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Abstract
With recent advances, chimeric antigen receptor (CAR) immunotherapy has become a promising modality for patients with 
refractory cancer diseases. The successful results of CAR T cell therapy in relapsed and refractory B-cell malignancies 
shifted the paradigm of cancer immunotherapy by awakening the scientific, clinical, and commercial interest in translating 
this technology for the treatment of solid cancers. This review elaborates on fundamental principles of CAR T cell therapy 
(development of CAR construct, challenges of CAR T cell therapy) and its application on solid tumors as well as CAR T 
cell therapy potential in the field of neuro-oncology. Glioblastoma (GBM) is identified as one of the most challenging solid 
tumors with a permissive immunological milieu and dismal prognosis. Standard multimodal treatment using maximal safe 
resection, radiochemotherapy, and maintenance chemotherapy extends the overall survival beyond a year. Recurrence is, 
however, inevitable. GBM holds several unique features including its vast intratumoral heterogeneity, immunosuppressive 
environment, and a partially permissive anatomic blood–brain barrier, which offers a unique opportunity to investigate new 
treatment approaches. Tremendous efforts have been made in recent years to investigate novel CAR targets and target com-
binations with standard modalities for solid tumors and GBM to improve treatment efficacy. In this review, we outline the 
history of CAR immunotherapy development, relevant CAR target antigens validated with CAR T cells as well as preclinical 
approaches in combination with adjunct approaches via checkpoint inhibition, bispecific antibodies, and second-line systemic 
therapies that enhance anticancer efficacy of the CAR-based cancer immunotherapy.
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The rise of immuno‑oncology

In the 1980s, a new chapter of cellular immunotherapy 
was established for cancer patients, as the initial suc-
cessful clinical applications of adoptive cell transfer in 
patients with metastatic melanoma and relapsed leu-
kemia revealed the potential of a therapeutic approach 
with tumor-specific T cells [1–4]. Gene transfer tech-
niques and the focus on selecting and expanding nat-
urally occurring T cells found in patients or healthy 

donors were shared features of late twentieth century 
approaches [5]. Adoptive cell therapy (ACT) with 
tumor-infiltrating lymphocytes (TILs), T cell receptor 
(TCR)-modified T cells, and chimeric antigen recep-
tor (CAR) T cells represent pioneer strategies. Never-
theless, TIL-based therapy showed major limitations 
as the process to harness TILs incited crucial chal-
lenges in logistical manner, whilst achieving limited 
results in selected highly immunogenic cancer entities 
(e.g. malignant melanoma) in terms of patient-spe-
cific treatment [6–8]. As an alternative to TIL-based 
therapy, T cell receptor (TCR) was genetically engi-
neered to confer the specificity to a particular tumor 
target. Depending on the expression of human leuko-
cyte antigen (HLA), T cells are generally restricted in 
their antigen recognition, which leads to limitations 
concerning application of TCR-modified T cells. Of 
note, tumors escape from immune surveillance of 
endogenous T-cell repertoire through downregulation 
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of HLA-expression [9]. Genetic modification of autol-
ogous T cells by introduction of TCRs using either 
viral-mediated transduction of retrovirus [10–12], 
lentivirus [13–16], or nonviral gene transfer of DNA 
plasmids [17–31] or in vitro-transcribed mRNA spe-
cies [32, 33], aptly named “chimeric antigen receptor” 
transgene, combines the functional dynamics of T cells 
with the antigen-specificity of an antibody to augment 
T cell function [5, 34, 35]. After infusion, CAR T cells 
may stimulate immune surveillance to prevent tumor 
recurrence through trans- as well as auto-costimulation 
and thus responding to tumor cells lacking costimula-
tory ligands [36, 37]. Since our immune system is pro-
grammed to avoid autoreactive immune responses [38], 
antitumor responses are frequently transient and inef-
fective as most tumor antigens are self-antigens that are 
also present in normal tissues [39], and host immune 
responses are evolved to prevent autoimmunity [40]. 
This aspect represents the main challenge in immuno-
oncology, while CAR technology in the sense of T cell 
engineering provides a mean to overcome immune tol-
erance. The direct binding of CAR to antigen induces a 
competent activation signal, proliferation, and cytokine 
production independent of major histocompatibility 
complex (MHC) with extended applicability to multi-
ple types of cancer [41–43].

Development of CAR construct

Chimeric antigen receptors (CARs) are synthetic receptors 
which recognize and target cells expressing a cognate target 
ligand and as a result redirect the killing activity of CAR T 
cells against a specific tumor cell antigen [44]. CAR con-
structs consist of four main components: the single-chain 
variable fragment (scFv), the hinge, the transmembrane 
(TM) domain, and the intracellular signaling domain [45] 
(Fig. 1A). The CAR concept was originally reported by a 
Japanese group in 1987 [46] and further studied and devel-
oped at the Weizmann Institute by Zelig Eshhar, thereby 
establishing the first generation CARs [47, 48]. The potency 
of CAR signaling was subsequently improved by addition of 
costimulatory domains by Michel Sadelain, from whom the 
second, third, and fourth generation CARs were developed 
[35, 49, 50] (Fig. 1B). By identifying and evaluating the 
critical role of 4-1BB (CD 137) costimulation, Carl June’s 
group essentially contributed to expand the knowledge on 
second and third generation CARs [51–55].

Each of the four components has a distinct function and 
has been optimized through many variations of the constitu-
ent protein domains to maximize tumor detection, T cell 
activation, and tumor elimination [56].

The specificity of a CAR is conferred by its ectodomain 
derived from the antigen binding of a monoclonal antibody 

Fig. 1  A Chimeric antigen receptor (CAR). CARs consist of four 
main components: the single-chain fragment variant (scFv), an extra-
cellular spacer domain (hinge region), a transmembrane domain, and 
an intracellular signaling domain (stimulatory molecule: CD3ζ).  VH, 
heavy chain variable region.  VL, light chain variable region. B Evo-

lution of chimeric antigen receptor (CAR). According to the evolu-
tion of CARs, the sophistication of the receptor has grown over time. 
They are referred to as the first, second, and third CARs, depending 
on the structure of their intracellular T cell region. Costim., costimu-
latory domain/element
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(mAb) with a heavy (VH) and light (VL) variable fragment con-
nected by a flexible linker to construct a single-chain fragment 
variable (scFv) region for HLA-independent antigen recogni-
tion [46]. The order of variable fragments and the length of 
the linker have an impact on the antigen-binding affinity and 
the stability of the construct [57, 58]. The length and compo-
sition of the spacer domain determine the optimal distance 
between effector and target cell and are essential for immu-
nological synapse formation [59, 60] and additional stability 
[61] by influencing CAR T cell function independent from the 
intracellular domain [62]. The spacer domain is commonly 
composed of amino acid sequences from CD28 or CD8α as 
well as CH2 and CD3 domains from IgG1, 2, or 4 [45, 57, 63].

The transmembrane domain consists of a hydrophobic 
alpha helix, which anchors the CAR construct. The TM region 
affects the degree of cell activation, hence, the functionality 
of CAR. CD28-derived TM domains are more prone to trig-
ger activation-induced cell death (AICD) in T cells, whilst a 
CD3ζ-derived ones facilitate CAR dimerization with endog-
enous TCRs, thereby inducing T cell activation [64, 65].

The CAR design has been developed over generations. 
Its evolution has primarily focused on optimizing the intra-
cellular signaling domains. The first-generation CARs only 
contained an activating domain, namely, CD3ζ, without a 
costimulatory domain. They showed limited cytokine pro-
duction, insufficient T cell proliferation, and expansion, 
and rapidly became anergic [35, 45, 66, 67]. The clinical 
application of the CD3ζ-based CAR T cells in patients suf-
fering from ovarian cancer [68], neuroblastoma [69], and 
non-Hodgkin’s lymphoma (NHL) [18] revealed limitations. 
The second and third generation CARs contain one or two 
costimulatory domains, respectively [70, 71], which enhance 
proliferation and exhibit antiapoptotic functions in human 
primary T cells [72] by directing the expansion of functional 
T cells on repeated exposure to antigen [49]. The second 
generation CARs achieved long-term persistence, expansion, 
and protection from AICD through integration of a costimu-
latory domain such as CD27 [73], CD28 [74, 75], CD134 
(OX40) [76], or CD137 (CD4-1BB) [77, 78]. By combining 
the advantageous aspects of costimulatory domains, the third 
generation CARs emerged with greater intracellular signal-
ing activity as well as superior persistence and proliferation 
properties [79, 80]. Kinetic and quantitative differences in 
CARs with different signaling domains have been demon-
strated, highlighting that the choice of costimulatory signal 
has proven to be a critical element of CAR design [81].

CAR T cell therapy

Adoptive transfer of autologous CD19-targeted CAR T 
cells was approved by the US Food and Drug Administra-
tion (FDA) as the first therapeutic approach with a genetic 

engineering component [82, 83] due to remarkable response 
rates, particularly in patients with diffuse large B cell lym-
phoma (DLBCL) or acute lymphoblastic leukemia (ALL) 
[84–90]. The first protocols either used gamma-retroviral 
or lentiviral vectors including either CD28- or 4-1BB-con-
taining constructs [73, 82, 83, 91, 92]. Additional tumor 
antigen targets such as B cell maturation antigen (BCMA, 
also known as CD269) for treatment of multiple myeloma 
[93] have recently been discovered and are currently being 
evaluated. Further clinical approaches confirmed the data in 
larger series [5, 85, 86, 94].

In comparison to CD20 or CD22, CD19 is most com-
monly chosen as a target antigen [95, 96] due to its frequent, 
broader, and greater expression in B-cell leukemia and lym-
phoma in relation to other potential targets.

The manufacturing time, financial burden, and severe tox-
icities associated with CAR T cell therapy represent cur-
rent limitations [97]. Generation of an autologous CAR T 
cell product from chemorefractive patients is particularly 
limited in the quality of the obtained T cells as well as in 
the survival time of the patients (Fig. 2). The patients are 
required to be treatment-free for 2 weeks prior to apheresis 
to ensure sufficient cell numbers and qualitative viability for 
the manufacturing process, which takes around 2–4 weeks 
[88]. The alternative treatment with allogeneic CAR T cell 
products carries the critical risk of graft-versus-host-disease 
(GvHD), a life-threatening condition with rapid elimination 
of CAR T cells by the host immune system [98].

The spectrum of adverse effects associated with CAR 
T cells includes on-target effects, depending on the speci-
ficity of antibody scFv and T cell activation. These toxic 
effects are reversible once the target cells are eliminated, 
or the CAR T engraftment is terminated. In contrast, off-
target toxic effects can be promoted by transduced T-cell 
population that undergo antigen-independent activation 
or unexpectedly attacks an antigen other than the intended 
one, possibly causing significant clinical long-term conse-
quences, e.g., cardiac toxicity [99, 100]. This phenomenon 
is unrelated to toxicity due to other lines of treatment. To 
minimize the risk of off-target activation, the spacer domain 
of CARs can be modified, thereby avoiding an unintended 
initiation of an innate immune response [101].

Another potential side effect that poses a limitation of 
CAR technology is on-target/off-tumor toxicity, which 
occurs when CAR T cells attack nonpathogenic tissue that 
express the target antigen and therefore react with antigen 
different from the one intended. This is largely due to the 
fact that many targets of CAR T cells are also expressed 
on normal, non-tumor cells, leading to on-target/off-tumor 
toxicity to some extent through engagement of target antigen 
on nonpathogenic tissues [100, 102].

CAR T cell therapy can cause a clinical syndrome termed 
“cytokine release syndrome” (CRS) consisting of high fever, 
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hypotension, hypoxia, tachycardia, and neurologic symp-
toms and complications associated with elevated levels of 
serum cytokines [85, 86, 103–105]. This syndrome seems 
to be related to both CD19 and BCMA CARs, while the 
severity correlates with tumor burden as measured by blasts 
in bone marrow at the time of therapy [106–108]. On-target 
CAR T cell activation leads to massive proliferation as well 
as release of high levels of cytokines and chemokines such 
as IL-6, IFN-γ, GM-CSF, and soluble IL-6R and IL-2Rα. 
Tocilizumab (Actemra), an IL-6-receptor antagonist, is an 
effective antibody recently approved by the FDA for the 
treatment of severe cytokine release syndrome caused by 
CAR T cells. It may lead to rapid resolution of severe CRS 
after blockade of IL-6R [90, 107]. As an alternative, gluco-
corticoid can be administered if patients do not respond well 
to IL-6R blockade [84, 85, 89, 107, 109, 110].

Neurotoxicity, immune effector cell-associated neuro-
logic syndrome (ICANS), has been observed to develop 
after CRS and appears to be an adverse effect related to, 
among others, CD19-directed therapies [111, 112] since a 
similar spectrum of toxic effects have been observed with 
blinatumomab, which is a bispecific anti-CD19 and anti-
CD3 monoclonal antibody [113]. The symptoms range from 
encephalopathy to expressive aphasia and seizures [86, 114, 
115]. Even though the cause remains largely unknown, they 
are usually reversible and not associated with the spread of 
cancer to the central nervous system (CNS). Rare cases of 
cerebral edema have been reported in some trials [114, 115]. 
Until the pathophysiology of the neurologic syndrome is 

fully explained, the ultimate management remains primarily 
empirical and has mainly been directed towards management 
of CRS by suppression of T cell activation with corticoster-
oids and symptomatic and supportive care to maintain organ 
function [115].

Multi-antigen-targeted CAR T cells provide a strategy 
to expand the CAR T cell therapeutic window and over-
come limitations by antigen escape and on-target/off-tumor 
toxicities by simultaneously targeting multiple surface anti-
gens [116]. For instance, OR-gate CARs provide two scFv 
domains against various targets, which are either bound to 
a single TM and intracellular domain (“tandem CAR”) or 
represent two complete CAR constructs expressed on the 
same cell (“dual CAR”), aiming to prevent tumor escape 
[117–119]. AND-gate CARs also feature two scFvs, how-
ever, they require both antigens on the same cell prior to 
the ultimate signal propagation, from which tumor speci-
ficity is achieved by the dual expression of both antigens 
(“combinatorial CAR”) [120–122]. Other components of 
the immune system can be recruited and activated via addi-
tional expression of costimulatory ligands, such as 4-1BB-L 
[123] and CD40-L [124] or proinflammatory cytokines. The 
structure of On-Switch CARs relies on a small molecule, 
which assembles the fragmented CAR construct to allow 
a controlled CAR activation through the administration of 
a drug, thereby allowing titrable pharmacologic regulation 
[125]. Universal CARs describe another type of fragmented 
CAR design, in which the antigen-specific region can be 
exchanged to facilitate the targeting of different cancer types 

Fig. 2  Manufacture of chimeric 
antigen receptor (CAR) T cells. 
Primarily, autologous T cells are 
isolated through leukapheresis 
and genetically modified ex vivo 
to express CARs, followed by 
the expansion in culture. After 
gene transfer of a CAR vector, 
the CAR T cells are expanded. 
Magnetic bead-based artificial 
antigen-presenting cells, which 
were used to activate T cells, 
are subsequently removed from 
the culture to isolate CAR T 
cells. The final CAR T cell 
culture is washed, concentrated, 
and subjected to end-of-process 
formulation with quality control 
testing and cryopreservation. 
Patients usually receive a 
lymphodepletion prior to the 
ultimate CAR T cell administra-
tion
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through the same TM and intracellular signaling construct 
[126–129].

In addition to second and third generation CARs, the 
fourth generation of CAR construct was developed to 
shape the tumor environment by the inducible release of 
immune modifiers [130, 131]. Sometimes, also referred to 
as T cells redirected for universal cytokine-mediated kill-
ing (“TRUCKs”), the fourth generation of CAR T cells is 
a novel design for targeting solid tumors and carry a trans-
genic “payload.” They are armed with immune stimulatory 
cytokines [131], which consequently improve CAR T cell 
expansion and persistence with increased resistance towards 
immunosuppressive tumor microenvironment (TME) [132]. 
As transgenic cytokine expression potentially triggers 
bystander T cells, antigen-negative cancer cells at the tar-
get site can be eliminated. The cytokines studied to date 
include IL-7, IL-12 [133, 134], IL-15 [135], IL-18 [136, 
137], and IL-21 [138]. As IL-15 supports the development 
of T-memory stem cells  (Tscm) that promote superior in vivo 
function and persistence without influencing regulatory 
T  (Treg) cells, it was observed to have a great potential to 
improve the function of CAR T cells [139–141]. Moreo-
ver, tumor-targeted IL-12 secreting T cells were shown to 
become resistant against inhibitory signals mediated by  Treg 
cells [134], resulting in maintenance of the optimal thera-
peutic level and accumulation of cytokines in target tissues, 
and thus, in destruction of both TAA (tumor-associated 
antigens)-expressing and TAA-negative tumor cells [142, 
143]. To adapt this approach in terms of a protocol in practi-
cal manner, exact toxicity profile with controlled release of 
cytokines for safe application of this strategy must be guar-
anteed [144]. Inhibitory CARs turn an immunosuppressive 
signal from a tumor cell into an activating signal by fusing 
the extracellular inhibitory domain, for instance, PD-1, to 
activate intracellular CAR domain [145]. To optimize safety 
profile of CAR T cells, a suicide gene switch can be trig-
gered in the event of adverse effects [146].

Moreover, an alternative strategy to mitigate the limita-
tions of CAR T cell therapy has been developed, in which 
natural killer (NK) cells are utilized instead of T cells. As 
target recognition mechanisms of NK cells differ from that 
of cytotoxic T-lymphocytes (CTLs), NK cells, as innate lym-
phoid cells, receive activating and inhibitory signals by their 
germline-encoded receptor repertoire with the ability to rec-
ognize the absence of HLA-proteins. Thus, CAR T cells and 
CAR NK cells differ in various attributes. CAR T cells may 
be more effective in killing tumors and are more persistent 
in vivo, whereas CAR NK cells may offer a more favorable 
safety profile by combining natural anti-tumor function of 
NK cells with CAR-redirected function in terms of an intrin-
sic killing capacity of malignant cells with only a few side 
effects post-transplantation, such as limited CRS risks. How-
ever, they do not last as long and tend to require repeated 

administrations. Most CAR T cell-based approaches consist 
of autologous enriched T cells, whereas CAR NK cell-based 
gene therapy products can be generated from allogeneic 
donors, so that they possibly reduce the tremendous costs 
and the limited availability of an autologous therapy caused 
by logistics and the low cell numbers of heavily pretreated 
patients [147–149].

Solid tumors

Modern attempts have recently been made to strive for suc-
cessful treatment for solid tumors. Since these tumor enti-
ties rarely express specific target antigens, tumor-associated 
antigens that are enriched on most solid tumors are aimed as 
targets. The antigens studied so far include CEA, ERBB2, 
EGFR, GD2, CD33, CD123, mesothelin, MUC1, PSMA, 
PSCA, STn, and others [150–155]. However, since they are 
also expressed at low levels in normal tissues, the potential 
risk of significant on-target/off-tumor toxicity is increased 
[156–160].

The main challenges when targeting solid tumors are gen-
erally associated with the complicated structure and cellular 
milieu of solid tumors, which leads to inefficient penetration 
of CAR T cells into tumors [161, 162]. Even in the setting of 
a uniformly expressed TAA, there is still a great possibility 
of antigen loss or antigen escape when target antigen disap-
pears from the surviving tumor [135, 159, 163–165], or the 
highly immunosuppressive nature of TME overcome CAR 
T cell activation and persistence [166].

Antigen heterogeneity poses a major obstacle to the use 
of CAR T cells for treatment of solid malignancies. The term 
refers to the different cells of the same tumor expressing 
different antigens. Thus, if only one antigen is targeted by 
CAR T cells, tumor cells negative for that specific antigen 
will escape [167].

CAR T cell-mediated lysis can further release tumor-
specific neoantigens or epitopes that might be processed 
and presented by APCs to TILs, resulting in a secondary 
immune response that bolsters the efficacy of CAR T cells 
against tumor entities such as melanoma [168], NSCLC 
[169], malignant pleural mesotheliomas [170], pancreatic 
cancers [171], and others.

Several strategies and mechanisms have been under devel-
opment to deal with and overcome the antigen heterogeneity 
of solid tumors, including the aforementioned fourth gen-
eration CARs with different construct designs. Anti-EGFR 
BiTEs were observed to increase the efficacy of antifolate 
receptor-α CAR T cells in preclinical models of the ovar-
ian, colon, or pancreatic cancer and of anti-EGFRvIII CAR 
T cells in mouse models of GBM, providing the rationale 
to test this therapy in human trials with patients with solid 
tumors [172, 173]. Notably, universal CARs have been 
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created, for which adapter elements are required as ligands 
to enable the targeting of multiple antigens with a single 
CAR T cell population. Different strategies play a significant 
role to successfully target heterogeneous solid tumors whilst 
minimizing possible off-tumor toxicities.

Numerous engineering strategies have already been 
implemented to improve and enhance CAR T cell trafficking 
in solid tumors. To avoid the challenges and adverse effects 
that arise from systemic application, CAR T cells have 
been injected directly intratumorally, among others in brain 
tumors [174], breast cancer [175], pleura mesothelioma 
[170], and liver metastases [176]. This approach has shown 
promising responses with the potential to limit on-target/off-
tumor toxicities [177]. The regional application allows CAR 
T cells to expand and traffic to other tumor sites and promote 
responses of endogenous immune effect against tumors. An 
antitumor humoral response with multiple additional anti-
gens has also been observed in patients who received infu-
sions of T cells transduced with mRNA encoding an anti-
mesothelin CAR [170]. Although it has not yet been studied 
extensively, this result suggests the potential application of 
regional delivery of CAR T cells to initiate systemic antican-
cer immune responses. Since many metastatic solid tumors 
are not susceptible to localized therapy, efforts to engineer 
CAR T cells with an intrinsic ability to optimize trafficking 
to sites of disease are of utmost importance.

Chemokines are crucial factors that mediate immune cell 
trafficking [178]. Expression of the macrophage colony-
stimulating factor 1 receptor (CSF-1R) in CAR T cells would 
promote the cells to become responsive to CSF-1, which is 
enriched in many solid tumors. Similarly, CCR2b, which 
is the receptor for CCL2, seems overexpressed in multiple 
types of solid tumors, enhancing the infiltration of anti-GD2 
CAR T cells into neuroblastoma xenograft tumors [179] as 
well as anti-mesothelin CAR T cell infiltration into mesothe-
lioma xenografts by more than 12.5-fold with increased anti-
tumor efficacy [180]. Expression of CC-chemokine receptor 
4 (CCR4), which is commonly expressed on T helper  (Th) 
cells and  Treg cells, is typically activated via CC-chemokine 
ligand 17 (CCL17) and CCL22 secreted by Reed-Sternberg 
cells of Hodgkin lymphoma, enhancing both CAR T cell 
migration to tumors and antitumor efficacy in a mouse xeno-
graft model of Hodgkin lymphoma [181].

Inhibition of the PD-1 pathway causes an essential clini-
cal benefit in patients with certain types of cancer [182]. 
PD-1 is an immune-checkpoint receptor expressed on acti-
vated T cells and can bind to PD-L1 expressed by tumor 
cells as well as other cell types to adopt an exhausted phe-
notype. CAR T cells engineered to secrete antagonistic anti-
PD-1 scFvs showed a synergistic improvement in functional-
ity and prolonged survival in immunocompetent syngeneic 
mouse models of PD-L1-positive hematological or solid 
cancers [183] as well as in xenograft [183, 184]. Increased 

anticancer efficacy of CAR T cell therapy via coadministra-
tion of antibodies inhibiting the PD-1 pathway in preclinical 
models [185] and in patients with ALL or DLBCL has been 
shown [186, 187]. Successful strategies regarding combina-
tion of CAR T cells with established immune-checkpoint 
inhibitors or other prodrugs have been demonstrated thus 
far. For instance, increased levels of reactive oxygen spe-
cies (ROS) in TME are exploited by using ROS accelerator 
named as PipFcB, which is specifically activated in cancer 
cells to induce further generation and accumulation of ROS, 
due to which the tumor cells are rather primed to undergo 
lysis than other surrounding normal cells [188]. Besides 
anti-PD-1 scFv-secretion, CAR T cells are able to coun-
ter the actions of adenosine in the TME, which activates 
adenosine receptor  A2A to inhibit T cell function [189, 190]. 
Inhibitory signals in the TME also represent a challenging 
problem for CAR T cells which needs to be resolved. CAR T 
cells have been engineered to express switch cytokine recep-
tors which convert inhibitory signals present in the TME into 
proinflammatory signals [172, 191, 192] or dominant-neg-
ative TGFβ-receptors that increase the ability to infiltrate, 
proliferate and enhance cytokine secretion, resist exhaustion 
and induce tumor eradication [193].

Amino acids, oxygen, and other nutrients in the TME 
influence the metabolism, function, and differentiation of 
T cells [194, 195]. Rapidly proliferating cancer cells and T 
effector cells have a strong demand for amino acids. Argi-
nine, for instance, plays an important role for T cell function. 
Consequently, the competition between cancer and T effec-
tor cells over arginine in the TME might result in suppres-
sion of antitumor activity of T cells, possibly leading to T 
cell anergy. Therefore, supplementing T cells with arginine 
can improve the survival capacity and antitumor activity of 
these cells [196]. Engineering T cell metabolic pathways to 
express the antioxidant enzyme catalase enables T cells to 
better resist oxidative stress in vitro [197].

Since antigen escape remains a major concern in CAR 
T cell therapy, recruitment and activation of endogenous 
immune cells can be necessary to propagate and modulate an 
efficient antitumor immune response. For instance, TRUCKs 
can increase activity of CAR T cells that secrete stimulatory 
cytokines to trigger proliferation as well as to enhance sur-
vival and antitumor efficacy, while simultaneously altering 
the immune milieu of solid tumors [130].

CAR T cell therapy in neuro‑oncology

In recent years, several CARs for GBM have been developed 
and tested in clinical trials (Table 1). Some results seem to 
be quite promising. As the most common and malignant 
primary brain tumor in adults, GBM is responsible for 3–4% 
of all cancer-related deaths with an extremely poor prognosis 
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[202]. The current standard therapy for GBM includes maxi-
mal surgical resection with consecutive radiotherapy and 
adjuvant chemotherapy with temozolomide (TMZ). How-
ever, despite recent progress in conventional therapeutic 
approaches with improved overall survival, recurrence is 
essentially inevitable, indicating that a more aggressive local 
therapy is required.

Various GBM antigens have been found as a potential 
target for CAR T cells, from which epidermal growth factor 
receptor variant III (EGFRvIII), human epidermal growth 
factor receptor 2 (HER2), and interleukin-13 receptor alpha 
2 (IL-13Rα2) have been clinically verified as effective tar-
gets of CAR T cell therapy for GBM [203].

Since the route of administration is an essential determi-
nant in therapeutic success, the question arises which mode 
of delivery for CAR T cells targeting GBM is the most 
optimal. Considering that extracranial metastasis is rare in 
primary brain tumors such as GBM [204], is systemic or 
locoregional delivery of CAR T cells more advantageous?

As the most common delivery approach for hematologi-
cal and solid cancers, systemic delivery in form of intrave-
nous (IV) administration exhibits systemic toxicities. Intra-
ventricular (ICV) and/or intratumoral/intracavitary (ICT) 
administration are locoregional delivery strategies which 
require the implantation of a catheter delivery device/reser-
voir placed during surgery. CAR T cells are delivered into 
the cerebrospinal fluid via the ventricular system in ICV 
administration, while CAR T cells are directly administered 
into the tumor or resected tumor cavity in ICT delivery 
[177]. Locoregional routes of delivery do not merely lead to 
decreased risk of systemic toxicities; there is clear evidence 
that local delivery seems to outperform systemic delivery 
in terms of efficacy and benefit. For instance, outstanding 
clinical efficacy was reported in a patient with recurrent 
multifocal GBM with a regression of all intracranial and 
spinal tumors after administration of CAR T cells targeting 

IL-13Rα2 by means of locoregional delivery (ICT and ICV) 
[174]. This clinical response endured for 7.5 months after 
the start of CAR T cell therapy. Another clinical trial fur-
ther shows the limit of systemic administration of CAR T 
cells targeting EGFRvIII since objective tumor regression 
could not be induced and delayed progression or prolonged 
survival in patients with recurrent GBM was not achieved 
[198]. In contrast, effective antitumor immune response and 
safety of HER2-specific CAR-modified virus-specific T cells 
in patients with progressive GBM with no serious adverse 
events have been observed, with intravenous administration 
as the route of delivery [201]. However, serious adverse 
effects following intravenous HER2-specific CAR T cell 
infusion resulting in pulmonary distress, cardiac arrests, 
and ultimately death have also been reported in the current 
literature [156]. This off-tumor toxicity can be attributed to 
first-pass clearance of HER2-specific CAR T cells in the 
lung with consecutive release of inflammatory cytokines, 
causing pulmonary edema and toxicity. A subsequent 
cytokine storm then leads to multiorgan failure. To prevent 
such serious adverse effects, a locoregional delivery strategy 
may be pursued.

Of note, other potential GBM-associated targets for CAR 
T cell therapy are currently examined, among others ephrin 
type A receptor 2 (EphA2) [205, 206], CD 70 [207], the can-
cer stem cell antigen CD133 [208, 209], chondroitin sulfate 
proteoglycan 4 (CSPG 4) [210, 211], B7-H3 [212, 213], and 
podoplanin (PDPN) [214].

A combinatorial approach to enhance antitumor efficacy 
has been implemented in a human neuroblastoma preclinical 
model. The combination of CAR T cells with bevacizumab, a 
recombinant human monoclonal antibody that blocks angio-
genesis by inhibiting vascular endothelial growth factor A 
(VEGF), has shown encouraging results [215]. The theoreti-
cal background of the study is that tumor-driven neo-angio-
genesis reinforces an immunosuppressive microenvironment 

Table 1  Completed clinical trials of CAR T cell therapy in patients with GBM

MS median survival, MOS median overall survival, MPFS median progression-free survival

Target antigen Reference Study phase Dosage of CAR T cells Response Clinical trial

EGFRvIII [165] I One intravenous dose 1.75 ×  108 – 5 ×  108 
CAR T cells

MOS 8 months NCT02209376

[198] I/II Two intravenous doses 6.3 ×  106 to 2.6 ×  1010 
CAR T cells per infusion with an interval 
of 2 h

MOS 6.9 months MPFS 1.3 months NCT01454596

IL13Rα2 [199] I Intravenous infusions of  108 CAR T cells on 
days 1, 3, and 5 for duration of 2 weeks; 
repetition of treatment after 3 weeks

MS after relapse 11 months NCT00730613

[200] I Locoregional injections of 1 ×  108 CAR T cells 
and IL-2 twice per week for 2 weeks

MOS 19.7 months NCT01082926

HER2 [201] I  ≥ 1 intravenous infusions of 1 ×  106/m2 – 
1 ×  108/m2 CAR T cells

MOS 24.5 months MPFS 3.5 months NCT01109095
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and influences treatment responses. By administering an addi-
tional antiangiogenic drug, tumor vasculature is transiently 
reprogrammed and bevacizumab-mediated TME remodeling 
maximizes CAR T cell functions by increasing their tumor 
infiltration capacity [216].

Apart from the application of CAR T cell therapy for GBM 
and neuroblastoma, pediatric brain tumors (e.g., medulloblas-
toma, ependymoma, high-grade gliomas) seem to have the 
potential to be treated with CAR T cell therapy [217]. A recent 
study validates intrathecal delivery of CAR T cells targeting 
EphA2, HER2, and IL-13Rα2 as an effective treatment for pri-
mary, metastatic, and recurrent medulloblastoma and epend-
ymoma in mouse models [218].

Noteworthily, antigens targeted in GBM to date are either 
easily downregulated or not particularly tumor-specific, which 
poses a major problem in the immunotherapy for GBM.

An innovative strategy to overcome tumor heterogeneity 
has been demonstrated in a recent research article describ-
ing the use of chlorotoxin-directed CAR T cells to achieve 

broader and effective GBM targeting. Although not an 
antibody-based CAR T cell therapy, this method seems to 
mediate antitumor activity against established GBM xeno-
grafts while simultaneously exhibiting negligible off-target 
effects. Systemic toxicity was not observed in systemic 
(intravenous) and regional delivery of chlorotoxin-CAR T 
cells into healthy and tumor-bearing mice. Results from this 
study suggest a potent anti-GBM activity of CAR T cells 
using chlorotoxin as the targeting domain and thereby the 
potential to reduce antigen escape [219].

Significant challenges in the development of novel thera-
pies are due to certain characteristic features of GBM in 
contrast to other solid tumors, including biological factors 
such as the intracranial location, blood–brain barrier, het-
erogeneity of the tumor, and the unique, immunosuppressive 
TME [220]. The immunosuppressive TME may suppress the 
activity and proliferation of CAR T cells by releasing certain 
inhibitory molecules, soluble factors, and/or cytokines which 
create physical and metabolic blockades [221]. Intertumor 

Table 2  Ongoing clinical trials of CAR T cell therapy in patients with GBM

Target antigen Study phase Dosage of CAR T cells Enrolment/primary 
completion date

Sponsor Clinical trial

EGFRvIII I CART-EGFRvIII + pembrolizumab 7/December 2020 University of Pennsylvania NCT03726515
I Initial dose of 2.5 ×  108 CAR T cells 

per intracerebral infusion; dose 
escalation in successive cohorts

24/December 2021 Duke University NCT03283631

IL13Rα2 I IL13Rα2-specific, hinge optimized, 
41BB/truncated CD19-expressing 
CAR T cells by locoregional, 
intracavitary, or intraventricular 
catheter; weekly for 3 weeks and 
additional infusion if eligible

92/January 2021 City of Hope Medical Center NCT02206362

I Intravenous infusion of nivolumab 
and ipilimumab followed by intra-
ventricular or locoregional infusion 
of CAR T cells up to four cycles

60/December 2022 City of Hope Medical Center NCT04003649

B7-H3 I Three locoregional or intracer-
ebroventricular injections of CAR 
T cells at two doses between temo-
zolomide cycles

12/May 2022 Second Affiliated Hospital, School of 
Medicine, Zhejiang University

NCT04385173

I/II Three locoregional or intracer-
ebroventricular injections of CAR 
T cells at two doses between temo-
zolomide cycles

40/June 2024 Second Affiliated Hospital of Zhe-
jiang

NCT04077866

GD2 I Intravenous injections of 1 ×  107 – 
1 ×  108 CAR T cells with or with-
out lymphodepletion chemotherapy

34/February 2023 Baylor College of Medicine NCT04099797

MMP2 I Three weekly cycles of one or two 
CAR T cell infusions

36/February 2023 City of Hope Medical Center NCT04214392

CD147 I Intracavity injection of CAR T cells 
once per week for 3 weeks

31/October 2020 Xijiang Hospital NCT04045647

Variable I CAR T cells expressing receptors 
specific for EGFRvIII, IL13Rα2, 
Her2, CD133, EphA2, or GD2 with 
or without anti-PDL-1 mAb

100/January 2021 Xuanwu Hospital NCT03423992
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and intratumor heterogeneities of molecular, genetic, and 
cellular signatures result in tumor diversity, making GBM 
more challenging to target with a single antigen. Immune 
escape and constant immune tolerance also represent limit-
ing factors of CAR T cell therapy.

On the whole, further studies are warranted to evalu-
ate CAR T cell therapy in patients with brain tumors with 
respect to its antitumor efficacy, safety profile, and potential 
combinatorial approaches while simultaneously considering 
the most important translational challenges.

Conclusions

In this review, we illustrate the opportunities and chal-
lenges of immunotherapies in solid tumors with particular 
emphasis on GBM and discuss new avenues and novel 
treatment strategies based on CAR T cells and combina-
tion therapy. Tumor-specific redirection of the exquisite 
lytic capacity of CAR T cell-based therapy has become 
a promising new treatment modality. Recent advances 
in research techniques that utilize adoptive cell therapy 
approaches are expected to bring about crucial develop-
ments regarding treatment options for patients suffering 
from hematologic malignancies and solid tumors, includ-
ing brain tumors.

GBM thereby shows a particular challenge due to its 
aggressive nature and highly immunosuppressive TME. 
CAR T cell therapy has introduced and supported a crucial 
clinical development for treatment of malignant glioma.

The potential combination of CAR T cells with the 
investigated antigens, immune checkpoint inhibitors, or 
inhibitors of angiogenesis present effective strategies to 
additionally enhance the cytotoxic potential of CAR-engi-
neered immunotherapy against solid tumors and improve 
their ability to modulate innate and adaptive immune cells 
in the complex TME. The preferred way to design recep-
tor-targeted therapeutic approaches in neuro-oncology 
should, among others, include the combined targeting of 
multiple receptors.

Novel results highlight the potential advantage of 
locoregional/intraventricular application of CAR T cells 
compared to systemic application.

Further preclinical and clinical trials are needed to opti-
mize CAR T cell treatment approaches and to harness the 
antitumor efficacy of CAR T cells combined with adjunct 
therapies (Table 2).
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