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Pseudomonas plecoglossicida is an aerobic Gram-negative bacterium, which is the
pathogen of “Visceral white spot disease” in large yellow croaker. P. plecoglossicida is
a temperature-dependent bacterial pathogen in fish, which not only reduces the yield of
large yellow croaker but also causes continuous transmission of the disease, seriously
endangering the healthy development of fisheries. In this study, a mutant strain of fusA
was constructed using homologous recombination technology. The results showed that
knockout of P. plecoglossicida fusA significantly affected the ability of growth, adhesion,
and biofilm formation. Temperature, pH, H2O2, heavy metals, and the iron-chelating agent
were used to treat the wild type of P. plecoglossicida; the results showed that the
expression of fusA was significantly reduced at 4°C, 12°C, and 37°C. The expression of
fusAwas significantly increased at pH 4 and 5. Cu2+ has a significant inducing effect on the
expression of fusA, but Pb2+ has no obvious effect; the expression of fusAwas significantly
upregulated under different concentrations of H2O2. The expression of the fusA gene was
significantly upregulated in the 0.5~4-mmol/l iron-chelating agent. The expression level of
the fusA gene was significantly upregulated after the logarithmic phase. It was suggested
that fusA included in the TBDR family not only was involved in the transport of ferredoxin
but also played important roles in the pathogenicity and environment adaptation of
P. plecoglossicida.

Keywords: visceral white spot disease, Pseudomonas plecoglossicida, virulence, fusA, environment adaptation
1 INTRODUCTION

Pseudomonas plecoglossicida was firstly isolated from ayu (Plecoglossus altivelis) (Nishimori et al.,
2000), which was a gram-negative aerobic rod-shaped bacterium responsible for the bacterial
hemorrhagic ascites (Wakabayashi et al., 1996; Kuehn and Kesty, 2005; Dumetz et al., 2007; Zhang
et al., 2014). At present, P. plecoglossicida has been reported to be associated with diseases in a
variety of marine fish such as rainbow trout (Oncorhynchus mykiss), large yellow croaker
(Pseudosciaena crocea), and orange spotted grouper (Epinephelus coioides) (Lin et al., 2021).
Previous studies have shown that P. plecoglossicida is used to degrade industrial waste that
pollutes the environment. For example, P. plecoglossicida TED35 is used to degrade tobacco
gy | www.frontiersin.org March 2022 | Volume 12 | Article 8088001
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waste containing the alkaloid nicotine (Raman et al., 2014) and
P. plecoglossicida NyZ12 uses cyclohexane (CHAM) as a source
of carbon and nitrogen to degrade cyclohexane (Li et al., 2015).
Because P. plecoglossicida mainly infects fish’s kidney, spleen,
and other internal organs, with white nodules on the surface as
the main symptom and a very high mortality rate, it is therefore
called “Visceral white spot disease” (Tao et al., 2016). Artificial
infection with P. plecoglossicida caused “Visceral white spot
disease” in the internal organs of P. crocea and E. coioides at
16°C–19°C but not at 7°C–12°C and 24°C–28°C (Sun et al.,
2018). With previous transcriptomic analysis, it was also
confirmed that P. plecoglossicida was a temperature-dependent
pathogenic bacteria (Zhang et al., 2018a; Jiao et al., 2021).

The large yellow croaker is mainly distributed in Southeast
China. It is one of the most important economically
maricultured fish species in China, and its yield has been the
first in China for many years (Chen et al., 2008; Liu and de
Mitcheson, 2008; Wu et al., 2015). In the process of sea cage
culture of large yellow croaker, “Visceral white spot disease”
caused by P. plecoglossicida is one of the diseases with the highest
mortality, causing huge aquatic economic losses to southeast
coastal areas such as Fujian and Zhejiang (, Watts et al., 2001;
Zhang et al., 2007; Martins et al., 2011; Hu et al., 2014; Lin et al.,
2021). Therefore, it is of great significance to study the virulence
mechanism of P. plecoglossicida.

Iron is an indispensable nutrient element for all living
organisms in the world, and competing for scarce nutrients is
a “required course” for most microorganisms (Lim, 2010). In
Gram-negative bacteria, the outer membrane receptors of the
TonB-dependent receptor (TBDR) family perform their
functions by binding microorganisms with high affinity to
remove iron carriers and iron-containing host proteins such as
lactoferrin, transferrin, and hemoglobin (Schaible and
Kaufmann, 2004; Fujita et al., 2020). The transport from
nucleus to periplasm also depends on TBDRs. TBDRs work
with the nucleus through a highly specialized extracellular matrix
structure, with an external loop of a 22-stranded transmembrane
channel b-barrel. After these initial interactions, the pipeline
provides a conduit through the outer membrane for iron or the
iron carrier complex (Pollet et al., 2021). TBDRs are known to
play an important role in the pathogenesis of host infection
(Cornelissen et al., 1998; Noinaj et al., 2012; Ollerton et al., 2014).
fusA is a newly discovered member of the TonB-dependent
receptor family, which is involved in virulence regulation at
the transcriptional level of some pathogenic bacteria. fusA was
found to be used to obtain iron from plant ferridoxins in plant
pathogenic Pectobacterium spp (Dıáz-Sánchez et al., 2012).
Violeta Dıáz-Sánchez et al. found that the fusA gene was
related to the pathogenic function of Fusarium fujikuroi. Nore´n
found that the fusA gene was important for bacterial protein
synthesis and was associated with drug resistance of Clostridium
difficile (Noreıń et al., 2007). In another study, the resistance of
Corynebacterium glutamicum and Brevibacterium flavum to fusidic
acid was related to fusA gene mutation, and all clones containing
fusA gene mutation produced 10% more lysine than their parents
(Tokmakova et al., 2017). In addition, through dual RNA-seq (Luo
et al., 2019), we found that fusA might be a virulence gene that
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played an important role in the process of P. plecoglossicida
infection, but the specific mechanism is unclear. Therefore, it is of
far-reaching significance to explore the function of fusA and its
possibility as a target for slowing down “visceral white spot disease”
or becoming a live attenuated vaccine.

In order to better understand the function of fusA in P.
plecoglossicida, we constructed the fusA knockout strain and
investigated the effects of the fusA mutant on the ability of
growth, adhesion, biofilm formation, and environment
adaptation of P. plecoglossicida.
2 MATERIALS AND METHODS

2.1 Bacterial Strains and
Culture Conditions
The pathogenic strain isolated from the spleen of large yellow
croaker with visceral white spot disease was later confirmed as P.
plecoglossicida (NZBD9) (Huang et al., 2018; Zhong et al., 2021).
The strain was cultured in LB medium at 220 rpm at 28°C (He
et al., 2020). Escherichia coli DH5a was obtained from TransGen
Biotech (Beijing, China) and cultured in LB medium (37°C, 220
rpm). DH5a pCM 130 and DH5a pKD 46 were preserved in
the laboratory.

2.2 Sequence Alignment Analysis,
Phylogenetic Tree Construction, and
Protein Structure Prediction
The amino acid sequence of the fusA gene of P. plecoglossicida
was compared with Escherichia coli str. K-12 substr. MG1655 (a),
Staphylococcus argenteus (strain: MSHR1132) (b), Vibrio
alginolyticus (strain: FDAARGOS_97) (c), Pseudomonas lactis
(strain: SS101) (d), Listeria seeligeri serovar 1/2b str. SLCC3954
(e), Pseudomonas plecoglossicida (strain: NZBD9) (f),
Pseudomonas syringae pv. tomato str. DC3000 (g), Vibrio
harveyi (strain: ATCC 33843 (392 [MAV])) (h), Aeromonas
hydrophila (strain: OnP3.1) (i), and Pseudomonas aeruginosa
PA96 (j) by ClustalW and ENDscript2.x/ESPript3.x to map the
sequence alignment results; the phylogenetic tree was
constructed by MEGA7. The protein structure of FusA of P.
plecoglossicida was predicted by I-TASSER.

2.3 Construction of Mutant Strain
of P. plecoglossicida
The fusA knockout strain of P. plecoglossicida was constructed by
using the red recombination system (Wang et al., 2017).
According to the reference genomic sequence of P.
plecoglossicida NZBD9, the upstream and downstream
homologous sequences of fusA were searched, and each 20 bp
before and after the gene was selected as the homologous
fragments of primers, and the upstream and downstream
primer sequences of the tetracycline resistance gene of plasmid
pCM130 were amplified by fusion at the 3′ end of primers. After
successful amplification, tetracycline-resistant gene fragments
were recovered by 1% gel electrophoresis and DNA fragment
recovery kit. The plasmid pKD46 was transformed into
March 2022 | Volume 12 | Article 808800
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P. plecoglossicida NZBD9 by electroporation and cultured into
OD600 = 0.2–0.3. The previously recovered fragment of the 10-ml
resistance gene was transferred into P. plecoglossicida with
pKD46 by electroporation, and L-arabinose of 10–30 mmol/l
was added, so that the recombinant enzymes Exo, Bet, and Gam
of pkD46 were fully expressed (Wang et al., 2017). The mutant
bacteria were cultured overnight in LB plates (containing 100 mg/
ml tetracycline) at 28°C. The positive colonies were validated by
polymerase chain reaction (PCR) and gene sequencing.

2.4 Growth Curve of fusA Mutant
The P. plecoglossicida fusA knockout strain was cultured at 28°C
(OD600 = 0.3). The wild-type strain of P. plecoglossicida was used
as the control. OD600 were recorded once an hour for a total of 24
h, and growth curves of wild-type and mutant strains were
compared. Three independent biological replications were
performed for each data point.

2.5 Semisolid Agar Plate Motility Assay
The semisolid agar method was used to measure the motility of
P. plecoglossicida (Zhang et al., 2018b). In short, the mutants and
wild type of P. plecoglossicida were cultured overnight at 28°C
(220 rpm) and adjusted to an OD600 of 0.3. Firstly, the sterilized
toothpicks were immersed in the processed bacterial solution,
and then immersed in the center of a semi-solid agar plate (LB
broth + 0.5% agar), and finally incubated at 28°C for 20 h. The
colony diameter was measured by the instrument, each in three
independent biological replicates.

2.6 Biofilm Assay
The biofilm assay for P. plecoglossicida was carried out as
described by Huang et al. (2021). Firstly, the mutants and
wild-type strains of P. plecoglossicida were cultured overnight
at 28°C, and then the OD600 of the culture was adjusted to 0.2.
150 ml LB was mixed with 50 ml bacterial culture medium and
then incubated at 28°C for 24 h, washed with aseptic PBS for 3
times, stained with 200 ml 11% crystal violet for 15 min, then
rinsed with aseptic PBS and air dried. The biofilm was dissolved
with 200 ml of acetic acid (33%) and quantified by OD590. Six
independent biological replications were performed for
each group.

2.7 Adhesion Assay In Vitro
An adhesion assay of P. plecoglossicida was carried out in vitro by
the microscope counting method (Rh et al., 2020). First, 20 ml of
sterile large yellow croaker epidermis mucus was added to the
center of clean glass slides, then it was spread evenly with a
coverslip and incubated overnight, then fixed with 4% methanol
solution at room temperature for 30 min and centrifuged to
collect the mutants and wild strains of P. plecoglossicida cultured
overnight, and finally resuspended in PBS. According to the
value of OD560, the suspension was adjusted to 108 CFU/ml. 200
ml of bacterial solution was added to the slides and incubated at
28°C for 2 h, rinsed repeatedly with sterile PBS for 5 times, and
then air dried, and fixed with 4% methanol solution at room
temperature for 30 min. Finally, the slides were dyed with 1%
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
crystal violet for 3 min and then observed with a microscope and
imaged with a digital camera (magnification, ×1,000). The
number of bacteria was quantified from the image using IPwin
software (3 slides with 20 visual fields per slide) (Ryckaert et al.,
2010; Isla et al., 2014; Zhang et al., 2018b; Huang et al., 2020a).

2.8 Hemolysis Assay
The hemolysis assay for P. plecoglossicida was carried out as
described by Wei et al. (Tsou and Zhu, 2010; Xu et al., 2021). 100
ml of fresh sheep blood (Ping Rui Biotechnology Co., Ltd.,
Beijing, China) was centrifuged at 2,500 rpm for 5 min, and
the supernatant was discarded. The red blood cells were then
rinsed with 200 ml PBS three times and then resuspended with
100 ml PBS. The mixture of 5 ml of resuspended red blood cells
with 245 ml of wild type or P. plecoglossicida DfusA culture was
incubated at 37°C (150 rpm) for 1 h. Finally, the mixture was
centrifuged at 5,000 rpm at room temperature for 3 min, and
then 100 ml of the supernatant was used to determine the OD540.

2.9 Total RNA Extraction and
Reverse Transcription
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used for
total RNA extraction from bacterial cells, as directed by the
manufacturer. Reverse transcription was carried out with A
Reverse Aid Mu-MLV cDNA synthesis kit (TransGen Biotech
Co., Ltd., Beijing, China) from 2.0 mg total RNA, as instructed by
the manufacturer (Ge et al., 2020; Huang et al., 2020a; Xu
et al., 2021).

2.10 qRT-PCR
qRT-PCR adopts the SYBR Green method and refers to the
TransStart Top Green qPCR SuperMix kit instructions. Table 1
shows all the sequences used in the experiment. The reaction
system is 10 ml, containing 0.5 ml template, 0.25 ml forward
primer (10 mM), 0.25 ml reverse primer (10 mM), and 9.5 ml 2×
TransStart Top Green qPCR SuperMix, and then amplified and
detected on the QuantStudio™ 6 Flex real-time fluorescent
quantitative PCR system instrument. Finally, the 2-DDCt calculation
method was used to calculate the relative expression level of genes,
while gene expression levelswerenormalized to 16SRNA(Fenget al.,
2016; Ge et al., 2020).
TABLE 1 | Primers for qRT-PCR.

Genes Primers

fusA-Ⅰ F: 5′-CACAGGTCTGAGCCACAAG-3′
R: 5′-CATACGGTTTCGGACTGC-3′

fusA-Ⅱ F: 5′-ATGGCTCGTACAAGCAATTAACC-3′
R: 5′-TTAGCTTGTTATAACGGTGCT-3′

DfusA F: 5′-
ATGGCTCGTACTACAGCAATGTGAAACCCAACATACCCCTGATC-3′
R: 5′-AATCGGAACAAAAAATTGCTTCAGCGATCGGCTCGTTGC-3′

16S-
rRNA

F: 5′-GTTGGGAGGAAGGGCAGTAAG-3′

R: 5′-ATCTAGGCATTTCACCGCTACA-3′
fusA-Ⅰ is the sequence used in qRT PCR, fusA-Ⅱ is the full field verification sequence of
the fusA gene, and DfusA is the knockout verification sequence of the fusA gene.
March 2022 | Volume 12 | Article 808800
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2.11 Statistical Analysis
Data were presented as mean ± standard deviation (SD) and
analyzed by SPSS 18.0 software (IBM, Armonk, NY, USA).
Differences were compared by one-way analysis of variance
(ANOVA) followed by the Dunnett’s test. p < 0.05 was
considered statistically significant.
3 RESULTS

3.1 Genetic Evolution and Protein
Structure Analysis of fusA
of P. plecoglossicida
Supplemental 1 shows the comparison result of the FusA amino
acid sequences of P. plecoglossicida (NZBD9) and nine
pathogenic bacteria. From the comparison results, it can be
seen that the similarity between FusA amino acid sequences of
P. plecoglossicida (NZBD9) (f) and P. aeruginosa PA96 (j) was
relatively high. The phylogenetic tree analysis of P.
plecoglossicida (NZBD9) and the other nine pathogenic
bacteria fusA showed that P. plecoglossicida (NZBD9) and P.
aeruginosa PA96 (j), P. syringae pv. tomato str. DC3000 (g), and
P. lactis (strain: SS101) (d) had the closest genetic distance
(Figure 1A). The protein structure was predicted by I-
TASSER: among the five largest structural clusters, we selected
the one with the highest confidence score, namely, C-score = 0.16
(Figure 1B). According to the highest TM score, the protein with
the closest structural similarity to the predicted protein model in
PDB was selected (PDB ID: 2XEX) (Figure 1C). The active site
analysis also yielded the prediction result with the highest
confidence (C-score = 0.60, Figure 1D). The closest P.
plecoglossicida FusA protein structure model to the known
protein structural model in PDB was Staphylococcus aureus. As
we all know, proteins with high structural similarity often have
similar function to the target. The predicted P. plecoglossicida
FusA protein structure was biologically annotated by
COFACTOR and COACH; the protein function and the
conservation of the active site were inferred. It was found that
the FusA protein function active site was highly conserved.

3.2 Construction of the DfusA Mutant
of P. plecoglossicida
The target fragment of fusA amplified by PCR was introduced
into P. plecoglossicida NZBD9 by electrical transformation, and
the fusA gene was knocked out by the l-red recombination
system. The result was confirmed by a PCR identification
(Figure 1E) and DNA sequencing (data not shown), verifying
that a knockout mutant of DfusA was successfully constructed.

3.3 The Effect of the fusA Gene on the
Growth of P. plecoglossicida
In order to evaluate the difference of growth ability between DfusA
and the wild type of P. plecoglossicida, the 24-h growth curves of
wild-type P. plecoglossicida NZBD9 and DfusA at 28°C were
compared. Through the 24-h growth curve test, the results
showed that the growth curves of the two strains were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
significantly different, and the differences between sampling points
were significant (p < 0.05) (Figure 2). The wild type and DfusA had
no significant difference at the first 2-h adaptation period, but at the
other similar time points, the OD600 of the DfusA growth curve was
significantly lower than that of the wild type, indicating that the
growth rate of the mutant strain was significantly lower than that of
the wild strain. According to our results, the expression of fusA has a
significant impact on the growth of P. plecoglossicida, especially in
the middle to later stages of growth.

3.4 Effect of the fusA Gene on Motility of
P. plecoglossicida
Flagella are a special structure of bacteria. Bacteria rely on the
flagellum to achieve movement ability. The motility of bacteria
has a direct impact on the chemotaxis of bacteria, which helps to
move to a suitable environment and colonize the host. It is an
important virulence factor of pathogenic bacteria. In order to
detect whether the fusA gene affects the motility of P.
plecoglossicida, the motility of the wild type and DfusA of P.
plecoglossicida was tested. The results showed (Figure 3) that the
colony diameters of the wild type and DfusA of P. plecoglossicida
placed on semisolid agar plates for 20 h were about 8.119 ± 0.66
mm and 8.359 ± 0.49 mm. Statistical analysis showed that there
was no significant difference between the two strains (p > 0.05).
Therefore, it can be concluded that the fusA gene does not play a
significant role in bacterial movement.

3.5 Effect of the fusA Gene on the Biofilm-
Forming Ability of P. plecoglossicida
The bacteria with biofilm are highly resistant to antibiotics, and
the biofilm can reinfect the host by releasing bacteria in the
biofilm. Once the biofilm is formed, it is difficult to eradicate. In
order to prove whether the fusA gene is related to biofilm
formation, the biofilm formation of DfusA and the wild type of
P. plecoglossicida was detected by OD590 nm (Figure 4). The
results showed that the biofilm-forming ability of DfusA was lower
than that of the wild type. It can be concluded that the fusA gene
has a certain effect on the biofilm formation of P. plecoglossicida.

3.6 Effect of the fusA Gene on the
Adhesion Ability of P. plecoglossicida
Adhesion is one of the important factors for pathogenic bacteria
to invade the host. In order to verify whether the fusA gene was
related to bacterial adhesion, the adhesion of the wild type and
fusA mutant strains to the mucus was observed under the
microscope, and the number of bacteria was quantified from
the image with IPwin software (Figure 5). It could be seen from
the figure that the adhesion ability of DfusA was significantly
lower than that of the wild type, indicating that fusA was
involved in the regulation of adhesion.

3.7 Effect of the fusA Gene on the
Hemolytic Ability of P. plecoglossicida
Hemolysin is also one of the important virulence factors of
bacteria. In order to verify whether the fusA gene was involved in
the hemolysis mechanism of P. plecoglossicida, the hemolysis
March 2022 | Volume 12 | Article 808800
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assay was carried out. The results showed (Figure 4C) that the
hemolytic ability of DfusA was not significantly different from
that of the wild type. This indicated that the fusA gene might not
participate in the hemolysis process of P. plecoglossicida.

3.8 Verification of fusA Expression Under
Different Stress Environments
3.8.1 The Expression Level of fusA at Different
Temperatures
Temperature is one of the chief environmental factors that affect
bacterial survival inside or outside their hosts, especially P.
plecoglossicida which is a temperature-dependent pathogen.
Therefore, qRT-RCR was used to detect the expression level of
fusA at 4°C, 12°C, 18°C, 28°C, and 37°C (Figure 6A). The results
showed that the expression level of fusA at 4°C, 12°C, and 37°C
was significantly lower than that at 18°C and 28°C; the expression
level of fusA at 18°C has no significant difference compared with
that at 28°C. 18°C is the pathogenic temperature of P.
plecoglossicida. It can be seen that fusA may be involved in the
temperature-related virulence regulation of P. plecoglossicida.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
3.8.2 The Expression Level of fusA
at Different pH
pH is an important environmental factor that restricts the
survival and growth of bacteria, which was usually used to
defend the bacterial infection by hosts. Therefore, qRT-PCR
was used to detect the expression of fusA at pH = 4, 5, 6, 7, 8, and 9.
The results showed that (Figure 6B), compared with the pH = 7
group, the expression of fusA was significantly higher at pH = 4 and
5, and there was no significant difference between the other groups
and the pH = 7 group.

3.8.3 The Expression Level of fusA Under Stresses of
Heavy Metal Ion
qRT-PCR was used to detect the expression of fusA under Cu2+

and Pb2+ stress. The results show that (Figure 7A) compared
with the control group, the expression of fusA increased
significantly under Cu2+ stress, while under Pb2+ stress, there is
no significant difference, which means that Cu2+ may have an
inducing effect on the expression of fusA, while Pb2+ has no
obvious effect.
A

B

E

DC

FIGURE 1 | Phylogenetic tree and predicted protein structure of fusA of P. plecoglossicida and PCR identification of P. plecoglossicida DfusA. Note: (A) is the
phylogenetic tree of fusA of P. plecoglossicida. MEGA7 is used to construct the adjacent tree. The self-development value is set to 1,000 times, and the self-
development value ≥60% is displayed on the main nodes. The isolates in this experiment are represented by solid circle; (B) is the predicted P. plecoglossicida FusA
protein structure model; (C) is the closest P. plecoglossicida FusA protein structure model to the known protein structural model in PDB; (D) is active sites of the P.
plecoglossicida FusA protein structure model; (E) is the PCR identification of P. plecoglossicida DfusA (primers: DfusA-F and DfusA-R). Maker: DS2000 DNA marker;
WT: PCR amplifications with wild-type genomic DNA (2,148 bp); DfusA: PCR amplifications with DfusA genomic DNA (1,204 bp).
March 2022 | Volume 12 | Article 808800
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3.8.4 The Expression Level of fusA Under Different
Concentrations of H2O2

qRT-PCR was used to verify the expression of fusA at 0.22, 0.44,
and 0.66 mmol/l H2O2. The results showed (Figure 7B) that the
expression of fusA increased significantly under the stress of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
three H2O2 concentrations, but there was no significant
difference in the expression of fusA among various
concentrations. This indicated that H2O2 could promote the
expression of fusA.

3.9 Expression Level of fusA in
Iron-Poor Environment
As a member of the TBDR family, fusA is indispensable in the
transport of ferredoxin. In order to verify the function of fusA in an
iron-poor environment, growth assay and qRT-PCR were carried
out. The results showed (Figure 8) that the growth of the DfusA
strain in the iron-poor environment decreased significantly
compared with the wild-type strain, indicating that the fusA gene
might be involved in the utilization of Fe2+ by P. plecoglossicida.
Meanwhile, compared with the control group, when the
concentration of 2,2-bipyridine is 0.5, 1, 2, and 4 mmol/l, the fusA
gene expression level was significantly upregulated, and its
expression reaches the maximum value at 2 mmol/l.
4 DISCUSSION

FusA amino acid sequence alignment and phylogenetic tree
displayed that P. plecoglossicida has a high degree of homology
A B C

FIGURE 3 | Determination of colony motility of wild-type and DfusA of P. plecoglossicida. (A) is the plate movement diagram of the wild-type of P. plecoglossicida;
(B) is the plate movement diagram of the DfusA colony of P. plecoglossicida; (C) is the colony diameter histogram.
A B C

FIGURE 4 | Determination of the biofilm formation and hemolytic ability of wild-type and DfusA of P. plecoglossicida. (A) is the typical figure of the biofilm formation of the wild
type and DfusA; (B) is the biofilm formation histogram of the wild-type and DfusA; (C) is the hemolytic ability histogram of wild-type and DfusA; P < 0.05 is marked as *.
FIGURE 2 | Determination of growth ability of wild-type and DfusA of P. plecoglossicida.
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with P. aeruginosa, which indicated the biological importance of
FusA among Pseudomonas (Feng et al., 2016; Jones et al., 2017).
Prediction of the P. plecoglossicida FusA protein structure model
was carried out by I-TASSER (Yang and Zhang, 2015; Zhang
et al., 2017; Zheng et al., 2021). The closest P. plecoglossicida
FusA protein structure model to the known protein structural
model in PDB was Staphylococcus aureus. As we all know,
proteins with high structural similarity often have similar
function to the target. The predicted P. plecoglossicida FusA
protein structure was biologically annotated by COFACTOR and
COACH; the protein function and the conservation of the active
site were inferred. It was found that the FusA protein function
active site was highly conserved.

All living organisms cannot do without trace metal nutrients,
such as transition metals like iron (Fe), manganese (Mn), zinc
(Zn), and molybdenum (Mo) (Radin et al., 2016; Radin et al.,
2019a). According to proteomics or bioinformatics analysis, 30%
of proteins in organisms need to interact with metal ions (Grim
et al., 2017; Andreini et al., 2008; Waldron and Robinson, 2009;
Waldron et al., 2009). During the infection, the pathogen’s
nutrients all come from the host, and the host restricts the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
supply of necessary trace metals in order to resist the invasion of
the pathogen (Weinberg, 2009; Kehl-Fie and Skaar, 2010), so that
the pathogen is in a metal starvation state, that is, nutritional
immunity (Corbin et al., 2008; Kehl-Fie and Skaar, 2010; Hood
and Skaar, 2012; Huang et al., 2021). The most characteristic
inhibitory response of nutritional immunity is iron (Schaible and
Kaufmann, 2004; Hood and Skaar, 2012; Párraga Solórzano et al.,
2019; Radin et al., 2019b).

For all living organisms, iron is an important element.
Bacteria have also evolved ways to obtain iron. TBDRs are an
active transporter on the outer membrane of Gram-negative
bacteria (Lim, 2010; Noinaj et al., 2010; Fujita et al., 2019), which
use the energy produced by the inner membrane to transport
nutrients (such as sugars, etc.) through the TonB/ExbBD
complex (Saier, 2000; Nikaido, 2003; Braun, 2006; Schauer
et al., 2008; Jordan et al., 2013; Modrak et al., 2018). fusA is a
newly discovered member of the TBDR family, which is also
involved in iron transport. With the continuous study of TBDRs,
it has been found that TBDR is also involved in host infection.
Many laboratories have previously reported that various factors
in the TBDR family are involved in virulence regulations in
A B C

FIGURE 5 | Determination of adhesion ability of wild type and DfusA of P. plecoglossicida. (A) is the typical vision of the adhesion of wild type under the optical
microscope; (B) is the typical vision of the adhesion of DfusA under the optical microscope; (C) is the histogram of the number of bacteria in a field of the optical
microscope; p < 0.01 is marked as **.
A B

FIGURE 6 | The expression level of the fusA gene under different temperature stresses (A) and different pH stresses (B). The means of the treatments not sharing a
common letter are significantly different at p < 0.01.
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different bacteria . For example, in Flavobacterium
psychrophilum, the exbD loci of a TonB system are required for
optimal bacterial virulence (Álvarez et al., 2008), and tdrA in
TBDRs is also an indispensable virulence factor in the
pathogenicity of Pseudomonas fluorescens (Hu et al., 2012).
According to our genomic analysis, the fusA gene existed in
the P. plecoglossicida genome. In the previous dual RNA-seq of
our laboratory, the fusA gene was significantly highly expressed,
indicating that it may be an important virulence gene of P.
plecoglossicida. In view of the importance of fusA in other
bacterial pathogens, there is no indication that fusA is involved
in the virulence regulation of P. plecoglossicida previously
reported, and it is also not clear which pathogenic factors this
gene is related to in P. plecoglossicida, so we investigated the
relationship between fusA and the pathogenicity of P.
plecoglossicida. In the present study, the P. plecoglossicida fusA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
gene knockout strain was successfully constructed, and the
virulence phenotype of the mutant strain was determined.

Mucus is abundant on the surface of fish skin, gill, and
intestinal wall, which provides a good adhesion environment
for bacteria. Therefore, it is the first site where pathogen and host
are most likely to interact (Liu et al., 2020). After the bacteria
adhere to the host, they may begin to invade, and in the process,
the bacteria will try to protect themselves from the host’s
immune system. For example, the formation of biofilm is one
of the measures to resist host immune attack (Qin et al., 2016).
The results showed that there were significant differences in
adhesion and bacterial growth rate between the wild type and
DfusA of P. plecoglossicida. The absence of the fusA gene will
weaken the adhesion of bacteria and the ability of tissue
transmission and colonization. The TBDR family is known to
be important in bacterial uptake of trace iron (Wang et al., 2016),
A B

FIGURE 7 | The expression level of fusA gene under heavy metal ion stress (A) and different concentrations of H2O2 (B). The means of the treatments not sharing a
common letter are significantly different at p < 0.01.
A B

FIGURE 8 | Determination the function of fusA in iron acquisition. (A) displays the growth ability of wild type and DfusA of P. plecoglossicida in the concentration of
2,2-bipyridine at 1 mmol/l; (B) is a histogram of fusA gene expression levels under the treatment of 2,2-bipyridine at 0.5, 1, 2, and 4 mmol/l, respectively. The means
of the treatments not sharing a common letter are significantly different at p < 0.01.
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and fusA is a member of TBDRs. In the iron-poor environment,
the fusA expression level was dramatically upregulated,
indicating that the fusA gene played an important role in the
competition of P. plecoglossicida for the trace iron-related
virulence mechanism in harsh environments. Flagella are not
only a motility organ of bacteria but also one of the parameters
for evaluating the virulence factors of pathogenic bacteria
(Nakamura and Minamino, 2019). Relevant studies have
shown that flagella are not only involved in bacterial motility
but also involved in bacterial adhesion, biofilm formation, and
special channel transport of virulence proteins and other
pathways, which indirectly affect bacterial virulence (Feldman
et al., 1998; Blocker et al., 2003; Roy et al., 2009; Duan et al., 2013;
Duan et al., 2013). Although the motility and hemolytic ability of
the P. plecoglossicida DfusA were not different from the wild type,
the biofilm formation ability and adhesion ability of DfusA were
significantly reduced. Taken together, fusA was obviously
involved in the virulence regulation of P. plecoglossicida.

Bacterial virulence is usually affected by environmental
factors. For example, the pathogenic temperature of “visceral
white spot disease” caused by P. plecoglossicida in large yellow
croaker and other commercial fish is 15°C–20°C (Zhang et al.,
2018a; Kaur et al., 2019; Lv et al., 2019; Huang et al., 2020a; Hu
et al., 2021; Jin et al., 2021). The results of various stress
experiments showed that compared with 18°C, the expression
level of fusA was significantly downregulated at 4°C, 12°C, and
37°C. This indicated that fusA may be involved in the
temperature-related virulence regulation of P. plecoglossicida.
Besides, the expression level was significantly upregulated
under acidic conditions as pH = 4 or 5, which indicated that
fusA was involved in the response to low pH. Meanwhile, the
significantly high expression of fusA under Cu2+ exposure and
H2O2 conditions also further indicated that fusA was important
for P. plecoglossicida survival under severe conditions.

In conclusion, through fusA mutant strain construction, we
found that the fusA gene was involved in a variety of pathogenic
and environmental adaptation mechanisms of P. plecoglossicida.
At the same time, whether fusA existed or not could promote P.
plecoglossicida to compete for iron in the environment. These
results further confirmed the importance of P. plecoglossicida
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
fusA and laid a foundation for further study on the function of
the gene.
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