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Abstract

Background: In recent years, various types of cellular networks have penetrated biology and are nowadays used
omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among
phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene
regulatory network inferred from large-scale transcriptomic data, is largely unexplored.

Results: We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship
between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for
S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information
overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available
interaction structure among the genes.

Conclusions: Although the individual networks represent different levels of cellular interactions with global
structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of
protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results
shed light on the integrability of these networks and their interfacing biological processes.

Background
With the advent of systems and network biology it is now
generally acknowledged that the concerted interactions
on all cellular levels between genes and their gene prod-
ucts within a cell are governed by various types of gene
networks [1-5]. For instance, the transcriptional regula-
tory network regulates the expression of genes, whereas
protein interaction networks provide a map of diverse
types of protein interactions leading, e.g., to the forma-
tion of complexes. Unfortunately, large parts of these
gene networks are currently unknown leaving us with a
fragmented understanding of these networks.

Whereas the first stage of the new era of network
biology consisted in the construction and inference of
such networks, the next step consists in their analysis,
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interpretation and integration [6-12]. However, in order
to perform an integration of different types of networks,
we need to enhance our understanding of the biological
information contributed by the individual gene networks
as well as their functional overlap. Such an overlap is
required because otherwise these networks could not be
sensibly integrated with each other due to a lack of com-
mon interfacing processes allowing an information flow
from one level to the other.

The purpose of the present paper is to study the bio-
logical overlap on the genomics and genetics level among
three different types of cellular networks, namely the tran-
scriptional regulatory network (TRN), the protein-protein
interaction network (PPN) and the gene regulatory net-
work (GRN). A TRN and a PPN are phenomenological
networks because they are constructed from direct mea-
surements of physical interactions (bindings) between
molecular entities, whereas a GRN is an inferential net-
work that needs to be statistically inferred from indirect
interaction measurements in the form of gene expres-
sion data [3]. We study these three cellular networks for
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S. cerevisiae and E. coli, because the information avail-
able about these organisms is most advanced compared to
other, more complex organisms. Besides this, S. cerevisiae
is the simplest eukaryote system that contains crucial dif-
ferences in its principle cellular organization compared
to prokaryote organisms like E. coli. For instance, it is
known that the transcription regulation of genes is much
more intricate in eukaryotes, which utilize a combinato-
rial coding of different transcription factors [13,14]. Fur-
ther, eukaryotes maintain a combination of cis-regulating
and trans-acting factors that is absent in prokaryotes
[14,15].

Protein-protein networks describe the interactions
between proteins in form of physical interactions such
as between proteins of a protein complex and transient
interactions such as protein modification interactions
(e.g. phposphorylation). The majority of experimentally
available protein-protein interactions are measured by
mass spectrometry methods and large-scale yeast-two-
hybrid experiments (Y2H) [16-18]. A number of databases
collect protein interaction data from small-scale and
large-scale experiments, such as BioGrid [19], IntAct [20],
MINT [21], MPact [22] that are also jointly available in
meta databases that consider only physical protein inter-
actions [23]. The interactions in a transcriptional regula-
tory network describe protein-DNA interactions, where
transcription factors bind to specific DNA motifs and reg-
ulate the gene expression activity of a given target gene.
In general, these interactions are measured from protein
location data, e.g., from ChIP-Chip or ChIP-seq exper-
iments that are performed for individual transcription
factors [24-26].

Finally, gene regulatory networks are inferred networks
from large-scale microarray gene expression data sets
frequently composed of multiple observational or exper-
imental conditions. The most popular inference methods
for gene regulatory networks are based on mutual infor-
mation [27,28]. A gene regulatory network describes the
relationship between gene-pairs based on their mutual
dependency of gene expression. Predictions observed in
gene regulatory networks have been validated in small-
scale experiments for individual transcription factors
[29-31]. The gene regulatory network is thus most often
equated to the transcriptional regulatory network. How-
ever, an inferred gene regulatory network is known to
reflect multiple levels of the gene network including also
physical interactions, e.g., of proteins belonging to the
same protein complex. In our study we distinguish there-
fore the terminology gene regulatory network from tran-
scriptional regulatory network.

Biological networks that are experimentally derived are
given by a binary representation of validated interactions
occurring on multiple cellular levels, e.g., between pro-
teins, proteins and DNA, proteins and RNA, RNA and

RNA. However, if only one binary network is given, this
network lacks the information of the underlying dynamic
of temporal and spatial processes that regulate, realize and
coordinate the regulatory programs for gene expression,
metabolism, growth, differentiation and proliferation of a
cell or organism. Hence, it represents the ‘average’ molec-
ular interactions among all these processes. In contrast,
the high-throughput data analysis of large-scale gene
expression, sequencing or proteomics allows to measure
a snapshot from a multitude of specific conditions and
cellular states. One major advantage of the inferred inter-
actions of a gene regulatory network is that the cellular
context and the average over the underlying condition-
specific contexts is considered by large-scale gene expres-
sion datasets. The understanding of the relationship of
experimental and inferential networks may allow to inter-
pret the role of the cellular and condition-specific contexts
from a gene regulatory network in the light of large-scale
experimentally evaluated interactions.

In this paper, we investigate phenomenological and
inferential cellular networks for S. cerevisiae and E. coli.
More precisely, we compare the structural topology and
the functional overlap of the transcriptional regulatory
network (TRN), the protein-protein interaction network
(PPN) and the gene regulatory network (GRN) for S.
cerevisiae and E. coli on the genomic-scale and the
pathway- and interaction-level. Further, we study the
genetic connection between interacting genes and the co-
localization of genes on the chromosomes. The purpose
of our study is to shed light on the integrative abilities
of these networks to obtain a multi-level description of
the biological processes within a cellular context. We are
particularly interested in understanding the role the GRN
can play in such an integration. The reason for this is
that, so far, discussions about the integration of networks
largely exclude the GRN and focus on phenomenologi-
cal networks like the TRN or the PPN solely. This seems
understandable, because a GRN represents an inferred
network based on statistical inference algorithms and, in
addition, gene expression data used to infer a GRN do
not capture any type of direct physical interactions among
molecules. Instead, they measure merely the concentra-
tion of the expression level and, hence, provide indirect
information about molecular interactions only.

A motivation for our interest in the role of the GRN
can be given by a brief description of its principle posi-
tion within the molecular system (see Figure 1A). In a
simplified model, the gene expression is regulated by
intrinsic and extrinsic cellular responses regulated by sig-
naling pathways that are defined in a protein network.
The downstream response of a signaling pathway can
be realized by transcription factors that regulate DNA
dependent gene expression, described in the transcrip-
tion regulatory network. The gene regulatory network can
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Figure 1 Overview of the integration of networks and the organization of our analysis. A: Simplified view of the integration of the
transcriptional regulatory network (TRN), gene regulatory network (GRN) and the protein-protein network (PPN) that highlights the pivotal role of
the GRN as an interface between the two phenomenological networks. B: Principle overview of our analysis. We perform a structural, functional and
chromosomal analysis of the TRN, PPN and GRN of S. cerevisiae and E. coli.
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therefore, intuitively, be seen as an interface between the
protein-protein network and the transcription regulatory
network. Hence, the GRN forms a kind of bottleneck of the
information flow between the TRN and the PPN. The rela-
tionship between the three levels of the cellular networks
is sketched in Figure 1A, highlighting the interfacing role
of the GRN. From this perspective the GRN appears to be
important in a sensible integration of phenomenological
networks like the TRN and PPN. In this paper, we quantify
the relation between the different networks functionally,
structurally and genetically.

Results
Our results section is subdivided into four major parts
(see Figure 1B). In part one, we provide a structural analy-
sis of the S. cerevisiae and E. coli cellular networks. In part
two, we conduct a functional network analysis by means of
the Gene Ontology (GO) [32] database and in part three,
we study structural and functional network features in
an integrated manner. Finally, in part four of the results
section, we analyze the connection between the chromo-
somal location of genes and their interconnectedness, as
provided by the gene regulatory network (GRN), tran-
scription regulatory network (TRN) and protein-protein
interaction network (PPN).

Structural analysis of the S. cerevisiae and E. coli cellular
networks
General overview of the cellular networks
We start, by providing global overview statistics of the
GRN, the TRN and the PPN of S. cerevisiae and E.coli.
A summary for S. cerevisiae is shown in Table 1A, and
for E. coli in Table 1B. The GRN of S. cerevisiae con-
sists of 9, 163 nodes (4, 837 genes and 4, 326 unmapped
probeset ids) and 27, 493 edges [33]. The TRN consists of
4, 441 genes, of which 157 are transcription factors, and
includes a total of 12, 873 interactions [34]. The PPN con-
sists of 6, 169 genes and 112, 562 interactions [23,35]. All
three networks have an edge density smaller than 10−3.

The E. coli gene regulatory network consists of 7, 258
nodes (4, 335 genes, 2, 923 transcription units) and 21, 820
interactions with a giant connected component (GCC) of
7, 064 nodes. The TRN consists of 1, 809 genes with 184
transcription factors and includes a total of 3, 613 interac-
tions with a GCC of 1, 695 genes. Finally, the PPN consists
of 3, 619 genes and 20, 198 interactions with a giant con-
nected component of 3, 360 genes. Also the edge densities
of these networks is below 10−3, as generally observed for
gene networks.

The network degree assortativity coefficient measures
the average degree-degree correlation of connected nodes
in a network [36]. A positive coefficient suggests assor-
tative mixing (nodes are likely connected to nodes with
similar degree), a negative coefficient disassortative mix-
ing (low degree nodes are likely connected to high degree
nodes) and a zero coefficient non-assortative mixing. The
assortativity coefficient is close to zero for the GRN (κ =
0.01) and negative for the PPI (κ = −0.5968) and TRN
(κ = −0.1314) (Table 1).

The degree distribution pk of a cellular network follows
approximately a power law if there is a linear relation-
ship given by, log pk = −α log k + c, for degree k, scaling
coefficient α and a constant c [37]. In Figure 2 we show
the degree distribution pk and the approximated power
law for the GRN, TRN and PPN network for S. cerevisiae
and E. coli. The PPN networks show the widest range in
the degree values compared to the GRN and TRN. How-
ever, the TRN and PPN show stronger similarities in their
approximated power law degree distribution (S. cerevisiae
αtrn = 2.07, αppn = 1.74, E. coli αtrn = 2.35, αppn = 1.93)
compared to the GRN (S. cerevisiae αgrn = 4.38, E. coli
αgrn = 4.09).

Pairwise degree-rank, transivity and betweenness correlation
In order to investigate the global structural similarities
among the three different types of cellular networks,
we perform a pairwise Spearman’s rank correlation test
for the degree-ranks, betweenness and transitivity of the

Table 1 Summary statistics of the A) S. cerevisiae and B) E. coli gene regulatory network (GRN), protein-protein network
(PPN) and transcription regulatory network (TRN)

A) S. cerevisiae

Nodes Edges GCC Edge density Assortativity

GRN 9,163 27,493 8,978 6.5497e-04 0.0154

PPI 6,169 112,562 6,156 5.9165e-03 -0.5968

TRN 4,441 12,873 4,441 1.3057e-03 -0.1314

B) E. coli

GRN 7,258 21,820 7,064 8.2853e-04 0.0220

PPI 3,619 20,198 3,360 3.0852e-03 -0.1190

TRN 1,681 3,717 1,585 2.6324e-03 -0.3176

GCC means the giant connected component.
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Figure 2 Comparison of the log10-log10 degree and fitted power-law distribution for the gene regulatory network (GRN), transcriptional
regulatory network (TRN) and protein-protein interaction network (PPI) of S. cerevisiae and E. coli.

genes [38]. We find that between the S. cerevisiae gene
regulatory network (GRN) and protein-protein interac-
tion network (PPN) the gene graph measures degree rank
(ρ = 0.09, p = 8.9e − 11), betweenness (ρ = 0.045,
p = 9.4e − 4) and transitivity (ρ = 0.025, p = 0.04)
show a significant correlation. For the pairwise compar-
isons of the other networks, no significant correlation of
the graph measures is observed. For E. coli all three pair-
wise comparisons of the node degrees between the GRN,
TRN and PPN do not show any significant rank corre-
lation coefficient, indicating crucial structural differences
on a global-level.

Structural and functional overlap between the cellular
networks
The next structural analysis we conduct relates to the
structural overlap between the gene regulatory net-
work (GRN), transcriptional regulatory network (TRN)
and protein-protein interaction network (PPN) on the
interaction-level (edge-level). In the following, we denote
the overlap of edges between two cellular networks as
their structural interface. The analysis is separately per-
formed for S. cerevisiae and E. coli. A summary of all
network-pair comparisons for S. cerevisiae is shown in
Figure 3A and for E. coli in Figure 3B. For all comparisons,
we perform a hypergeometric test to assess whether the
overlap between two networks is greater than expected by
random chance.

Between the S. cerevisiae cellular networks, we observe
a percentage of shared edges in the range of 0.1% to
0.6% (Figure 3A) and for E. coli 0.7% to 1.5% (Figure 3B)
between the three networks. Except for the interface of the
S. cerevisiae TRN and PPN, the number of edges shared
between the cellular networks (GRN-PPN, GRN-TRN)
are statistically significant. The gene regulatory network
(GRN) and the protein-protein network (PPN) show the

largest percentage of shared edges of 0.6% in S. cere-
visiae. For E. coli the largest percentage of shared edges
is 1.5% and observed between the gene regulatory net-
work (GRN) and the transcriptional regulatory network
(TRN).

For S. cerevisiae the GRN and the PPN interface share a
total of 667 edges among 785 genes (p = 0) (Figure 3A and
B). The largest connected components (with more than 10
genes) of the shared edges are shown in Figure 3C. The
shown subnetworks consist in total of 248 genes and 316
interactions.

The S. cerevisiae TRN to GRN interface consists of
0.2% shared edges corresponding to 41 edges and 64
genes. The edges correspond to protein-DNA interac-
tions from 37 transcription factors to 27 target genes.
(Figure 3D). The genes with the largest degrees are tran-
scription factors with 4 edges THI2 (thiamine biosynthe-
sis) and 3 edges AFT1 (iron homeostasis), CIN5 (stress
response), GAL80 (GAL genes repression), YAP6 (stress
response).

The PPN and the TRN interface share a percentage
of 0.1% edges that correspond to 92 edges between 115
genes. The edges include 53 transcription factors and
62 target genes (Figure 3E). The genes with the largest
degrees are transcription factors with 6 edges SWI6 (cell
cycle) and 5 edges YAP1 (stress response), STE12 (MAP
kinase signaling), MSN2 (stress response).

In order to interpret the functional role of shared edges
that define an interface between two networks, we per-
formed a Gene Ontology enrichment analysis (GEA) and
a gene pair enrichment analysis (GPEA), see ‘Methods’
section, for overlapping edges between two networks for
the GO category ‘Biological Process’. The GEA tests for
a functional enrichment of a gene set from a collection
of connected genes present in a comparison of two cel-
lular networks. In a GEA analysis the genes annotated
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Figure 3 Structural and functional network analysis of the overlap between pairs of networks. A and B: Pairwise network comparison on the
edge-level. C-E: Subnetworks of overlapping edges between pairs of cellular networks from S. cerevisiae. C: (GRN-PPN) Subnetwork of the GRN-PPN
interface with 316 of the 667 edges and 248 of the 785 genes. The red nodes correspond to genes annotated to GO:0032991 ‘macromolecular
protein complex’ and blue nodes correspond to all other genes. The 242 green edges connect gene pairs that share a term for a protein complex
(e.g., ribosome subunit complex) and red edges correspond to all other gene pairs. D: (TRN-GRN) Red nodes denote 37 transcription factors and
blue nodes 27 target genes. The grey edges are from the TRN and red edges are common between the TRN and GRN. E: (TRN-PPN) Green nodes
denote 53 transcription factors and the 62 blue nodes are target genes.
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by the same term are assumed associated to each other.
However, the GPEA gives a more objective functional
assessment for the individual edges of a network inter-
face rather than the collection of genes participating in the
interface. We prefer therefore in this section the detailed
assessment of the GPEA analysis over the GEA analysis
as the GPEA allows to perform the functional analysis
on an edge-centered view compared to the gene-centered
view of a GEA analysis. The results of the performed GEA
analysis show similar results for all pairwise comparisons
(Additional file 1: Figures S1 A,B and Additional file 1:
Figure S2).

We interpret the results from the GPEA analysis of the
network interfaces by constructing a biological process
Gene Ontology map for enriched terms of the GRN-PPN
interface (Figure 4A), the GRN-TRN interface (Figure 4B)
and the TRN-PPN interface (Figure 4C). The S. cere-
visiae GRN-PPN biological process interface is assessed
from 136 terms with pfdr ≤ 1e − 4 from the total of
302 significant terms pfdr ≤ 0.01. We observe a promi-
nent enrichment for edges involved in the biogenesis of
the ribosome, translation of mRNA, proteolysis, protea-
some protein complex assembly, metabolic and biosyn-
thetic processes for steroid, alcohol, ketone and lipid,
mitochondrial respiration, ATP synthesis and the mito-
sis M phase of the cell cycle. As we observe a promi-
nent enrichment for protein complex related processes,
we also describe in the following the results of the
GPEA S. cerevisiae GRN-PPN interface analysis using
Gene Ontology cellular component terms (Figure 5). We
observe a large variety of protein complex GO cellu-
lar component terms in the GRN-PPN interface of S.
cerevisiae such as the MCM complex, the ATP syn-
thase complex, the Cdc73/Paf1 complex, the mitochon-
drial respiratory chain complex II and IV, the succinate
dehydrogenase complex, the fumarate dehydrogenase
complex, the RNA polymerase complex, the cytosolic
ribosome, the mitochondrial ribosome and the protea-
some. The interactions are cytosolic and membrane asso-
ciated and occur in the mitochodria, nucleus, nuclear
outer membrane-endoplasmic reticulum membrane net-
work and cell cortical actin cytoskeloton at the cell
periphery.

The GPEA of the S. cerevisiae GRN-TRN interface
comprises 39 terms with pfdr ≤ 0.01 (Figure 4B). The
processes involve the positive regulation of metabolic
and biosynthetic processes (RNA), regulation of gene
expression, galactose and alcohol metabolic process
and response to chemical stimulus. The GPEA for
the S. cerevisiae TRN-PPN interface shows 79 terms
with pfdr ≤ 0.01 (Figure 4C) and describes biological
processes involved in positive regulation of metabolic
and biosynthetic processes (e.g., RNA), regulation of
gene expression, metabolic processes for alcohol, sulfur,

nitrogen, methionine, aspartate, cellular responses to
stress, abiotic and organic substances and growth.

The S. cerevisiae GRN-PPN interface shows a close
relationship to the actual cellular protein to mRNA inter-
face of cytosolic and mitochondrial ribosomes for protein
translation from transcribed mRNA, proteolysis, mito-
chondrial respiration and cell cycle. In contrast, the
network comparisons to the TRN have the biological
processes in common that are involved in the regula-
tion of gene expression and biosynthetic and metabolic
processes.

Between the E. coli cellular networks, we observe a per-
centage in the range of 0.7% to 1.5% of shared edges for
the pairwise comparisons (Figure 3B). In contrast to the
S. cerevisiae networks, we observe for the E.coli networks
a higher percentage of shared edges between the GRN
and the TRN despite the fact that the absolute number
of shared edges is largest between the GRN and the PPN
(Figure 3B).

For the E.coli GRN and the PPN, we observe 232
shared edges (1%) (Figure 3B). The E. coli GRN-PPN
GPEA analysis for shared edges shows 137 terms for
pfdr ≤ 0.01. The terms describe biological processes for
ion transport for aerobic and anaerobic respiration, ATP
synthesis, metabolic processes for glutamine, alcohol,
ketone, nitrogen, acetyl-CoA, Mo-molypdopterin, gene
expression, translation, protein complex assembly and
organization and stress response (Figure 6). Between
the GRN and TRN we observe 61 shared edges (1.5%)
(Figure 3B). For the E. coli GRN-TRN GPEA interface
analysis we observe 28 terms with pfdr ≤ 0.01 involved
in stress response (SOS, DNA damage, chemical stimulus,
cell communication), metabolic and catabolic processes.
Between the TRN and PPN, we observe the smallest num-
ber of 32 shared edges (0.7%) (Figure 3B). We observe
for the E. coli TRN-PPN GPEA analysis we observe
only 5 terms for carbohydrate and alcohol metabolic
processes.

The GEA analysis of the genes in the E. coli interfaces
the enrichment shows only terms enriched for the GRN-
PPN and only one term for the GRN-TRN genes and is
therefore neglected.

The GPEA analysis results compared between S. cere-
visiae and E. coli show similarities for the GRN-PPN
interface in processes involved in protein complex assem-
bly, respiration, ATP synthesis, translation and metabolic
processes. For the GRN-TRN interface between S. cere-
visiae and E. coli stress response related processes appear
more prominent in E. coli. Compared to the S. cerevisiae
GRN-TRN interface in E. coli terms related to response
are more apparent rather than terms for describing regula-
tion. The TRN-PPN interface in E. coli shows only 5 terms
related to carbohydrate metabolic processes that are also
present in the S. cerevisiae TRN-PPN interface.
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Figure 5 S. cerevisiae GRN-PPN Cellular Component GPEA analysis of the network interfaces. The term color gradient denotes high (red) to
low rank (yellow), the gene pair number is given in brackets.

Gene-pair enrichment analysis (GPEA) between cellular
networks
In the previous section, we performed a detailed analy-
sis of the functional role of the edges of the interfaces by
a GPEA between the GRN, PPN and TRN networks of
S. cerevisiae and E. coli. In order to quantify the global
functional similarities between the GRN, PPN and TRN,
we performed a gene pair enrichment analysis (GPEA)
analysis for each of the three networks individually and
compare the overlap of significant Gene Ontology terms
between them.

Note that in a GPEA interface analysis, we test for the
enrichment of edges shared by two networks between the
genes in a particular GO term. For a global GPEA analysis
that is performed in this section we test for the enrich-
ment of edges in an individual network between the genes
in a particular GO term. For each comparison, we include

only the subnetwork of genes that are actually present in
both networks. For this analysis we used a significance
level of α = 10−4 and a Bonferroni adjustment of p-values
to correct for multiple testing.

The Figures 7A and B provide a summary of the GPEA
analysis of common significant terms between two cellu-
lar networks. In both species S. cerevisiae (Sce) and E. coli
(Eco) the GRN to PPN comparison shows the largest frac-
tions (Sce 9.9% and Eco 32.75%), GRN to TRN the second
largest fractions (Sce 1.7% and Eco 13.67%) and TRN to
PPN the smallest fractions (Sce 3.0% and Eco 4.75%) of
common significant Gene Ontology terms, significant in
both networks. Except for the TRN to PPN comparison
the overall fractions are larger in E. coli compared to S.
cerevisiae. Although we observe the percentage of shared
edges between the E. coli GRN to TRN is larger com-
pared to the E. coli GRN to PPN the GPEA analysis shows
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A: GRN PPN interface (E. coli)

B: GRN - TRN interface (E. coli) C: TRN-PPN interface (E. coli) 
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Figure 6 E. coli Biological process GPEA analysis of the network interfaces. A) GRN-PPN 137 terms (fdr ≤ 0.01), B) GRN-TRN 28 terms (fdr ≤ 0.01),
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A B

C D E

F G

Figure 7 Global functional comparisons between the GRN, TRN and PPN of S. cerevisiae and E. coli. In A) and B) we show the pairwise
comparisons for common significant terms in the global GPEA analysis between the GRN, TRN and PPN for A) S. cerevisiae and B) E. coli. In C) to G)
we show the gene-pair distributions sharing a functional annotation for the classes ‘Biological Process’ (BP), ‘Molecular Function’ (MF) and ‘Cellular
Component’ (CC). Shown are the cumulative distributions of the co-occurrence frequency of Gene Ontology terms for the edges in the GRN, TRN
and PPN in S. cerevisiae C) BP, D) CC, E) MF and E.coli F) BP, G) CC.
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a larger functional variety of biological processes in the
GRN to PPN comparison as observed for S. cerevisiae.

In the supplementary, we show a GPEA Gene Ontol-
ogy map of the common significant terms of the GRN-
PPN, GRN-TRN and TRN-PPN comparisons for S.
cerevisiae (Additional file 1: Figure S4) and E. coli
(Additional file 1: Figure S5). We do not observe major
differences between the GPEA interface analysis and the
global GPEA analysis for the individual networks. The
significant terms describe similar biological processes as
described in the previous section for the GPEA analysis of
the network interface of a pair of cellular networks.

Functional congruence of connected genes within the cellular
networks
In order to assess the functional congruence of inter-
actions in the three cellular networks, we quantify
the co-occurrence of functional annotations from Gene
Ontology for connected genes. More specifically, for each
network, we count how often directly connected genes
share a common Gene Ontology term. For the compari-
son, the count frequencies of the co-occurring GO terms
are normalized to values between 0 and 1.

In order to compare the results with reference net-
works, we randomize the gene labels. That means, for
each network, we estimate randomized count frequencies
from randomizations of the gene labels. In the follow-
ing, we show the resulting cumulative distributions of
the co-occurrence frequency for the three GO categories
‘Biological process’, ‘Cellular component’ and ‘Molecu-
lar function’ separately (see Figure 7C-G). For E.coli we
excluded the GO category ‘Molecular function’ from the
analysis because this category contained only 100 terms.

First, from Figure 7C-G one can see that the three corre-
sponding networks with randomized gene labels (dashed
lines) can be distinguished in all cases from the networks
with non-randomized gene labels. This indicates that all
three cellular networks (GRN, TRN and PPN) contain a
considerable amount of biological information about S.
cerevisiae and E. coli; because otherwise they would over-
lap with the results of the networks with randomized gene
labels. Due to the fact that, the more GO terms are shared
between connected genes, the further the cumulative dis-
tributions are shifted to the right (convergence to ‘1.0’ is
prolonged), one can see that all three cellular networks
contain more information about the GO category ‘Cellu-
lar Component’ than ‘Biological Process’ and ‘Molecular
Function’.

Integrated structural and functional analysis of the cellular
networks
Next, we perform a local structural comparison on the
pathway-level of the cellular networks for S. cerevisiae and
E. coli. That means, we conduct an integrated functional

and structural analysis of these networks by identify-
ing sets of genes that belong to particular GO terms,
for which we assess their structural similarity, by using
five graph-based centrality measures and Spearman’s rank
correlation test.

As structural network measures, we use (1) degree cen-
trality, (2) betweenness centrality, (3) the local clustering
coefficient also called transitivity [39], (4) hubscore cen-
trality and (5) closeness centrality. For our analysis, we
consider only GO terms with, 10 < genes ≤ 1000, that
are present in two networks. We control the false discov-
ery rate (FDR) at a level of FDR = 0.05. The similarity
on the gene-set level is measured in the following way.
First, we obtain a set of genes that belong to a given GO
term, say of p genes. Then, we calculate for these genes
one of the five graph-based measures. This results in two
p-dimensional vectors whereas the i-th component gives
the value of the graph-based measure for the i-th gene.
Finally, we compare the similarity of these two vectors
by Spearman’s rank correlation test. For all network com-
parisons the results in Table 2A-C demonstrate that all
networks are quite dissimilar on the gene-set level. How-
ever, for the S. cerevisiae GRN to PPN comparison we
observe a similarity in 32 significant terms for Biologi-
cal Process using the degree centrality (Table 2A) and 7
terms for Cellular Component using transitivity central-
ity (Table 2A, D). Although, the number of significant
terms is very low for the GRN and PPN network compar-
ison we observe a variety of processes that are related to
DNA repair, chromatin remodeling, stress response (e.g.,
pheromone, arsen), nuclear import/ export, biosynthetic
processes (ergosterol, glycogen, ATP) and proteasome
(Additional file 1: Figure S5). The 7 significant terms for
cellular components between the GRN and PPN of S. cere-
visiae comprise terms for proteasome complex, ribosome
complex, microtuble associated complex, ligase complex,
chromatin and nucleoplasm (Table 2D). The terms partly
resemble processes that are observed for the analysis per-
formed on the edge level functional enrichment analysis
between the S. cerevisiae GRN and PPN. For the structural
comparison of the GRN and PPN the nuclear processes
are more pronounced such as stress response, nuclear
export/import and chromatin remodeling.

For E. coli the results are similar to S. cerevisiae, where
almost none of the tested pathways showed a significant
correlation between pairs of the three networks (GRN,
TRN and PPN) for any of the five centrality measures
(results not shown).

Chromosomal co-location and distance of interacting
genes
The genes of bacterial species like E.coli are organized in
an operon structure that have a linear circular genome.
In contrast, eukaryotic species like S. cerevisiae have a
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Table 2 Results for S. cerevisiae

A) S. cerevisiae Biological Process

Degree Betweenness Transitivity Hubscore Closeness

GRN/PPN 32/1265 0/1265 2/1265 0/1265 0/1265

TRN/PPN 0/1057 0/1057 0/1057 0/1057 0/1057

GRN/TRN 1/1044 0/1044 1/1044 0/1044 0/1044

B) S. cerevisiae Cellular Component

GRN/PPN 4/295 0/295 7/295 5/295 0/295

TRN/PPN 0/245 0/245 0/245 0/245 0/245

GRN/TRN 0/241 0/241 0/241 0/241 0/241

C) S. cerevisiae Molecular Function

GRN/PPN 0/375 0/375 5/375 3/375 0/375

TRN/PPN 2/308 0/308 0/308 0/308 0/308

GRN/TRN 0/304 0/304 0/304 0/304 0/304

D) S. cerevisiae transitivity centrality GRN/PPN (Cellular Component)

GO Term Size ρ pfdr

GO:0031597 Cytosolic proteasome complex 202 0.30 0.002024

GO:0005875 Microtubule associated complex 560 0.16 0.009816

GO:0019005 SCF ubiquitin ligase complex 26 0.65 0.01706

GO:0031903 Microbody membrane 17 0.74 0.02134

GO:0000785 Chromatin 522 0.15 0.02134

GO:0000313 Organellar ribosome 17 0.74 0.02134

GO:0005654 Nucleoplasm 12 0.81 0.03283

Spearman’s rank correlation coefficient test for centrality measures between the GRN, TRN and PPN of Gene Ontology subnetworks for A Biological Process, B Cellular
Component and C Molecular Function. A-C Tests are performed for degree, betweenness, transitivity (local clustering coefficient), hubscore and closeness centrality.
Each column, shows the number of significant terms and the total number of terms tested. D shows 7 terms for cellular components with significant transitivity
centrality between the S. cerevisiae GRN and PPN.

nucleus, where the DNA of the genome is located in form
of distinct chromosomes. Hence, eukaryote species have
a more complex genomic organization and structure of
the genome. Due to the higher complexity of eukary-
otic species the evaluation and interpretation of predicted
interactions resulting from co-regulation, co-localization
or co-expression may be more difficult to judge com-
pared to networks from E.coli. This may be a reason why
the relationship of co-localization w.r.t. to the interactions
described in cellular networks have not been investigated
in great detail so far.

For this reason, we study the chromosomal co-location
and the distance between interacting genes for the three
networks (GRN, TRN and PPN). First, we estimate the
percentages of interactions for genes that are co-located
on the same chromosomes and for interactions that cor-
respond to two genes that are located on different chro-
mosomes. For the gene regulatory network, we observe
a fraction of 17.14% of the interacting genes co-located
on the same chromosome, while for the protein-protein
network and the transcriptional regulatory network we

observe only 8.05% (PPN) and 7.92% (TRN) of the inter-
acting genes co-located on the same chromosome.

Next, we study the global degree ranks of the chro-
mosomes for the three networks. The degree ranks of
the chromosomes are calculated by the number of inter-
actions corresponding to a particular chromosome. For
each chromosome, we count the number of interactions
by summing the degrees of each gene corresponding to a
particular chromosome. For each network, the chromo-
somes are then ranked based on the count frequencies.
We perform a pairwise comparison using Spearman’s rank
correlation test between TRN, GRN and PPN, where we
consider only genes present in both networks. From this
analysis, we find a significant correlation for all pair-
wise comparisons (p ≤ 2.2e − 16 with r between 0.84
and 0.88).

Next, we study the co-localization distance of connected
gene pairs within chromosomes for the three cellular net-
works. More precisely, we extract the genomic start and
end coordinates of gene-pairs from the chromosomes and
calculate their relative distances, δ, between connected
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genes in the GRN, TRN and PPN. In order to obtain com-
parable values for chromosomes of differing length, δ is
normalized by the size of the chromosomes.

In Figure 8, we show the cumulative distance distri-
butions for the GRN, TRN and PPN for S. cerevisiae
(Figure 8A) and E. coli (Figure 8B). To these figures,
we added also results from networks with randomized
gene labels to contrast the obtained findings. From these
figures one can see that the networks of S. cerevisiae and E.
coli behave differently. For S. cerevisiae, the TRN and PPN
are close to the networks with randomized gene labels,
whereas for E. coli the difference for the TRN is much
larger. That means, e.g., interacting proteins do not have
a strong tendency of being co-localized on the same chro-
mosome, similarly, transcription regulation. In contrast,
transcription regulation in E. coli shows a tendency that
the transcription factors and the regulated genes are
closer to each other because the cumulative distance
distribution for the transcription regulatory network is
clearly discernible from the network with randomized

gene labels. Statistically, this observation is quantifiable by
a two-sample Kolmogorov-Smirnov test.

Interestingly, the GRN of S. cerevisiae and E. coli
shows the strongest co-localization of connected genes
(Figure 8A and B, GRN in green). The reason for this
may come from the different nature of this network type,
because in contrast to the two phenomenological net-
works TRN and PPN, the GRN is inferred from gene
expression data. In [33,40] it has been shown that such a
GRN contains signatures of both phenomenological net-
works, that means, in the GRN one can find transcription
regulations as well as protein-protein interactions. Fur-
ther, in [41,42] it has been found that inference algorithms
used to estimate a GRN favor systematically molecu-
lar interactions involving genes having only a moderate
number of interactions. In turn, this could hint that genes
co-localized on the same chromosome are less connected.

Figure 8C shows the homogeneity of the relative co-
location distance distributions among the chromosomes
of S. cerevisiae for the GRN, TRN and PPN. In this

Figure 8 Cumulative distance distribution of gene pairs for the gene regulatory network (green), transcription regulatory network (red)
and protein-protein network (blue). A: S. cerevisiae. B: E. coli. C: S. cerevisiae relative co-localization distance distribution for each chromosome of
gene pairs for the gene regulatory network (GRN), transcription regulatory network (TRN) and protein-protein network (PPN).
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figure, ‘M’ indicates the mitochondrial chromosome and
‘adjacent’ and ‘global’ provide the average distances over
all adjacent gene-pairs on a chromosome respectively all
possible gene-pairs regardless of their location on the
chromosome. Overall, the average distance between two
interacting genes or proteins is around δ = 0.3 in S. cere-
visiae and E. coli (global) whereas the distance between
adjacent genes is below δ = 0.001. In general, for S. cere-
visiae the differences between the GRN, TRN and PPN are
mild. Only for chromosome 4 (p-value pbonf = 4.44e − 6)
and chromosome 12 (pbonf = 9.99e − 03) we obtain a
significant difference from a one-way ANOVA testing the
equality of the mean distances of the three cellular net-
works for each chromosome for a significance level of α =
0.05. This indicates that none of the three networks carries
strongly different information about the chromosomes.

GEA and GPEA for chromosomal subnetworks
In this last results section, we want to study the functional
enrichment of genes for each individual chromosome and
gene-pairs of the S. cerevisiae cellular networks that are
co-located on the same chromosome.

For the GRN, TRN and PPN we perform a Gene Ontol-
ogy enrichment analysis (GEA) for the category ‘Biolog-
ical Process’. The GEA is performed for each individual
chromosome, using a hypergeometric test, where all genes
of a particular network are defined as background. For the
GEA analysis, we choose a significance level of α = 0.01
for nominal p-values to define a set of significant terms for
each chromosome. Further, we perform a GPEA analysis
for the GRN, TRN and PPN subnetworks of the genes for
each individual chromosome. For the GPEA analysis we
apply a Bonferroni multiple hypothesis testing correction
with a significance level of α = 0.05. In addition, we esti-
mate the fraction of overlapping significant terms of the
GEA and GPEA.

In Figure 9A, we show a summary of the chromosome
functional enrichment analysis. For the GEA analysis, we
observe in average 2% to 5% significant terms. Interest-
ingly, for the GPEA analysis, we observe a large difference
in the fraction of significant terms between the GRN
and TRN compared to the PPN. For the protein-protein
network we observe in average 44% (275 terms) significant
GO terms (Biological Process) for each chromosome. For
the GRN and TRN the fraction of significant terms are
prominently lower showing an average of 2% (17 terms)
for the GRN and 5% (24 terms) for the TRN, per chromo-
some. Further, the number of common different (unique)
terms between the GPEA and GEA analysis for the GRN
comprises a total of 23 terms, for the TRN we find 10 and
for the PPN 143 (see Figure 9A). This indicates that the
PPN has a larger function co-localization than the other
networks. Here, it is important to emphasize that if one
considers interacting proteins in an unselected manner

there is no strong co-localization, see Figure 8. However,
when restricted to sensibly selected biological subgroups
as identified with the Gene Ontology database, there is a
strong effect.

In Figure 9E-J, we show an overview of the fractions
of significant terms of the GPEA, GEA and their over-
lap for each chromosome. The fractions for the GRN
(Figure 9E), PPN (Figure 9F) and TRN (Figure 9G) show
slight variations among the chromosomes.

Finally, we compare the overlap of the functional GPEA
analysis between pairs of networks for S. cerevisiae. Aver-
aged over all chromosomes, we observe 12 common sig-
nificant terms between GRN and PPN (1.6%), 6 between
TRN and PPN (0.85%) and 2 between GRN and TRN
(Figure 9C). Figure 9D shows more refined results for
each chromosomes. The GPEA analysis showing the frac-
tions of the GO terms in the category ‘Biological Process’
that are significant in all pairwise comparisons. The GRN
shows a higher similarity with the PPN, compared to the
TRN. The topmost common significant terms between
the GRN, TRN and PPN are shown in Table 3.

Discussion
In this paper, we investigated relations between a tran-
scription regulatory network, a protein-protein network
and a gene regulatory network for S. cerevisiae and
E. coli. For these cellular networks, we studied struc-
tural, functional and chromosomal properties (I) on the
genomic-scale (global) involving the entire network, (II)
on the pathway level (local) considering only well defined
Gene Ontology terms and (III) on the level of indi-
vidual interactions. That means our investigation com-
prised various relevant biological scales of these cellular
networks.

From a structural analysis, we found that the three cel-
lular networks (GRN, TRN and PPN) are considerably
different from each other. This result is consistent on the
genomic-, pathway- and interaction-level. For instance, on
the interaction-level, a pairwise comparison between the
three networks revealed that the percentage of common
interactions (edges) is in general only in the range of 0.1%
to 1.5% percent. This holds for E. coli and S. cerevisiae
(see Figure 3A and B). However, we would like to point
out that the GRN and the PPN are more similar to each
other than the other two pairs of network combinations,
at least for S. cerevisiae. An indicator for this has been
found, e.g., by the significance of Spearman’s rank correla-
tion coefficient of the degree, betweenness and transitivity
distributions.

We studied the functional relationship between the cel-
lular networks by a gene pair enrichment analysis (GPEA)
in Gene Ontology terms for the network interfaces that
are defined by the set of shared edges between two net-
works. The functional analysis showed a vast diversity
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common terms in GPEA & GEA:
    GRN: 1.44 (0.2%)
    TRN: 0.81 (0.2%)
    PPN: 3.44 (0.53%)
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PPN: 127.1
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Figure 9 Results for S. cerevisiae. Summary of the GPEA and GEA, showing average results per chromosome (A), total numbers (B) of significant
terms and pairwise comparison of networks (C). D: Fraction of common significant terms for the GPEA analysis, between the GRN, TRN and PPN. E-J:
Fraction of significant GO Biological Process terms for GPEA, GEA and GPEA+GEA overlap analysis for individual chromosomes. E-G show results
within chromosomes and H-J between chromosomes.
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Table 3 S. cerevisiae GPEA analysis Biological Process for individual chromosomes

S. cerevisiae GRN to PPN

GOID Term Size Edges1 Edges2 pval

GO:0009987 Cellular process 629 389 1509 1.5e-123

GO:0008152 Metabolic process 497 252 1067 7.5e-35

GO:0044237 Cellular metabolic process 481 245 1038 2.25e-33

GO:0044238 Primary metabolic process 450 227 998 1.1e-28

GO:0043170 Macromolecule metabolic process 356 176 854 8.5e-20

GO:0044260 Cellular macromolecule metabolic process 349 173 842 1.15e-19

GO:0006364 rRNA processing 32 18 39 1.2e-13

GO:0016072 rRNA metabolic process 33 18 41 3.45e-13

GO:0042254 Ribosome biogenesis 44 21 56 5.5e-12

GO:0022613 Ribonucleoprotein complex biogenesis 53 23 64 1.05e-10

S. cerevisiae GRN to TRN

GO:0009987 Cellular process 620 200 241 2.25e-51

GO:0008152 Metabolic process 492 131 147 2.905e-10

GO:0044237 Cellular metabolic process 477 127 143 2.747e-09

GO:0044238 Primary metabolic process 446 122 134 1.235e-08

GO:0043170 Macromolecule metabolic process 356 92 104 0.00291

GO:0044260 Cellular macromolecule metabolic process 349 89 102 0.007955

S. cerevisiae TRN to PPN

GO:0009987 Cellular process 631 255 1220 6.5e-63

GO:0008152 Metabolic process 499 160 923 4.15e-12

GO:0044237 Cellular metabolic process 483 153 895 1.95e-10

GO:0044238 Primary metabolic process 452 143 855 8e-09

GO:0044249 Cellular biosynthetic process 252 84 351 4.3e-06

GO:0080090 Regulation of primary metabolic process 144 46 222 6.5e-06

GO:0009058 Biosynthetic process 257 85 355 7e-06

GO:0031323 Regulation of cellular metabolic process 142 45 216 9e-06

GO:0010556 Regulation of macromolecule biosynthetic process 117 36 167 1.35e-05

GO:2000112 Regulation of cellular macromolecule biosynthetic process 117 36 167 1.35e-05

Shown are the top 10 common significant terms between the gene regulatory network (GRN), the transcription regulatory network (TRN) and the protein-protein
network (PPN). For ranking of terms the corresponding p-values of common significant terms between two networks were averaged. For GRN to TRN comparison only
6 terms were commonly significant.

of the biological processes in the network interfaces,
although, the fractions of shared edges between the cel-
lular networks are low. The S. cerevisiae GRN and PPN
interface showed the largest variety of biological processes
and protein complexes related to the translation of mRNA
(cytosolic and mitochondrial ribosome complex), prote-
olysis (proteasome complex), metabolic processes, mito-
chondrial (respiration chain complex II and IV, ATPase
synthase complex, succinate dehydrogenase complex), cell
cycle (M phase, MCM complex) and transcription (RNA
polymerase complex, Cdc73/Paf1 complex). The most
prominent and largest Gene Ontology ‘biological pro-
cesses’ are related to ribosome biogenesis, translation and

proteolysis. Proteins are directly synthesized from mRNA
and, thus, the identified translational processes corre-
sponds to the physical interface between the PPN and
the GRN inferred at the mRNA level. Note, that also
the proteolysis process is related to the protein transla-
tion process, e.g., by post-translational protein processing.
Further, the large variety of identified protein complexes
in the GRN/PPN interface can be explained by the vital
spatial and temporal dependency of genes that belong
to the same protein complex to be functional. Protein
complexes have been observed to have highly dependent
expression profiles [43] and are thus likely to be identified
in a gene regulatory network.
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For E. coli the GPEA analysis of the GRN and PPN
interface showed similar results, where we observe bio-
logical processes related to protein translation, protein
complex assembly and organization, gene expression, aer-
obic and anaerobic respiration, ATP synthesis, metabolic
processes, ion transport and stress response. The major-
ity of the observed biological processes for E. coli such
as translation, protein complex assembly, metabolic pro-
cesses, respiration and ATP synthesis are in agreement
with the observation for S. cerevisiae that indicate to
some extend a functional conservation of the GRN-PPN
interface between both species.

In S. cerevisiae and E. coli TRN comparisons, we observe
regulatory terms for metabolic processes, gene expres-
sion and response that are expected for transcription
factor related interactions. For the comparison of the
S. cerevisiae TRN-GRN the relative low percentages of
shared edges are mainly explained by the complex rela-
tionships of regulatory protein-DNA interactions that
regulate the expression of genes. The observed higher per-
centage of shared edges in the TRN-GRN compared to
the TRN-PPN in both species is reasoned by the closer
relationship of the gene expression dependencies inferred
by a GRN to transcription factor to target gene interac-
tions. In contrast to S. cerevisiae, for E. coli the percentage
of shared edges of the GRN-TRN is slightly larger than
for the GRN-PPN. This may result from the less complex
regulation of gene expression in E. coli.

The experimental evaluation of single interactions in
large inferred networks is very labor and cost intensive.
For this reason, a functional co-occurrence of Gene
Ontology [32] or pathway annotation is widely used to
measure or weight the reliability of interactions between
genes [33,40,44]. The principle idea of this approach is
based on the concept of guilt by association that emerged
from the observation that genes with similar expression
profiles also tend to share similar biological functions [45].
From a functional co-occurrence analysis of the three net-
works using Gene Ontology terms from the categories
‘Biological Process’, ‘Cellular Component’ and ‘Molecu-
lar Function’, we found that each of the networks con-
tains a considerable amount of biological information,
because the biological information content of networks
with randomized gene labels can be clearly distinguished
(see Figure 7A-E). This is particularly interesting for the
GRN, because it demonstrates that the information that
can be extracted from such networks is, in terms of
its biological knowledge, as valuable as the information
extracted from the phenomenological networks (TRN and
PPN).

Interestingly, the main difference of the gene regulatory
network compared to the phenomenological networks is
that a GRN is inferred from large-scale data by statistical
methods and, thus, a different type of network compared

to the TRN and the PPN, which are obtained from direct
measurements of molecular interactions, e.g., via ChIP-
chip or Y2H experiments. A potential reason for the rich
biological information content of the GRN could be given
by the way the underlying data are measured, namely in
vivo. That means, expression data come usually either
from cell cultures, tissues or biopsies. In contrast, many
PPN are based on yeast two-hybrid measurements that are
measured outside a cellular and condition specific context
[46].

Finally, we studied genetic information of interacting
genes in the three networks. We found that there is a sig-
nificant difference between the chromosomal co-location
and the distance among interacting genes for E. coli and
S. cerevisiae. While for E. coli there is a strong co-location
effect for close neighbor genes, especially for the TRN
and the GRN, this connection is largely absent in S. cere-
visiae (see Figure 8A and B). This means that in the TRN
of E. coli transcription factors and the regulated genes
are frequently closely located, whereas for S. cerevisiae
this is not the case. For S. cerevisiae this effect is quite
homogeneous across all chromosomes (see Figure 8C).
Interestingly, the GRN contains the largest fraction of co-
localized interacting genes for both organisms, which is
around 17%.

From a GPEA and GEA for S. cerevisiae, we found
that the PPN contains much more chromosome spe-
cific interactions than the GRN and the TRN (see
Figure 9F and I). This holds for an analysis of inter-
actions within chromosomes (see Figure 9E-G) and
between them (see Figure 9H-J). Also, the number of
common significant terms is between the GRN and
PPN largest compared to all other network pairs (see
Figure 9C). This is again an indicator that the GRN con-
tains a considerable amount of information from protein
interactions.

Conclusions
As a summarizing conclusion from the results of our anal-
ysis, we hypothesize that the GRN plays a pivotal role
when integrating the phenomenological TRN and PPN.
The reason for this is that, as seen from our results the
overlap between the PPN and TRN is in general much
smaller than the overlap between the PPN and the GRN.
This holds for a structural, functional and chromosomal
analysis, independently, for E. coli and S. cerevisiae. The
reason for this increased overlap comes largely from genes
corresponding to the same protein complex [43] and the
capability of the BC3NET inference method, used to infer
the GRNs in this study, to infer such interactions [33,40].
Hence, a GRN does not only seem to be beneficial as an
interface to integrate a TRN with a PPN, but necessary.

Aside from our analysis, this is also plausible for biolog-
ical reasons, as can be seen in Figure 1, because the data
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used for the inference of a GRN come from the concen-
tration of mRNAs, which are intermediate between the
DNA and the protein level. A further reason in favor for
the inclusion of a GRN in such an integration is the type of
information represented by the GRN. As explained above,
in contrast to the phenomenological TRN and PPN, gene
expression data represent the dynamics of the cellular sys-
tem rather than a static information, because the dynam-
ical concentration levels of mRNAs are converted into a
snapshot of the underlying molecular interactions actually
happening within these samples. This effect is enlarged by
the fact that TRN and PPN are usually generated with-
out considering multiple conditions or outside the cellular
context. In contrast, if tissues or biopsies are used as sam-
ples to measure the gene expression such data are more
representative of the dynamical processes within a cell.
However, due to the nature of the employed experimen-
tal assays (Y2H or ChIP-chip) neither a PPN nor a TRN
alone, or in combination, is sufficient to provide a condi-
tion specific map of molecular interactions. Instead, these
networks correspond to cell type specific networks provid-
ing information about potential interactions. However, we
hypothesize that if one combines these networks with a
condition specific network, like the GRN, then the resulting
integrated network conveys condition specific information
induced by the GRN. The reason for this condition spe-
cific behavior of a GRN, as discussed above, comes from
the way these networks are obtained, namely from infer-
ential methods of in vivo samples. This suggests that the
integration of different cellular networks should always
consist of a combination of condition specific and cell
type specific (condition unspecific) networks in order to
obtain a phenotype specific model. As shown by our anal-
ysis, the observed overlap between the inferential GRN
and the two phenomenological networks (PPN and TRN)
provides ample opportunities for such an integration.

Methods
The BC3NET approach for GRN inference
The BC3NET [33] algorithm is a bagging approach for
C3NET [47,48]. The BC3NET algorithm is based on
3 major steps: (1) the generation of bootstrap data
sets, (2) inferring ensemble of C3NET networks and (3)
aggregation of the network ensemble into a weighted net-
work, where a binomial test is performed for the edges
with subsequent consideration for multiple hypothesis
testing.

Briefly, the C3NET algorithm selects for each gene
at most one edge to a gene neighbor which has the
strongest mutual dependency as measured by the mutual
information. For each inferred edge, a non-parametric
significance test for mutual information is performed. The
null distribution for the test is generated by a randomiza-
tion of the gene expression matrix. We use a Bonferroni

multiple hypothesis testing correction with a significance
level of α = 0.05.

From a bootstrap ensemble consisting of 100 data sets
a gene regulatory network is inferred using C3NET for
each of these data sets. For the network inference, we
use a B-spline estimator [49]. A B-spline estimator uses a
weighted discretization method to estimate mutual infor-
mation from continuous values. For each bin, weights
are estimated for the corresponding gene expression
values from overlapping polynomial B-spline functions.
Finally, the ensemble of networks is aggregated into a
weighted network, where the weights describe the ensem-
ble consensus rate for an edge. We use a binomial test
whether or not an edge should be included in the result-
ing network. We retain edges for a significance level of
α = 0.05 and a Bonferroni multiple hypothesis testing
correction.

S. cerevisiae and E. coli gene expression data
We use the S. cerevisiae Affymetrix ygs98 RMA nor-
malized gene expression compendium available from the
Many Microbe Microarrays Database M3D [50]. The yeast
compendium dataset comprises 9, 335 probesets and 904
samples from experimental and observational data from
anaerobic and aerobic growth conditions, gene knock-
out and drug perturbation experiments. We map the
yeast Affymetrix probeset IDs to gene symbols using the
annotation of the ygs98.db Bioconductor package. Multi-
ple probesets for the same gene are summarized by the
median expression value. The resulting expression matrix
comprises a total of 9, 163 features for 4, 837 gene sym-
bols and 4, 326 probesets that cannot be assigned to a gene
symbol.

Further, we use the Escherichia coli gene expres-
sion compendium from the Many Microbe Microarrays
Database M3D [50]. The Escherichia coli compendium
(version 4, build 6) comprises a total of 7, 459 probe-
sets corresponding to 7, 258 unique probeset descriptions
and 907 samples. We map the Escherichia coli probe-
set IDs to gene symbols or transcription units from the
provided probeset descriptions from M3D. The dataset
comprises a total of 4, 335 mapped gene symbols and
2, 923 mapped transcription units. Multiple probesets for
the same gene or transcription unit are summarized by the
median expression value.

Cellular networks of S. cerevisiae and E. coli
S. cerevisiae
As gene regulatory network (GRN) we use the BC3NET
gene regulatory network described in [33]. This network
consists of 9, 163 genes and 27, 493 edges. The transcrip-
tional regulatory network (TRN) [34] consists of 4, 441
genes with 157 transcription factors and includes a total
of 12, 873 interactions. We use a undirected version of
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the TRN for our analysis. We map ORF identifiers to
gene symbols using the Bioconductor org.Sc.sgd.db pack-
age. We inferred a BC3NET gene regulatory network
from the E. coli gene expression compendium [50] using
the B-spline estimator. Finally, the transcription regula-
tory network for E.coli was assembled from protein-DNA
interaction from RegulonDB [51]. The network includes
transcription factor to target gene and transcription factor
to transcription factor interactions.

Protein-Protein interaction network (PPN)
For Saccharomyces cerevisiae we use interactions mapped
to gene symbols from PINA (version 2012-12-10) [23,35].
PINA is a meta database of PPI interaction data from
BioGrid [19], DIP [52], IntAct [20], MINT [21] and MPact
[22]. The network consists of 6, 169 genes and 112, 562
interactions.

The PPN for Escherichia coli was constructed from
binary protein interaction from the DIP (version 2011-
10-27) [52], IntAct (version 2012-12) [20], MINT (ver-
sion 2012-10-26) [21] and MPIDB (version 2009-11-18)
[53] database. From IntAct, MINT and MPIDB the inter-
actors uniprotkb gene symbols were extracted. For the
DIP network uniprotkb, refseq or DIP cross-references to
gene symbols were available from EBI or extracted from
uniprot entries if the gene symbol was missing (http://
www.ebi.ac.uk) . The interactions from DIP (12, 636 inter-
actions), IntAct (16, 517), MINT (5, 250) and MPIDB
(2, 215) were merged resulting in an undirected protein-
protein interaction network. The resulting network con-
sists of 3, 619 genes and 20, 198 interactions.

Network functional co-occurrence analysis
We compare the edge reliability between inferred and
phenomenological cellular networks for E. coli and S.
cerevisiae. The edge reliability is quantified based on the
extend of co-occurrence of functional Gene Ontology
annotation of connected genes for each network. We com-
pute the cumulative distribution of the number of shared
Gene Ontology terms for the edges of the cellular net-
works for the Gene Ontology classes Biological Process,
Molecular Function and Cellular Component.

The extend of co-occurrence is quantified by the count
frequency deij how often the gene pair eij of gene gi and
gj are described in the same gene set GOk described by N
Gene Ontology terms.

deij =
N∑

k=1

{
1 if gi ∈ GOk , gj ∈ GOk
0 else (1)

where deij gives the count frequency score of co-
occurrence. In the next step we estimate the cumulative
distribution from d of the deij of all gene pairs to compare
the GO co-occurrence between networks. The resulting

distribution vector is scaled to the origin. In order to judge
the extend of functional co-occurrence that is expected
by random chance we randomize gene labels for each
network and compute dr from 100 randomizations.

Interfaces between cellular networks
We define the interface between two cellular networks as
the subgraph that is induced by the edges that are shared
between two networks. The percentages of shared edges
between two networks is defined by

sij = |Ei ∩ Ej|
|Ei ∪ Ej| · 100 (2)

where Ei and Ej define the set of edges in network i and j.
We perform a hypergeometric test whether the number

of shared edges between a pair of networks is larger than
expected by random chance. The p-value is estimated
using

p =
m∑

i=k
P(X = i) =

m∑
i=k

(m
i
)(N−m

n−i
)

(N
n
) (3)

where m is the total number of observed interactions of
the joined network 1 and network 2, N is the number of
all possible interactions between the genes shared by both
networks and k is the number of shared edges between
network 1 and network 2.

Network centrality measures
In the following, we describe network centrality measures
degree, hub score, closeness and transitivity that we used
for the structural analysis of the cellular networks in our
study. The degree of a vertex vi defines the total number
of direct neighbors of vj. For an undirected network the
degree of vi is given by [37]

C1(vi) =
n∑

j=1
Aij (4)

where A is the adjacency matrix of the network.
The closeness centrality of a vertex vi is defined as the

inverse of the mean average shortest path length to all
other vertices vj of a network [54],

C2(vi) = 1∑N
j=1 d(vi, vj)

(5)

where i �= v and the total number of nodes N in the net-
work. If no path exists between two nodes, d(v, i) gives the
total number of nodes N.

The transitivity centrality of a vertex vi is a local cluster-
ing coefficient that measures the proportion of edges of
the direct neighbors of vi in a clique of k vertices where vj

http://www.ebi.ac.uk
http://www.ebi.ac.uk
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and all its direct neighbors are fully connected. The local
clustering coefficient is given by [55]

C3(vi) = 2|{eij}|
k(k − 1)

(6)

where |eij| is the number of edges from vertex vi to all
direct neighbors vj and k(k−1)

2 gives the total number of
edges in the clique of k vertices.

In an undirected network the hub score of a vertex
vi is the normalized sum of the hub scores of all direct
neighbors vj. The hub score centrality of the vertices in
a network are estimated by the principal eigenvector ω1
of the scalar product of the adjacency matrix A and its
transpose [56].

ω1(A · t(A)) (7)

Network pathway analysis using centrality measures
For the comparison between two networks, we consider
only the subnetworks of common genes. For two cellular
networks, Ga and Gb, we estimate the degree, between-
ness, transitivity, hubscore and closeness centrality values
for all genes for a Gene Ontology (GO) term. Then, for
each GO term, we perform a Spearman’s rank correla-
tion test [38] for the ranks of the values for each centrality
measure between a pair of networks. We adjust p-values
using a FDR [57] correction for a given significance level
of α = 0.05.

Gene ontology enrichment analysis and annotation
We use Gene Ontology annotation using the Biocon-
ductor [58] package org.Sc.sgd.db for S. cerevisiae and
org.EcK12.eg.db for E. coli. Gene Ontology terms and class
definitions (BP, MF, CC) were extracted from the GO.db
Bioconductor package. The Gene Ontology enrichment
analysis (GEA) was performed with the topGO package
[59] using a hypergeometric test.

Gene Pair Enrichment Analysis (GPEA)
We test for the enrichment of gene pairs connected in a
network sharing the same Gene Ontology term annota-
tion. For each Gene Ontology term we perform a hyperge-
ometric test (one-sided Fisher exact test) for edges (gene
pairs). For p genes a total of N = p(p − 1)/2 possible gene
pairs can be formed. A set of genes annotated by a GO
term pGO form a total of m = pGO(pGO − 1)/2 possible
gene pairs. From a cellular network with n edges the sub-
network for each GO term with k edges is considered. The
p-value for the enrichment of this GO-term is calculated
from a hypergeometric distribution by

p =
m∑

i=k
P(X = i) =

m∑
i=k

(m
i
)(N−m

n−i
)

(N
n
) (8)

The p-value gives an estimate of the probability to
observe k or more edges between genes from the given
GO-term. For the analysis we consider Gene Ontology
Biological Process terms with more than 2 and less than
1000 genes. The p-values are adjusted using a bonferroni
multiple hypothesis testing procedure. We select terms
significant with pbonferroni = 0.0001.

In the following we describe the GPEA analysis for func-
tional gene pair enrichment of shared edges between two
networks. For each Gene Ontology term we perform a
hypergeometric test (one-sided Fisher exact test) for the
enrichment of gene pairs sharing the same functional
annotation between two networks (analog to eqn. 8). For
p genes the joint number of edges for two networks
is given by N = Ge

1 ∪ Ge
2. The total number of n

edges common between two networks is given by n =
G1 ∩ G2. The joint number of m edges of two subnet-
works S for a GO term t is given by m = St(Ge

1 ∪
Ge

2). The number of edges of the subnetwork S com-
mon between two networks for a GO term t is given by
k = Se

t (Ge
1 ∩ Ge

2). The p-value gives an estimate of the
probability to observe k or more edges between genes
from the given GO-term. For the analysis we consider
Gene Ontology Biological Process terms with more than
2 and less than 500 genes. The p-values are adjusted
using a Benjamini Hochberg (fdr) multiple hypothe-
sis testing procedure. We select terms significant with
pfdr = 0.01.

Gene ontology graph visualization
For the visualization of the Gene Ontology graphs we use
our currently unpublished R-Package drawgo. For a set
of defined Gene Ontology terms a Gene Ontology sub-
graph is extracted from Gene Ontology including the set
of significant Gene Ontology terms and the correspond-
ing parental terms [60]. In order to reduce the size of the
GO graph for a visualization of the graph we delete itera-
tively non-significant parental terms from the graph. The
corresponding child terms of a deleted parental GO term
are connected to the corresponding parent GO terms of
the deleted parental GO term of the graph. In the visual-
ization the connections between Gene Ontology terms do
not necessarily show direct parent child connections and
also include more distant ancestor child connection when
non-significant direct parents were deleted. The layout in
drawgo is based on a force-based grid layout for the visu-
alization. The graph procedures and visualization is based
onigraph [61].

Relative gene location distance
We retrieved the E. coli K12 Genebank refSeq coordinates
from the UCSC Microbial Genome Browser [62]. We
define the relative distance δ ∈[ 0, 1] between two genes
gi and gj that are co-located on the same chromosome
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by the distance between the mid points of the two genes
normalized by the size of the chromosome.

The mid point coordinate of a gene is given by

m(gi) = start(gi) + end(gi) − start(gi)

2
(9)

where end(gi) ≥ start(gi). start() gives the start and end()
the physical end coordinate in bp (base pair) units.

The distance between two genes in a circular genome is
defined by

δ = min
{ m(gj)−m(gi)

Lk
Lk−m(gj)−m(gi)

Lk

(10)

for m(gj) > m(gi). Lk is the chromosome size of chromo-
some k in bp where gi and gj are co-located.
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