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Abstract

Purpose: To date there has not been an extensive analysis of the outcomes of bio-
marker use in oncology.

Methods: Data were pooled across four indications in oncology drawing upon trial
outcomes from www.clinicaltrials.gov: breast cancer, non-small cell lung cancer
(NSCLC), melanoma and colorectal cancer from 1998 to 2017. We compared the
likelihood drugs would progress through the stages of clinical trial testing to approval
based on biomarker status. This was done with multi-state Markov models, tools that
describe the stochastic process in which subjects move among a finite number of
states.

Results: Over 10000 trials were screened, which yielded 745 drugs. The inclusion of
biomarker status as a covariate significantly improved the fit of the Markov model
in describing the drug trajectories through clinical trial testing stages. Hazard ratios
based on the Markov models revealed the likelihood of drug approval with biomark-
ers having nearly a fivefold increase for all indications combined. A 12, 8 and 7-fold
hazard ratio was observed for breast cancer, melanoma and NSCLC, respectively.
Markov models with exploratory biomarkers outperformed Markov models with no
biomarkers.

Conclusion: This is the first systematic statistical evidence that biomarkers clearly
increase clinical trial success rates in three different indications in oncology. Also,
exploratory biomarkers, long before they are properly validated, appear to improve
success rates in oncology. This supports early and aggressive adoption of biomarkers

in oncology clinical trials.
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1 | INTRODUCTION

Cancer continues to be a major challenge in medicine, as
it remains the second leading cause of death in the United
States, after heart disease,1 with a forecasted 1.7 million new
cases in 2018.! Finding new treatments remains a challenge,
as illustrated by drug failures rates during clinical trial testing
for non-small cell lung cancer (NSCLC; 89%),2 metastatic
melanoma (83%), non-Hodgkin's lymphoma (92%)* and
prostate cancer (97%).5 In the face of this problem, develop-
ing anti-cancer agents demands new paradigms.

The addition of prognostic and predictive biomarkers, that
predict disease progression and a patient's response to therapy,6
respectively, have offered promise in tackling the problem of
developing new anti-cancer agents. Biomarker benefits poten-
tially include more cost-effective use and diminishing the costs
of development through better patient selection. Pioneering
biomarker approved therapies include: HER?2 in breast cancer,’
BCR-ABL in chronic myelogenous lymphoma,8 anaplastic
lymphoma receptor tyrosine kinase (ALK) rearrangements in
NSCLC,9 BRAF V600 mutations in melanoma'® and the ab-
sence of RAS mutations in colorectal cancer.''

Published studies to date on the potential benefits of bio-
markers in oncology have lacked the analytical rigour, despite
pointing to some positive trends.>>!>!3 In addition, we have
argued previously that biomarker use in clinical trial testing
can entail new risks.'* The current strategy of combining new
biomarkers that have never before been validated with a new
drug may increase the risk of clinical trial failure. In theory,
one would be compounding the probability that a new drug
will fail to work with the probability that a new biomarker
will fail to target appropriate patients for treatment.

In this study, we conducted the most rigorous analysis
of biomarker impact in cancer drug testing in clinical trials
published to date. We collected data on clinical trial risk ac-
cording to the previously published methodology,z'5 13 Which
was defined as the likelihood that a drug will fail clinical
trial testing. Multi-state Markov models were used to per-
form the analysis, which involved investigating the associ-
ation between biomarker use and success rates in the drug
progression through clinical trial testing. We used two sta-
tistical models, one with biomarker usage as a covariate and
the other without, to see which best accounted for the success
rates among drugs.

We examined four major cancers with diverse use of bio-
markers: (a) unresectable stage III and IV metastatic mela-
noma; (b) locally or advanced metastatic breast cancer; (c)
metastatic stage IIIb-IV NSCLC; (d) metastatic stage IV
colorectal cancer. We wanted a clear answer as to whether
biomarker use was aiding oncology clinical trial testing for
new drugs by quantifying its impact on success rates at each
stage of clinical trial testing. To our knowledge, this is the
most extensive study of the potential benefits of biomarker

use in oncology. Finally, our statistical model was built as
an exploratory model to see if we could explain historical
data pertaining to the clinical outcomes with biomarkers. The
analysis of this study applies to historical data, and more test-
ing is required to turn our model into one that is predictive in
future clinical work in oncology.

2 | METHODS

2.1 | Drug study and patient eligibility
Detailed descriptions of the methods used for the collection
of data and identifying relevant clinical studies in this study
have been previously described.> ™! Briefly, data regarding
trials that pertained to four cancers: unresectable stage III
and stage IV metastatic melanoma (‘melanoma’); locally or
advanced or metastatic breast cancer that failed or had been
exposed to anthracycline or taxane chemotherapy (‘breast
cancer'); metastatic (stage IIIb-IV) non-small cell lung can-
cer ('NSCLC') and metastatic (stage IV) colorectal cancer
(‘colorectal cancer'). Data were obtained from the National
Institutes of Health Clinical Trials database (ClinicalTrials.
gov) from 1 January 1998 to 2 January 2017.

Trials were included if the investigational drug was a new
therapy or a combination therapy (i.e., with standard care)
and treated patients with the aforementioned types of cancer.
Trials conducted internationally were included if they were
registered on ClinicalTrials.gov. Trials were excluded from
the analysis if they: (a) initiated their Phase I trial for this
indication before 1998; (b) were not industry sponsored; (c)
did not treat outcomes related to survival (applicable to Phase
II or III trials only); (d) contained trials for topical therapies
or new formulations of previously approved drugs; (e) were
oestrogen studies in the case of breast cancer. If a drug had
been on the market prior to our time interval but only began
testing in an indication relevant to us within our time interval,
then, such a drug was included in the data set.

2.2 | Additional databases and online tools
Additional searches using online databases were used to sup-
plement the trial information obtained from ClinicalTrials.
gov. The searches included publicly available sites as well as
www.archive-it.org, PR news wire (Factiva), Business Wire
(ProQuest 5000) or www.findarticles.com.

2.3 | Clinical trial outcome classification

A simple and transparent rule was used to classify the clinical
trial outcomes previously described”™>'* and also depicted
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here (Figure 1). The phases of development were measured
using a standardised definition of success and rested on the
following assumptions: a Phase I (or I/II) clinical trial was
classified successful if the drug advanced to Phase II for the
same indication. Similarly, a Phase II trial was successful if
the drug advanced to Phase III clinical testing. Finally, Phase
IIT clinical testing was successful if the drug received ap-
proval by the FDA and was available at the time of this anal-
ysis. Compounds in active clinical trials were not considered
failures or successes. If a treatment had only ongoing trials at
a particular phase, that phase was censored from the analysis
while previous phases were deemed successful. For example,
a drug that has completed phase III but not yet received a
decision regarding their submission to the FDA, would be
classified as a success for Phase I and Phase II studies, while
its phase III status would be classified as ongoing. For a drug
to be classified as successfully completing Phase III it must
have received FDA approval. Drugs are considered failures:
if more than 2 years pass following the completion of a trial
and there is no further clinical development; the manufac-
turer has withdrawn the drug; declared the drug failed to meet
its primary endpoints in the study.

2.4 | Biomarker classification

For the biomarker analysis, only trials that used biomarkers as
inclusion or exclusion criteria in clinical trials were included.
This analysis focused exclusively on predictive biomarkers.
Studies that used biomarkers to confirm the presence of dis-
ease were not included in the biomarker arm of analysis. We
have defined a biomarker as a biomarker that was used for
patient enrolment or exclusion as part of the clinical trial de-
sign. We also conducted a sub-analysis of biomarkers, which
segmented this group into two further groups: 'exploratory’
and 'validated' biomarkers. Validated biomarkers have previ-
ously been approved in the indication in question,14 while
exploratory biomarkers have not yet had an approval for the

Ongoing

FIGURE 1
of clinical trial testing that was used in

A depiction of five states

Markov modelling. Different states used in
the Markov model. Biomarker status was
a covariate in one model while the other
Markov model had no such covariate.
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indication in question, as part of a drug submission to the
FDA. The first time a biomarker is approved by the FDA
for a specific indication, it is considered an exploratory bio-
marker, as are all other biomarkers that are in phase III within
2 years of the approval date. After this 2-year window, any
further use of this biomarker is considered validated and no
longer exploratory.

2.5 | Statistical methods

The primary statistical tool we used in our analysis, multi-
state Markov models, allowed us to address data censoring.
Data censoring occurs when the status of a drug is unknown
at the time of data collection. Drugs that fail clinical testing
or are rejected or approved by the FDA are known outcomes.
However, for drugs still undergoing testing in any clinical
trial testing phase, it is ultimately not known if the drug will
fail in later testing or be approved. Thus, uncertainty in the
fate of a drug is a form of data censoring, namely right state
censoring in the context of this paper.

Multi-state Markov models can accommodate censoring
in the data. These types of models are used to predict like-
lihood of a series of events. For instance, in speech recog-
nition used by some smartphones, Markov models—a type
of multi-state Markov model, are used to predict the likely
ordering of words in a sentence.'” In a multi-state Markov
model, transition intensities measure how quickly subjects
are moving between states. In this application, they measure
how likely and quickly a clinical trial transition will occur.
Clinically, this may mean that drugs that have good data and
a positive patient experience, lead to clinical trials that are
both more likely to be successful and easier to enrol and meet
patient recruitment milestones.

In this study, we used Markov models to see if we can
reliably model the sequence of clinical trial transitions (for
'states' see Figure 1). Markov models are used in this study
to determine the likelihood a drug in a current clinical trial

Ongoing
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testing phase will advance to other later phases and sub-
sequent approval. Markov states have been used before in
various forms of survival analysis.ls’l(’ In this study, we
created two Markov models, one with biomarker status as
a covariate and the other without. This allowed us to see
which model was most reliable in modelling the sequence
of clinical trials from one trial to the next. Likelihood ratio
tests (LRT) were calculated to compare the fit between mod-
els with and without biomarker use as a covariate. In order
to express the potential magnitude of our findings, we used
hazard analysis (intensity ratios) based on the results from
the Markov models. The intensity ratios express how likely
clinical trial success based on whether biomarkers were used
or not. State censoring is addressed in hazard ratios based on
the Markov states. In our sub-analysis of validated of val-
idated, exploratory and no biomarkers the same approach
was used. Markov models were compared as previously
conducted, for each of these states. Separate Markov models
with different covariates were used: exploratory and vali-
dated biomarkers. The ability of Markov models with such
covariates to predict trial outcomes was compared to each
other and no biomarker Markov models, using likelihood
ratio tests as described above.

Multi-state models, by definition, incorporate transi-
tion times (depicted in transition intensities showing the
likelihood and the speed of such transitions) and dura-
tion of stay in a state as well as transitions from one state
to another. A multi-state model describes how an entity
moves between a series of states in continuous time. The
likelihood for this model, as used in the R package msm'’
was calculated from the transition probability matrix. The
hazard ratios we report here are the same concept as tran-
sition intensities. In a multi-state model, 'the transition in-
tensities provide the hazards for movement from one state
to another'.'® Throughout this paper, we refer to this as a
hazard ratio rather than its more technical reference known
as intensity ratios.

0.06

0.045

0.03

Transition Intensity

No Biomarker Biomarker

Phase II

No Biomarker Biomarker

Phase I

ul ' E'

No Biomarker

3 | RESULTS

After employing the search process listed in the methods sec-
tion, over 10,000 clinical trials were screened, yielding 745
drugs, including the FDA approved drugs, were found that
fulfilled our inclusion criteria for all four disease areas. FDA
approved drugs in our data set for each indication exam-
ined included: breast cancer (11 drugs, 10 with biomarkers),
colorectal cancer (6 drugs, 2 with biomarkers), melanoma (6
drugs, 4 with biomarkers) and NSCLC (12 drugs, 7 with bio-
markers). Sample sizes in this study refer to the number of
drugs, not the number of patients in a clinical study.

An overall analysis of all drugs, irrespective of indication,
was conducted based on biomarker status. We compared
whether using biomarker status (covariate) in the model
more reliably modelled clinical trial transition intensities
than a model that did not take into account biomarker status.
Independent of clinical trial phase, non-biomarker transition
hazard for drug approval was 2.5 * 107*, confidence interval
(CD (1.36 * 10_4, 4.44 * 10_4) versus the biomarker model
of 1.21 * 1073, CI (0.8 * 107>, 1.8 * 10™). Comparing the
Markov models with and without biomarker as a covariate,
using likelihood ratio tests, yielded a significant difference
(p<2.7% 107'%). While hazard ratios do not address data cen-
soring this is inherent in Markov models using hazard ratios:
biomarker hazard ratio, based on the Markov models, was
4.91, CI [2.39, 10.07]. This gave biomarker use, in the con-
text of hazard ratios, a fivefold benefit over non-biomarker
use. Given an overall effect of biomarker as a covariate in
reliably modelling clinical trial outcomes, we explored each
indication separately by examining the Markov models em-
ploying biomarker use as a covariate.

In breast cancer (Figure 2), the Markov model showed a
significant effect of biomarker use in modelling clinical trial
outcomes. This was revealed by transition intensities de-
picted by each phase of clinical trial testing up to approval.
When biomarker was used as a covariate it provided superior

FIGURE 2 Breast cancer. The ability
of two different Markov models to predict
clinical trial successes in historical data

in this indication. 'Biomarker' shows the
performance of a Markov model with
biomarker status as a covariate while
non-biomarker has no such covariate.
Hazard represents the likelihood and rate of
advancing to the next phase. Bars are 95%
CI. Sample sizes: Phase I (n = 183), Phase
II (n = 132) and Phase III (n = 49).

Biomarker
Phase III



PARKER ET AL.

modelling of outcomes across all clinical trial testing phases.
The overall improvement in the fit of the Markov model with
biomarker use as a covariate compared to a Markov model
with no covariate, compared with likelihood ratio tests, was
significant (p < 1.73 * 10™*). Based on the Markov models,
the hazard ratio of drug approval due to the use of biomarkers
was dramatic, showing a 12-fold benefit (HR 12.16; CI[1.56;
94.96]).

Colorectal cancer analysis did not show a clear bene-
fit of using biomarker status as a covariate in the ability of
the Markov model to model future clinical trial outcomes
(Figure 3). Trends in transition hazard across clinical test-
ing phases are slight at best. The difference between Markov
models with and without biomarker as a covariate, using
LRT, was not statistically significant (p = 0.85).

The Markov model with biomarker as a covariate mod-
elled melanoma clinical trial success more reliably than a
model with no such covariate, across all clinical trial testing
phases (Figure 4). The melanoma Markov model that incor-
porated biomarker use as a covariate compared to the model
with no such covariate was different at a statistically signifi-
cant level (p < 0.029). Hazard analysis based on the Markov
models showed the greatest benefit of biomarkers to be in
the transition from Phase III to approval (HR 6.36; CI [1.16,
34.71]). The overall impact of biomarker status on drug ap-
proval, based on hazard analysis from the Markov models,
showed an eightfold impact (HR 7.98; CI [1.46; 43.56]).

Biomarker status appeared to have an effect in NSCLC
cancer (Figure 5). The NSCLC Markov model with bio-
marker status as a covariate was statistically significant
compared to the Markov model without such a covariate
Pp<26* 107*). This effect was seen in the transition in-
tensities for Phase I to Phase II and Phase II to Phase III.
Overall, the hazard ratio from the Markov model showed a

0.05
0.0375
=y
%]
=1
3
|
g 0.025
FIGURE 3 Colorectal. The ability k=]
%]
of two different Markov models to predict E
clinical trial successes in historical data &
in this indication. 'Biomarker' shows the 0.0125
performance of a Markov model with
biomarker status as a covariate while
non-biomarker has no such covariate.
Hazard represents the likelihood and rate of 0.

. No Biomarker
advancing to the next phase. Bars are 95%

CI. Sample sizes: Phase I (n = 195), Phase
II (n = 128) and Phase III (n = 24).
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clear benefit of biomarkers on the likelihood of drug approval
(HR 6.89; CI [2.02, 23.54]).

Finally, we conducted a sub-analysis of the biomarkers
by collapsing all indications into a single group (Figure 6).
Biomarkers were divided into validated and exploratory
biomarkers. The biomarkers found in this study (Table 1)
include both validated and exploratory biomarkers for the
indications reported in this paper (Table 2). First, there was
no difference between Markov models that used exploratory
biomarker covariates versus validated biomarker covariates,
in their ability to reliably model the data (p > 0.05). If we
compare a Markov model with a covariate for biomarkers (ir-
respective of the type), in this analysis which has combined
all indications, it does better reliably modelling the clinical
trial outcomes than a Markov model without a covariate for
biomarkers (p < 1.3 * 1079). Importantly, Markov models
that used exploratory biomarkers as a covariate modelled
clinical trial success rates across all clinical trial phases more
reliably than a Markov model with no biomarker covariate
(p <80* 107%). Overall, the hazard ratio comparison be-
tween exploratory biomarkers and no biomarkers was 4.6 (CI
2.0458298, 10.5073327).

4 | DISCUSSION

Drug development in oncology continues to see high fail-
ure rates, with several studies estimating almost 90% failure
rate of all drugs entering clinical trial testing.2’4’5 Biomarkers
have been successfully applied in a number of conditions, but
if they are not fully validated, may add to the risk of unsuc-
cessful clinical trial outcomes.' This is the first study to con-
duct a rigorous quantitative systematic large-scale analysis
of the impact of biomarkers on clinical trial risk in oncology.
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FIGURE 4 Melanoma. The ability

of two different Markov models to predict
clinical trial successes in historical data

in this indication. 'Biomarker' shows the
performance of a Markov model with
biomarker status as a covariate while
non-biomarker has no such covariate.
Hazard represents the likelihood and rate of
advancing to the next phase. Bars are 95%
CI. Sample sizes: Phase I (n = 81), Phase II
(n =49) and Phase III (n = 21).

FIGURE 5 NSCLC. The ability of
two different Markov models to predict
clinical trial successes in historical data

in this indication. 'Biomarker' shows the
performance of a Markov model with
biomarker status as a covariate while
non-biomarker has no such covariate.
Hazard represents the likelihood and rate of
advancing to the next phase. Bars are 95%
CI. Sample sizes: Phase I (n = 286), Phase
II (n = 217) and Phase III (n = 65).
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FIGURE 6 A sub-analysis of biomarkers into exploratory and validated biomarkers, respectively. The performance of Markov models using
each of these biomarkers as covariates is depicted alongside Markov models that do not look at biomarkers. Clinical studies with exploratory
biomarkers outperform clinical trials with no biomarkers. Total study sample size of 748 drugs was segmented into: no biomarker (n = 555 drugs),

validated biomarker (n = 80) and exploratory biomarker-based drugs (n = 113). Bars are 95% CI.

We used two Markov state models, where one incorporated revealed a fivefold benefit of hazard ratios from the Markov

biomarker use status as a covariate, and compared how relia- models, suggesting a substantial benefit from biomarker use.
bly each model sequenced clinical trial success. Four cancers The hazard ratio analysis of the Markov biomarker models
were examined based on their use of biomarkers. Our over- examined how likely clinical trial success was associated

all analysis of these four cancers, independent of indication, with biomarker use versus no biomarker use. Hazard ratios
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TABLE 1 Biomarkers that were
identified in the four cancer indications

. s . Disease Area
and included in this study. Biomarkers

were set into categories based on the level Colorectal Cancer
of validation for the cancer in question.
Biomarkers were either approved for the
cancer of interest, are under investigation Breast Cancer
but have been approved in for use in another

indication or have no approval history

whatsoever (‘exploratory'). A biomarker NSCLC

can be classified as exploratory upon initial

approval, and any clinical studies involving

that biomarker in phase III within 2 years of

the approval date. However, after 2 years of

the FDA approval date for the biomarker,

any additional work with this biomarker was

classified as 'validated'

Melanoma

indicated that for biomarker-based drugs clinical trial suc-
cess was largest for breast cancer (12-fold) followed by
melanoma (eightfold) and lung cancer (sevenfold). While
colorectal cancer showed no overall benefit of biomarker
use, this finding may change with future clinical work in this
area. Finally, Markov models with exploratory biomarkers
outperformed (fourfold) Markov models with no biomarkers.
Our data provide the most extensive look at biomarker use to
date in oncology, with an advanced statistical method. Our
findings indicate that biomarkers provide a statistically sig-
nificant benefit, despite the fact our study includes biomark-
ers not yet FDA approved.

Biomarker use in clinical trials may be, in itself, pre-
dictive of a success in some indications in looking at our
historical data. For example, the 12-fold hazard ratio we
observed in our data set for breast cancer from the Markov
states indicates that clinical trial success is 12 times more
likely in biomarker-based clinical studies than in studies
without a biomarker. This finding suggests that clinical

FDA Approved in
this Indication

KRAS (Kirsten Rat
Sarcoma) gene

HER?2 overexpression

Hormonal positive

FDA Approved in
Other Disease Areas

BRAF V600 mutation
UGT1A1%28 allele
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Exploratory

Beclin 1, p62 and
LC3 biomarker

RAS
BRCA1 & BRCA2

EMLA4-ALK gene KRAS gene MEKI1 gene
EGFR PD-L1 N-ras mutation
ALK BRAF V600E HLA-A haplotype
HER2 P13 K activation
TrkA, LFT3,
VEGEFR,
PDGFR, FGFR
MET
FGFRI
IGF
ROS1
BRAF V600 mutation ~ C-kit (D816 V SPARC
mutation negative) MAGE-A3 s

CDK (Cyclin D—1)

HLA-A haplotype
0201

ICAM-1 & DAF
Aurora kinase
CDK4/6
N-cadherin
DDR2

MEK

N-ras mutation

TABLE 2 A summary of biomarker and non-biomarker drugs

by indication in the study. A supplementary file of the data has been

submitted to the journal

Grand
Indication Biomarker No Biomarker Total
Breast 70 113 183
Colorectal 61 134 195
Melanoma 10 71 81
NSCLC 240 46 286
Grand Total 381 364 745

trials involving biomarker use in breast cancer should be
given a priority for patient participation compared to trials
in this indication that do not use a biomarker. Other in-
dications examined here also showed a powerful effect of
biomarker use. NSCLC had a sevenfold increase in hazard
ratio predicting clinical trial success in our data, compared
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to a model with no biomarker covariate. There are of course
biomarker approved drugs for NSCLC (crizotinib' and ge-
fitinib>’), but the results here suggest that such success is
not specific to the choice of biomarker, rather, a broader
benefit is conferred by biomarkers as a tool themselves.
This is surprising, since most of the biomarkers reported in
this paper (Table 1) are not validated through an FDA ap-
proval for the indication in question. It would be different,
for example, if the success of melanoma were driven by a
single biomarker that was FDA approved. Quite the con-
trary, melanoma has the largest preponderance of explor-
atory stage biomarkers compared to the other indications
reported in this study. This suggests that while biomarkers
that have not been fully validated may bring additional risk
that a clinical trial will fail,'* there may be enough benefit
to their use to offset the risk of the unknown.

Testing both a drug and a biomarker does introduce two
sources of risk to a study and this has been reviewed pre-
Viously.21 It has been argued that if type I (false positives)
and type II (false negatives) errors are optimised in a proof
of concept study, each can be tested simultaneously in the
same study while having feasible requirements for patient
enrolment. While misgivings had been expressed before
about testing new biomarkers and drugs simultaneously
in terms of aggregate clinical trial risk, ' increasingly this
looks like a practical approach. An extensive model has
been developed that lays out a strategy for co-developing
a new drug and new biomarkers as part of a single clin-
ical trial programme.21 This approach, in essence, con-
stantly updates the development of a novel biomarker with
a novel drug by incorporating maturing phase II data into
the phase III study, up until the point of an interim analysis
("‘phase II+'). This strategy also posits multiple small proof
of concept clinical studies with an exploratory biomarker
rather than a single larger early clinical study in order to
explore more hypothesis about biomarkers for the drug.
The results from our exploratory biomarker analysis in
this study support this approach. Exploratory biomarkers,
given the current conditions in which they are developed
and screened with animal data, appear to be much more
predictive than investigators would have anticipated. In this
model, the level of certainly around exploratory biomark-
ers has impact on the choices available to the development
team on how to proceed. The results reported here suggest
that optimism for exploratory biomarkers can be relatively
high, and in that context, may upward adjust probabilities
of biomarker success derived from Phase II data (‘posterior
probabilities'). Finally, the model also lays out a biomarker
stratified Phase II design where biomarker-positive and
biomarker-negative exist with both control and treatment
arms. The authors note that this the best approach where
there is uncertainty the ability of the biomarker to iden-
tify likely responders (or non-responders) for the drug. We

concur with the model's conclusion that co-development of
a novel drug and an exploratory biomarker, may indeed be
more cost-effective and faster based on our analysis.

This research has a number of limitations, some of
which have been discussed in the literature before.® Phase I
cancer studies tend to include patients with different kinds
of cancers, even though the drug will eventually be tested
in one specific indication in Phase II and Phase III trials.
In this sense, because Phase I oncology trials do not usu-
ally enrol a single type of cancer patient, they truly reflect
oncology more broadly rather than a specific indication.
In addition, the indications we are working with are broad
categories that contain patient subgroups that may have
different molecular subtypes of the disease. For these mo-
lecular subtypes of the indication, they may be different
with respect to the utility of biomarkers and the course of
their disease. As the number of clinical studies grows, it
may be possible to analyse these subgroups of patients in
the future. With respect to our sub-analysis of biomarker
types there is a concern that our sample size is too small to
support this analysis in this data set. There are assumptions
in that analysis that need to be explored further, such has
lengthening or shortening the period after a biomarker is
approved where subsequent use of the biomarker is no lon-
ger considered exploratory.

For oncologists enrolling patients in clinical trials our
study suggests that with the possible exception of colorec-
tal cancer, biomarker-based studies should receive priority.
More specifically, oncologists may take a more favourable
view towards exploratory biomarkers in reducing clinical
trial risk.
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