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Abstract
Purpose: To date there has not been an extensive analysis of the outcomes of bio-
marker use in oncology.
Methods: Data were pooled across four indications in oncology drawing upon trial 
outcomes from www.clini caltr ials.gov: breast cancer, non- small cell lung cancer 
(NSCLC), melanoma and colorectal cancer from 1998 to 2017. We compared the 
likelihood drugs would progress through the stages of clinical trial testing to approval 
based on biomarker status. This was done with multi- state Markov models, tools that 
describe the stochastic process in which subjects move among a finite number of 
states.
Results: Over 10000 trials were screened, which yielded 745 drugs. The inclusion of 
biomarker status as a covariate significantly improved the fit of the Markov model 
in describing the drug trajectories through clinical trial testing stages. Hazard ratios 
based on the Markov models revealed the likelihood of drug approval with biomark-
ers having nearly a fivefold increase for all indications combined. A 12, 8 and 7- fold 
hazard ratio was observed for breast cancer, melanoma and NSCLC, respectively. 
Markov models with exploratory biomarkers outperformed Markov models with no 
biomarkers.
Conclusion: This is the first systematic statistical evidence that biomarkers clearly 
increase clinical trial success rates in three different indications in oncology. Also, 
exploratory biomarkers, long before they are properly validated, appear to improve 
success rates in oncology. This supports early and aggressive adoption of biomarkers 
in oncology clinical trials.
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1 |  INTRODUCTION

Cancer continues to be a major challenge in medicine, as 
it remains the second leading cause of death in the United 
States, after heart disease,1 with a forecasted 1.7 million new 
cases in 2018.1 Finding new treatments remains a challenge, 
as illustrated by drug failures rates during clinical trial testing 
for non- small cell lung cancer (NSCLC; 89%),2 metastatic 
melanoma (83%),3 non- Hodgkin's lymphoma (92%)4 and 
prostate cancer (97%).5 In the face of this problem, develop-
ing anti- cancer agents demands new paradigms.

The addition of prognostic and predictive biomarkers, that 
predict disease progression and a patient's response to therapy,6 
respectively, have offered promise in tackling the problem of 
developing new anti- cancer agents. Biomarker benefits poten-
tially include more cost- effective use and diminishing the costs 
of development through better patient selection. Pioneering 
biomarker approved therapies include: HER2 in breast cancer,7 
BCR- ABL in chronic myelogenous lymphoma,8 anaplastic 
lymphoma receptor tyrosine kinase (ALK) rearrangements in 
NSCLC,9 BRAF V600 mutations in melanoma10 and the ab-
sence of RAS mutations in colorectal cancer.11

Published studies to date on the potential benefits of bio-
markers in oncology have lacked the analytical rigour, despite 
pointing to some positive trends.2- 5,12,13 In addition, we have 
argued previously that biomarker use in clinical trial testing 
can entail new risks.14 The current strategy of combining new 
biomarkers that have never before been validated with a new 
drug may increase the risk of clinical trial failure. In theory, 
one would be compounding the probability that a new drug 
will fail to work with the probability that a new biomarker 
will fail to target appropriate patients for treatment.

In this study, we conducted the most rigorous analysis 
of biomarker impact in cancer drug testing in clinical trials 
published to date. We collected data on clinical trial risk ac-
cording to the previously published methodology,2- 5,13 which 
was defined as the likelihood that a drug will fail clinical 
trial testing. Multi- state Markov models were used to per-
form the analysis, which involved investigating the associ-
ation between biomarker use and success rates in the drug 
progression through clinical trial testing. We used two sta-
tistical models, one with biomarker usage as a covariate and 
the other without, to see which best accounted for the success 
rates among drugs.

We examined four major cancers with diverse use of bio-
markers: (a) unresectable stage III and IV metastatic mela-
noma; (b) locally or advanced metastatic breast cancer; (c) 
metastatic stage IIIb– IV NSCLC; (d) metastatic stage IV 
colorectal cancer. We wanted a clear answer as to whether 
biomarker use was aiding oncology clinical trial testing for 
new drugs by quantifying its impact on success rates at each 
stage of clinical trial testing. To our knowledge, this is the 
most extensive study of the potential benefits of biomarker 

use in oncology. Finally, our statistical model was built as 
an exploratory model to see if we could explain historical 
data pertaining to the clinical outcomes with biomarkers. The 
analysis of this study applies to historical data, and more test-
ing is required to turn our model into one that is predictive in 
future clinical work in oncology.

2 |  METHODS

2.1 | Drug study and patient eligibility

Detailed descriptions of the methods used for the collection 
of data and identifying relevant clinical studies in this study 
have been previously described.2- 5,13 Briefly, data regarding 
trials that pertained to four cancers: unresectable stage III 
and stage IV metastatic melanoma ('melanoma'); locally or 
advanced or metastatic breast cancer that failed or had been 
exposed to anthracycline or taxane chemotherapy ('breast 
cancer'); metastatic (stage IIIb– IV) non- small cell lung can-
cer ('NSCLC') and metastatic (stage IV) colorectal cancer 
('colorectal cancer'). Data were obtained from the National 
Institutes of Health Clinical Trials database (ClinicalTrials.
gov) from 1 January 1998 to 2 January 2017.

Trials were included if the investigational drug was a new 
therapy or a combination therapy (i.e., with standard care) 
and treated patients with the aforementioned types of cancer. 
Trials conducted internationally were included if they were 
registered on ClinicalTrials.gov. Trials were excluded from 
the analysis if they: (a) initiated their Phase I trial for this 
indication before 1998; (b) were not industry sponsored; (c) 
did not treat outcomes related to survival (applicable to Phase 
II or III trials only); (d) contained trials for topical therapies 
or new formulations of previously approved drugs; (e) were 
oestrogen studies in the case of breast cancer. If a drug had 
been on the market prior to our time interval but only began 
testing in an indication relevant to us within our time interval, 
then, such a drug was included in the data set.

2.2 | Additional databases and online tools

Additional searches using online databases were used to sup-
plement the trial information obtained from ClinicalTrials.
gov. The searches included publicly available sites as well as 
www.archi ve- it.org, PR news wire (Factiva), Business Wire 
(ProQuest 5000) or www.finda rticl es.com.

2.3 | Clinical trial outcome classification

A simple and transparent rule was used to classify the clinical 
trial outcomes previously described2- 5,13 and also depicted 

http://www.archive-it.org
http://www.findarticles.com
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here (Figure 1). The phases of development were measured 
using a standardised definition of success and rested on the 
following assumptions: a Phase I (or I/II) clinical trial was 
classified successful if the drug advanced to Phase II for the 
same indication. Similarly, a Phase II trial was successful if 
the drug advanced to Phase III clinical testing. Finally, Phase 
III clinical testing was successful if the drug received ap-
proval by the FDA and was available at the time of this anal-
ysis. Compounds in active clinical trials were not considered 
failures or successes. If a treatment had only ongoing trials at 
a particular phase, that phase was censored from the analysis 
while previous phases were deemed successful. For example, 
a drug that has completed phase III but not yet received a 
decision regarding their submission to the FDA, would be 
classified as a success for Phase I and Phase II studies, while 
its phase III status would be classified as ongoing. For a drug 
to be classified as successfully completing Phase III it must 
have received FDA approval. Drugs are considered failures: 
if more than 2 years pass following the completion of a trial 
and there is no further clinical development; the manufac-
turer has withdrawn the drug; declared the drug failed to meet 
its primary endpoints in the study.

2.4 | Biomarker classification

For the biomarker analysis, only trials that used biomarkers as 
inclusion or exclusion criteria in clinical trials were included. 
This analysis focused exclusively on predictive biomarkers. 
Studies that used biomarkers to confirm the presence of dis-
ease were not included in the biomarker arm of analysis. We 
have defined a biomarker as a biomarker that was used for 
patient enrolment or exclusion as part of the clinical trial de-
sign. We also conducted a sub- analysis of biomarkers, which 
segmented this group into two further groups: 'exploratory' 
and 'validated' biomarkers. Validated biomarkers have previ-
ously been approved in the indication in question,14 while 
exploratory biomarkers have not yet had an approval for the 

indication in question, as part of a drug submission to the 
FDA. The first time a biomarker is approved by the FDA 
for a specific indication, it is considered an exploratory bio-
marker, as are all other biomarkers that are in phase III within 
2 years of the approval date. After this 2- year window, any 
further use of this biomarker is considered validated and no 
longer exploratory.

2.5 | Statistical methods

The primary statistical tool we used in our analysis, multi- 
state Markov models, allowed us to address data censoring. 
Data censoring occurs when the status of a drug is unknown 
at the time of data collection. Drugs that fail clinical testing 
or are rejected or approved by the FDA are known outcomes. 
However, for drugs still undergoing testing in any clinical 
trial testing phase, it is ultimately not known if the drug will 
fail in later testing or be approved. Thus, uncertainty in the 
fate of a drug is a form of data censoring, namely right state 
censoring in the context of this paper.

Multi- state Markov models can accommodate censoring 
in the data. These types of models are used to predict like-
lihood of a series of events. For instance, in speech recog-
nition used by some smartphones, Markov models– – a type 
of multi- state Markov model, are used to predict the likely 
ordering of words in a sentence.15 In a multi- state Markov 
model, transition intensities measure how quickly subjects 
are moving between states. In this application, they measure 
how likely and quickly a clinical trial transition will occur. 
Clinically, this may mean that drugs that have good data and 
a positive patient experience, lead to clinical trials that are 
both more likely to be successful and easier to enrol and meet 
patient recruitment milestones.

In this study, we used Markov models to see if we can 
reliably model the sequence of clinical trial transitions (for 
'states' see Figure 1). Markov models are used in this study 
to determine the likelihood a drug in a current clinical trial 

F I G U R E  1  A depiction of five states 
of clinical trial testing that was used in 
Markov modelling. Different states used in 
the Markov model. Biomarker status was 
a covariate in one model while the other 
Markov model had no such covariate.
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testing phase will advance to other later phases and sub-
sequent approval. Markov states have been used before in 
various forms of survival analysis.15,16 In this study, we 
created two Markov models, one with biomarker status as 
a covariate and the other without. This allowed us to see 
which model was most reliable in modelling the sequence 
of clinical trials from one trial to the next. Likelihood ratio 
tests (LRT) were calculated to compare the fit between mod-
els with and without biomarker use as a covariate. In order 
to express the potential magnitude of our findings, we used 
hazard analysis (intensity ratios) based on the results from 
the Markov models. The intensity ratios express how likely 
clinical trial success based on whether biomarkers were used 
or not. State censoring is addressed in hazard ratios based on 
the Markov states. In our sub- analysis of validated of val-
idated, exploratory and no biomarkers the same approach 
was used. Markov models were compared as previously 
conducted, for each of these states. Separate Markov models 
with different covariates were used: exploratory and vali-
dated biomarkers. The ability of Markov models with such 
covariates to predict trial outcomes was compared to each 
other and no biomarker Markov models, using likelihood 
ratio tests as described above.

Multi- state models, by definition, incorporate transi-
tion times (depicted in transition intensities showing the 
likelihood and the speed of such transitions) and dura-
tion of stay in a state as well as transitions from one state 
to another. A multi- state model describes how an entity 
moves between a series of states in continuous time. The 
likelihood for this model, as used in the R package msm17 
was calculated from the transition probability matrix. The 
hazard ratios we report here are the same concept as tran-
sition intensities. In a multi- state model, 'the transition in-
tensities provide the hazards for movement from one state 
to another'.18 Throughout this paper, we refer to this as a 
hazard ratio rather than its more technical reference known 
as intensity ratios.

3 |  RESULTS

After employing the search process listed in the methods sec-
tion, over 10,000 clinical trials were screened, yielding 745 
drugs, including the FDA approved drugs, were found that 
fulfilled our inclusion criteria for all four disease areas. FDA 
approved drugs in our data set for each indication exam-
ined included: breast cancer (11 drugs, 10 with biomarkers), 
colorectal cancer (6 drugs, 2 with biomarkers), melanoma (6 
drugs, 4 with biomarkers) and NSCLC (12 drugs, 7 with bio-
markers). Sample sizes in this study refer to the number of 
drugs, not the number of patients in a clinical study.

An overall analysis of all drugs, irrespective of indication, 
was conducted based on biomarker status. We compared 
whether using biomarker status (covariate) in the model 
more reliably modelled clinical trial transition intensities 
than a model that did not take into account biomarker status. 
Independent of clinical trial phase, non- biomarker transition 
hazard for drug approval was 2.5 * 10−4, confidence interval 
(CI) (1.36 * 10−4, 4.44 * 10−4) versus the biomarker model 
of 1.21 * 10−3, CI (0.8 * 10−3, 1.8 * 10−3). Comparing the 
Markov models with and without biomarker as a covariate, 
using likelihood ratio tests, yielded a significant difference 
(p < 2.7 * 10−10). While hazard ratios do not address data cen-
soring this is inherent in Markov models using hazard ratios: 
biomarker hazard ratio, based on the Markov models, was 
4.91, CI [2.39, 10.07]. This gave biomarker use, in the con-
text of hazard ratios, a fivefold benefit over non- biomarker 
use. Given an overall effect of biomarker as a covariate in 
reliably modelling clinical trial outcomes, we explored each 
indication separately by examining the Markov models em-
ploying biomarker use as a covariate.

In breast cancer (Figure 2), the Markov model showed a 
significant effect of biomarker use in modelling clinical trial 
outcomes. This was revealed by transition intensities de-
picted by each phase of clinical trial testing up to approval. 
When biomarker was used as a covariate it provided superior 

F I G U R E  2  Breast cancer. The ability 
of two different Markov models to predict 
clinical trial successes in historical data 
in this indication. 'Biomarker' shows the 
performance of a Markov model with 
biomarker status as a covariate while 
non- biomarker has no such covariate. 
Hazard represents the likelihood and rate of 
advancing to the next phase. Bars are 95% 
CI. Sample sizes: Phase I (n = 183), Phase 
II (n = 132) and Phase III (n = 49).
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modelling of outcomes across all clinical trial testing phases. 
The overall improvement in the fit of the Markov model with 
biomarker use as a covariate compared to a Markov model 
with no covariate, compared with likelihood ratio tests, was 
significant (p < 1.73 * 10−4). Based on the Markov models, 
the hazard ratio of drug approval due to the use of biomarkers 
was dramatic, showing a 12- fold benefit (HR 12.16; CI [1.56; 
94.96]).

Colorectal cancer analysis did not show a clear bene-
fit of using biomarker status as a covariate in the ability of 
the Markov model to model future clinical trial outcomes 
(Figure  3). Trends in transition hazard across clinical test-
ing phases are slight at best. The difference between Markov 
models with and without biomarker as a covariate, using 
LRT, was not statistically significant (p = 0.85).

The Markov model with biomarker as a covariate mod-
elled melanoma clinical trial success more reliably than a 
model with no such covariate, across all clinical trial testing 
phases (Figure 4). The melanoma Markov model that incor-
porated biomarker use as a covariate compared to the model 
with no such covariate was different at a statistically signifi-
cant level (p < 0.029). Hazard analysis based on the Markov 
models showed the greatest benefit of biomarkers to be in 
the transition from Phase III to approval (HR 6.36; CI [1.16, 
34.71]). The overall impact of biomarker status on drug ap-
proval, based on hazard analysis from the Markov models, 
showed an eightfold impact (HR 7.98; CI [1.46; 43.56]).

Biomarker status appeared to have an effect in NSCLC 
cancer (Figure  5). The NSCLC Markov model with bio-
marker status as a covariate was statistically significant 
compared to the Markov model without such a covariate 
(p < 2.6 * 10−4). This effect was seen in the transition in-
tensities for Phase I to Phase II and Phase II to Phase III. 
Overall, the hazard ratio from the Markov model showed a 

clear benefit of biomarkers on the likelihood of drug approval 
(HR 6.89; CI [2.02, 23.54]).

Finally, we conducted a sub- analysis of the biomarkers 
by collapsing all indications into a single group (Figure 6). 
Biomarkers were divided into validated and exploratory 
biomarkers. The biomarkers found in this study (Table 1) 
include both validated and exploratory biomarkers for the 
indications reported in this paper (Table 2). First, there was 
no difference between Markov models that used exploratory 
biomarker covariates versus validated biomarker covariates, 
in their ability to reliably model the data (p > 0.05). If we 
compare a Markov model with a covariate for biomarkers (ir-
respective of the type), in this analysis which has combined 
all indications, it does better reliably modelling the clinical 
trial outcomes than a Markov model without a covariate for 
biomarkers (p  <  1.3  *  10−6). Importantly, Markov models 
that used exploratory biomarkers as a covariate modelled 
clinical trial success rates across all clinical trial phases more 
reliably than a Markov model with no biomarker covariate 
(p < 8.0 * 10−5). Overall, the hazard ratio comparison be-
tween exploratory biomarkers and no biomarkers was 4.6 (CI 
2.0458298, 10.5073327).

4 |  DISCUSSION

Drug development in oncology continues to see high fail-
ure rates, with several studies estimating almost 90% failure 
rate of all drugs entering clinical trial testing.2,4,5 Biomarkers 
have been successfully applied in a number of conditions, but 
if they are not fully validated, may add to the risk of unsuc-
cessful clinical trial outcomes.14 This is the first study to con-
duct a rigorous quantitative systematic large- scale analysis 
of the impact of biomarkers on clinical trial risk in oncology. 

F I G U R E  3  Colorectal. The ability 
of two different Markov models to predict 
clinical trial successes in historical data 
in this indication. 'Biomarker' shows the 
performance of a Markov model with 
biomarker status as a covariate while 
non- biomarker has no such covariate. 
Hazard represents the likelihood and rate of 
advancing to the next phase. Bars are 95% 
CI. Sample sizes: Phase I (n = 195), Phase 
II (n = 128) and Phase III (n = 24).
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We used two Markov state models, where one incorporated 
biomarker use status as a covariate, and compared how relia-
bly each model sequenced clinical trial success. Four cancers 
were examined based on their use of biomarkers. Our over-
all analysis of these four cancers, independent of indication, 

revealed a fivefold benefit of hazard ratios from the Markov 
models, suggesting a substantial benefit from biomarker use. 
The hazard ratio analysis of the Markov biomarker models 
examined how likely clinical trial success was associated 
with biomarker use versus no biomarker use. Hazard ratios 

F I G U R E  4  Melanoma. The ability 
of two different Markov models to predict 
clinical trial successes in historical data 
in this indication. 'Biomarker' shows the 
performance of a Markov model with 
biomarker status as a covariate while 
non- biomarker has no such covariate. 
Hazard represents the likelihood and rate of 
advancing to the next phase. Bars are 95% 
CI. Sample sizes: Phase I (n = 81), Phase II 
(n = 49) and Phase III (n = 21).
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F I G U R E  5  NSCLC. The ability of 
two different Markov models to predict 
clinical trial successes in historical data 
in this indication. 'Biomarker' shows the 
performance of a Markov model with 
biomarker status as a covariate while 
non- biomarker has no such covariate. 
Hazard represents the likelihood and rate of 
advancing to the next phase. Bars are 95% 
CI. Sample sizes: Phase I (n = 286), Phase 
II (n = 217) and Phase III (n = 65).0.
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F I G U R E  6  A sub- analysis of biomarkers into exploratory and validated biomarkers, respectively. The performance of Markov models using 
each of these biomarkers as covariates is depicted alongside Markov models that do not look at biomarkers. Clinical studies with exploratory 
biomarkers outperform clinical trials with no biomarkers. Total study sample size of 748 drugs was segmented into: no biomarker (n = 555 drugs), 
validated biomarker (n = 80) and exploratory biomarker- based drugs (n = 113). Bars are 95% CI.
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indicated that for biomarker- based drugs clinical trial suc-
cess was largest for breast cancer (12- fold) followed by 
melanoma (eightfold) and lung cancer (sevenfold). While 
colorectal cancer showed no overall benefit of biomarker 
use, this finding may change with future clinical work in this 
area. Finally, Markov models with exploratory biomarkers 
outperformed (fourfold) Markov models with no biomarkers. 
Our data provide the most extensive look at biomarker use to 
date in oncology, with an advanced statistical method. Our 
findings indicate that biomarkers provide a statistically sig-
nificant benefit, despite the fact our study includes biomark-
ers not yet FDA approved.

Biomarker use in clinical trials may be, in itself, pre-
dictive of a success in some indications in looking at our 
historical data. For example, the 12- fold hazard ratio we 
observed in our data set for breast cancer from the Markov 
states indicates that clinical trial success is 12 times more 
likely in biomarker- based clinical studies than in studies 
without a biomarker. This finding suggests that clinical 

trials involving biomarker use in breast cancer should be 
given a priority for patient participation compared to trials 
in this indication that do not use a biomarker. Other in-
dications examined here also showed a powerful effect of 
biomarker use. NSCLC had a sevenfold increase in hazard 
ratio predicting clinical trial success in our data, compared 

Disease Area
FDA Approved in 
this Indication

FDA Approved in 
Other Disease Areas Exploratory

Colorectal Cancer KRAS (Kirsten Rat 
Sarcoma) gene

BRAF V600 mutation Beclin 1, p62 and 
LC3 biomarkerUGT1A1*28 allele

RAS

Breast Cancer HER2 overexpression BRCA1 & BRCA2

Hormonal positive

NSCLC EML4- ALK gene KRAS gene MEK1 gene

EGFR PD- L1 N- ras mutation

ALK BRAF V600E HLA- A haplotype

HER2 P13 K activation

TrkA, LFT3, 
VEGFR, 
PDGFR, FGFR

MET

FGFRI

IGF

ROS1

Melanoma BRAF V600 mutation C- kit (D816 V 
mutation negative)

SPARC 
MAGE– A3 s

CDK (Cyclin D−1)

HLA- A haplotype 
0201

ICAM−1 & DAF

Aurora kinase

CDK4/6

N- cadherin

DDR2

MEK

N- ras mutation

T A B L E  1  Biomarkers that were 
identified in the four cancer indications 
and included in this study. Biomarkers 
were set into categories based on the level 
of validation for the cancer in question. 
Biomarkers were either approved for the 
cancer of interest, are under investigation 
but have been approved in for use in another 
indication or have no approval history 
whatsoever ('exploratory'). A biomarker 
can be classified as exploratory upon initial 
approval, and any clinical studies involving 
that biomarker in phase III within 2 years of 
the approval date. However, after 2 years of 
the FDA approval date for the biomarker, 
any additional work with this biomarker was 
classified as 'validated'

T A B L E  2  A summary of biomarker and non- biomarker drugs 
by indication in the study. A supplementary file of the data has been 
submitted to the journal

Indication Biomarker No Biomarker
Grand 
Total

Breast 70 113 183

Colorectal 61 134 195

Melanoma 10 71 81

NSCLC 240 46 286

Grand Total 381 364 745
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to a model with no biomarker covariate. There are of course 
biomarker approved drugs for NSCLC (crizotinib19 and ge-
fitinib20), but the results here suggest that such success is 
not specific to the choice of biomarker, rather, a broader 
benefit is conferred by biomarkers as a tool themselves. 
This is surprising, since most of the biomarkers reported in 
this paper (Table 1) are not validated through an FDA ap-
proval for the indication in question. It would be different, 
for example, if the success of melanoma were driven by a 
single biomarker that was FDA approved. Quite the con-
trary, melanoma has the largest preponderance of explor-
atory stage biomarkers compared to the other indications 
reported in this study. This suggests that while biomarkers 
that have not been fully validated may bring additional risk 
that a clinical trial will fail,14 there may be enough benefit 
to their use to offset the risk of the unknown.

Testing both a drug and a biomarker does introduce two 
sources of risk to a study and this has been reviewed pre-
viously.21 It has been argued that if type I (false positives) 
and type II (false negatives) errors are optimised in a proof 
of concept study, each can be tested simultaneously in the 
same study while having feasible requirements for patient 
enrolment. While misgivings had been expressed before 
about testing new biomarkers and drugs simultaneously 
in terms of aggregate clinical trial risk,14 increasingly this 
looks like a practical approach. An extensive model has 
been developed that lays out a strategy for co- developing 
a new drug and new biomarkers as part of a single clin-
ical trial programme.21 This approach, in essence, con-
stantly updates the development of a novel biomarker with 
a novel drug by incorporating maturing phase II data into 
the phase III study, up until the point of an interim analysis 
('phase II+'). This strategy also posits multiple small proof 
of concept clinical studies with an exploratory biomarker 
rather than a single larger early clinical study in order to 
explore more hypothesis about biomarkers for the drug. 
The results from our exploratory biomarker analysis in 
this study support this approach. Exploratory biomarkers, 
given the current conditions in which they are developed 
and screened with animal data, appear to be much more 
predictive than investigators would have anticipated. In this 
model, the level of certainly around exploratory biomark-
ers has impact on the choices available to the development 
team on how to proceed. The results reported here suggest 
that optimism for exploratory biomarkers can be relatively 
high, and in that context, may upward adjust probabilities 
of biomarker success derived from Phase II data ('posterior 
probabilities'). Finally, the model also lays out a biomarker 
stratified Phase II design where biomarker- positive and 
biomarker- negative exist with both control and treatment 
arms. The authors note that this the best approach where 
there is uncertainty the ability of the biomarker to iden-
tify likely responders (or non- responders) for the drug. We 

concur with the model's conclusion that co- development of 
a novel drug and an exploratory biomarker, may indeed be 
more cost- effective and faster based on our analysis.

This research has a number of limitations, some of 
which have been discussed in the literature before.3 Phase I 
cancer studies tend to include patients with different kinds 
of cancers, even though the drug will eventually be tested 
in one specific indication in Phase II and Phase III trials. 
In this sense, because Phase I oncology trials do not usu-
ally enrol a single type of cancer patient, they truly reflect 
oncology more broadly rather than a specific indication. 
In addition, the indications we are working with are broad 
categories that contain patient subgroups that may have 
different molecular subtypes of the disease. For these mo-
lecular subtypes of the indication, they may be different 
with respect to the utility of biomarkers and the course of 
their disease. As the number of clinical studies grows, it 
may be possible to analyse these subgroups of patients in 
the future. With respect to our sub- analysis of biomarker 
types there is a concern that our sample size is too small to 
support this analysis in this data set. There are assumptions 
in that analysis that need to be explored further, such has 
lengthening or shortening the period after a biomarker is 
approved where subsequent use of the biomarker is no lon-
ger considered exploratory.

For oncologists enrolling patients in clinical trials our 
study suggests that with the possible exception of colorec-
tal cancer, biomarker- based studies should receive priority. 
More specifically, oncologists may take a more favourable 
view towards exploratory biomarkers in reducing clinical 
trial risk.
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