti-inflammatory M2 macrophages [146].
Although there are no reports of P2X7R AS isoforms in native cells at inflammatory sites,
it is tempting to hypothesise that alternative splicing of key domains of the receptor may
also function to modulate the process of inflammation from pro-inflammatory actions to
resolution and healing.

9. Conclusions

The effect of both allele- and tissue-specific alternative splicing on P2X7R structure
and function have important consequences for the roles these receptors play in multiple
cell types in health and disease. Furthermore, there are practical implications for the P2X7R
as a pharmacological target. The presence of tissue-specific isoforms would allow the
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design of drugs with specific actions on given physiological processes, while knowledge
of allele-specific alternative splicing would assist in predicting responses and reduce the
risk of side effects. An understanding of alternative splicing is essential for emerging RNA
therapies which use RNA interference methods to silence specific mRNA isoforms.

Patterns of alternative splicing constantly change under different physiological con-
ditions, allowing gene expression to respond and adapt to changes in the environment.
Analyses of isoform regulation in inflammatory cells by cytokines and under different
environmental conditions may be pivotal in understanding inter-individual differences in
innate immunity. It appears that only a small component of the regulation and impact of
alternative splicing on the structure and function of the P2X7R have been characterised,
and the molecular basis of alterations in receptor function remain to be elucidated. The
recent release of highly accurate computational modelling methods such as AlphaFold,
RoseTTAFold, and NanoNet are promising tools that can be used to predict the function of
different heterotrimeric isoform combinations. The visualisation of the structures alongside
molecular dynamic simulations would be beneficial to further understand the role of P2X7R
alternative splicing in inter-individual disease variability.
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