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Abstract: Trait tagging through molecular markers is an important molecular breeding tool for crop
improvement. SSR markers encoded by functionally relevant parts of a genome are well suited
for this task because they may be directly related to traits. However, a limited number of these
markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers
(FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of
Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated
using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of
the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto
Musa and related species indicated sequence-based orthology and synteny relationships among the
chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic
relationships among 50 banana accessions, and the results revealed that all banana accessions group
into two major clusters according to their genomic background. Here, we report the first large-scale
development and characterization of functionally relevant Musa SSR markers. We demonstrate
their utility for germplasm characterization, genetic diversity studies, and comparative mapping in
Musa spp. and other monocot species. The sequences for these novel markers are freely available via
a searchable web interface called Musa Marker Database.

Keywords: Musa spp.; comparative mapping; functional domain; SSR markers

1. Introduction

Banana is one of the most consumed and commercially important fruit crops. Approximately 90%
of the world’s bananas are produced in tropical and sub-tropical regions. Banana fruit significantly
contributes to the export revenue and food security of these regions, and other banana plant parts are
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used locally for food and fibre. The annual global banana production in 2017–2019 was 116 million
tons with an approximate value of USD 31 billion [1]. Most of the cultivated banana varieties are
triploid, while some are diploid and have either a Musa acuminata (A) genome or are hybrids of the
Musa acuminata and Musa balbisiana (B) genomes. The different levels of ploidy and chromosome
numbers of banana have led to complexity in taxonomy [2] and are associated with parthenocarpy,
leading to female sterility, seedless fruit and non-viable seeds. As a result, cultivated bananas are mainly
reproduced asexually, with a consequent narrow genetic base. Genomic abundance, co-dominant
inheritance, assay simplicity, and hyper variability make microsatellite markers (simple sequence
repeats or “SSRs”) highly useful for genetic studies. The SSR markers located within protein-coding and
the associated untranslated regions (UTRs) of genes may be directly linked with traits. Consequently,
such functionally relevant SSR markers (FRSMs) can be useful to rapidly build marker–trait linkages
and to discover genes/quantitative trait loci (QTLs) related to traits of agronomic importance in crop
plants [3–6]. A number of studies have shown that functionally associated molecular markers are more
powerful than anonymous markers for marker-assisted selection, marker-trait association [7], genetic
diversity [4], comparative mapping [3] and the construction of transcript maps [8], and as anchor
markers for evolutionary studies in plant species [3–5,8]. For banana, several hundred SSR markers
have been developed from EST sequences [9–12], from BAC end sequences [13,14] and from A and B
genome sequences [15]. However, only a small proportion of these markers have been experimentally
validated and used for genotyping in banana. For example, Christelova et al. [16] used 19 SSR marker
for genotyped 695 banana accessions. In addition, many of these banana SSR markers are not publicly
available, and their chromosomal location, degree of polymorphism and functional characteristics
have not been estimated which has limited the application of banana SSR markers in genotyping,
association studies and fine mapping of important agronomic traits in banana breeding. Due to these
limitations, there is a need for a well-curated SSR marker database based on information from in-silico
data mining, including the genomic or chromosomic positions of SSRs, functional association and gene
affinity, together with information based on experimental validation of SSRs, such as polymorphisms,
transferability and allelic variations. This resource can accelerate various applications of genomics,
genetics and breeding in bananas.

The application of molecular markers to banana breeding programs has included RAPD [17–19]
(randomly amplified polymorphic DNA), ISSR [20–23] (inter simple sequence repeat), AFLP [24]
(amplified fragment length polymorphism), DArT [25] (Diversity Arrays Technology), SSR [15] and
SNP [26] (Single Nucleotide Polymorphism) and ASSP (Single Amino Acid Polymorphism) [27–30].
A recent review of the application of various molecular marker techniques in banana breeding showed
RAPD, ISSR and AFLP marker techniques to be generally less effective compared to the SSR markers,
due to low reproducibility, less allelic variation within single loci, and lack of co-dominance [31].
More recently developed NGS technology-based markers including RADseq, DARTseq and GBS
provide high genome coverage and accuracy for genetic analysis compared to SSR markers. However,
NGS approaches come at higher costs and require expertise for downstream application, while SSR
genotyping is relatively simple assay and reasonable. An SSR genotyping approach is also able to
systematically add new information to existing data sets. Moreover, SSR multi-allelic while SNP
bi-allelic, so SSRs are more likely to detect polymorphism. As a result, banana breeders as well as other
plant breeders still rely on SSR markers.

A large number of the transcript sequences from Musa spp. that are publicly available have not
yet been mined for SSR markers. Recently, four whole genome sequences of the banana have been
published and are available in the public domain. The total length of the Musa acuminata genome
(A genome) sequence assembly [27,28] is 439 Mb representing 84% of the estimated size (523 Mb) of the
DH-Pahang genome, which is distributed among 11 chromosomes. Similarly, a high quality 430 Mb
(87%) draft genome of M. balbisiana [29] (B genome) was assembled into 11 chromosomes. The 525 Mb
draft genome of M. schizocarpa [30] (S genome) was anchored to 11 groups, while the 462.1 Mb draft
genome assembly of M. itinerans [31] covers 75.2% of the 615.2 Mb genome. The availability of these
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genome assemblies facilitates the extraction of geneic regions and the development and in-silico
mapping of SSR markers. Transcriptome sequences are another valuable resource for identifying
transcription factor (TF)-encoding gene products and TF-functional domains that are useful for
developing functionally relevant molecular markers. The use of transcript sequences to identify SSR
markers associated with TF-derived genes or functional domains has been reported in only a few
plant species, including sugarcane [3], chickpea [32], tomato and pepper [33] but not previously for
Musa spp.

In view of the above, the present study was conducted to (i) develop functionally relevant
novel SSR markers from Musa transcript sequences and identify their loci, (ii) assess the cross-taxon
transferability of developed markers, (iii) estimate the usefulness of functionally relevant Musa SSR
markers for comparative mapping, (iv) evaluate the potential of these SSR markers for large-scale
genotyping applications in Musa spp., (v) apply the SSRs in genetic diversity and population structure
analysis of Musa germplasm and (vi) develop a searchable freely accessible SSR marker database.

2. Materials and Methods

2.1. Plant Material Collection and DNA Extraction

Eight genotypes (‘Prata’, ‘Kluai namwa khom’, ‘FHIA21’, ‘Dwarf Cavendish’, ‘FHIA 17’, ‘BITA2’,
‘BGY3’, ‘FHIA-03’) that represent major groups of banana and plantain (details of these listed in
Supplementary Table S15) were used for the preliminary selection and transferability analysis of
FRSMs (functionally relevant SSR markers). To estimate genetic diversity, population structure and
phylogenetic relationships among Musa and related species (Ensete sp.), a total of 50 accessions were
used. All the plant materials were collected from the core collection of Musa germplasm, maintained at
FTRI, Guangzhou, PR China. Total genomic DNA was extracted from young fresh leaf samples using
the CTAB method as previously described by Gawel and Jarret [34] with minor modifications.

2.2. Data Processing, SSR Mining, Marker Development, In-Silico Characterization, Physical Mapping and
Functional Annotation

A total of ~0.1 Gb EST sequences of Musa spp. were acquired from public databases (EST
Tool Kit and NCBI). All transcript sequences were combined into a single FASTA file with the
aid of an in-house Perl script. After combining the sequences, the est_trimmer.pl (http://pgrc.ipk-
gatersleben.de/misa/download/est_trimmer.pl) script was used to remove low-quality sequences,
poly A/T and low-complexity regions at the 5′ and 3′ ends. The remaining high-quality sequences were
assembled with CAP3 (http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::cap3) with default parameters.
Then mRNA sequences were extracted from genome assembly of recently published 4 musa genomes
(A, B, S and I genomes) using perl script. SSR-containing mRNA (transcripts) and EST sequences were
harvested using modified MISA script, then all the SSR-containing sequences were clustered with
CDHIT using default parameters. The assembled non-redundant transcript sequences were searched
for microsatellites using MISA (micro satellite identification tool, http://pgrc.ipk-gatersleben.de/misa/),
restricting the output to perfect mono-, di-, tri-, tetra-, penta- hexa-, hepta-, octa-, nano- and deca-
nucleotide motifs with a minimum of 10, 6, 5, 5, 5, 5, 4, 4, 4 and 4 repeat units, respectively. Identified
SSRs were characterized based on (i) the length of repeat motifs (Class I > 20 bp, Class II ≤ 20 bp) and (ii)
the nucleotide composition of repeat motifs (AT-rich, GC-rich and AT-GC balance). Forward and reverse
primers for the identified SSRs were designed with primer3 software using default parameters. A custom
Perl script called duplicate marker finder (http://mmdb.genomicsres.org/mumdb_Download.html)
was used to remove redundant primer sets from the primer database. Further, non-redundant primer
set compare with all the published Musa SSR markers and overlap markers were removed from the
database. If more than one set of primers was generated for the same transcript sequence, one primer
set was chosen randomly for further analysis. SSR-containing transcripts were analysed with the ORF
(open reading frame) finder Perl script using default parameters to predict the longest ORF within the

http://pgrc.ipk-gatersleben.de/misa/download/est_trimmer.pl
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transcript. Finally, the localization of SSR motifs in either UTR or CDS/intron regions was determined
by comparing the ORF position with the SSR position within the transcript sequence.

The genome assembly of M. acuminata (DH Pahang), M. balbisiana (Pisang Klutuk Wulung -PKW),
M. schizocarpa and M. itinerans were downloaded from Musa Genome Hub (https://banana-genome-
hub.southgreen.fr/species-list), and FRSMs were mapped onto the eleven chromosomes of these
genome assemblies with the ePCR strategy. ePCR results were verified by BLAST searches of the
markers against the whole-genomic sequences. Marker positions on the chromosomes were recorded
and added to the database. A physical map was drawn using MapChart [35] software (Version 2.2).
The specific in-silico-generated amplicons from these four genomes were compared with the expected
amplicon size of each marker, and size differences were recorded. If an amplicon size differed by at least
2 bp, the SSRs were classified as polymorphic; otherwise, amplicons were considered monomorphic.

The putative function of each FRSM was determined by Blast2GO analyses. Flanking regions
(200 bp up and 200 bp downstream) of the FRSM loci were searched against the non-redundant protein
database in GenBank using BLASTX [36] with an E-value threshold of 10−10. Based on the functional
annotation results, FRSMs were classified according to three GO terms: biological process, molecular
function and cellular process [37–39]. The KEGG database (http://www.genome.jp/kegg/pathway.html)
was used to annotate the pathways for these FRSMs. To identify transcription factor (TF)-associated
and TF-functional domain-associated FRSM markers, we conducted a BLAST search of SSRs against
the plant TF database (http://planttfdb.cbi.pku.edu.cn/) with an E-value threshold of 0.001 and a query
coverage of 65%.

2.3. In-Silico Comparative Genome Mapping

The flanking sequences of FRSM loci were searched with BLAST against the genome sequences of
M. acuminata, M. balbisiana, M. schizocarpa, sorghum, foxtail millet and rice to obtain marker-based
syntenic relationships among the species. A bit score threshold of 54.7 and E-value threshold of
10−5 were considered as significant for this BLAST analysis. To check the presences of SSRs in the
orthologous region of the target species, we chose the flanking sequences from orthologous region of
the target species, found the SSRs using the MISA script and compared the repeat patterns and lengths
with their corresponding FRSM loci. The marker-based syntenic relationships were finally visualized
with Circos 0.55 (http://circos.ca).

2.4. Evaluation of PCR Amplification and Genetic Marker Potential

To assess the amplification efficiency of the in-silico-developed FRSM primer, a subset of 273 primer
pairs was selected based on the in-silico results including, transferability, polymorphism, known gene
functions and the physical distance between two primer sets should be 1.5 to 2 mb. The primers were
synthesized by Sangon Biotech Co., Ltd., Shanghai, China; PCR amplifications were carried out for
eight Musa accessions (Supplementary Table S15) representing diverse genomic groups of the core
collection of the Musa germplasm, maintained at FTRI, Guangzhou, PR China. The FRSM primers
displaying clear and reproducible amplicons in a gel-based assay were selected for the genotyping
of 50 accessions of the Musa germplasm collection (Supplementary Table S15). PCR amplification
was carried out in 25 µL containing the following: 50 ng of genomic DNA, 1 µL of each primer pair
(concentration, 10 mM), 12.5 µL of PCR-Mix (Takara), 1.0 U of Taq DNA polymerase enzyme and 8.5 µL
of dH2O. PCR amplification was carried out in a MJ-PTC-200 tm thermal controller (MJ Research,
Waltham Mass) using the following programme: 94 ◦C for 3 min, 35 cycles at 94 ◦C for 30 s, 55–60 ◦C
(according to the primer annealing temperature) for 30 s, 72 ◦C for 45 s, followed by a final step at
72 ◦C for 7 min. The amplified PCR products were resolved on a 3% agarose gel, and the band size was
measured with the aid of a 100 bp DNA ladder. PCR products of selected primer pairs were resolved
on a denaturing 6% polyacrylamide gel, and bands were visualized by silver staining.

https://banana-genome-hub.southgreen.fr/species-list
https://banana-genome-hub.southgreen.fr/species-list
http://www.genome.jp/kegg/pathway.html
http://planttfdb.cbi.pku.edu.cn/
http://circos.ca
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2.5. Data Collection and Statistical Analysis

The PCR amplification result was recorded for each marker. The SSR bands of all genotypes were
scored as band present (1) or absent (0). Allele frequencies were used to calculate the polymorphism
information content (PIC) using the following formula: PIC =

∑
p2

i , where pi is the proportion
of the ith allele. PIC values and allele frequencies were calculated using Power Marker software.
The NEI72 module (genetic distance data module) of the NTSYSpc software package (version 2.1 [40])
was used to estimate genetic similarity among genotypes. Based on the NEI72 similarity matrix,
UPGMA dendrograms were constructed using the SAHN module. The FIND module was employed
to identify all trees that could result from tied similarity values. Mantel test statistics were used to
assess the reliability of the clustering by comparing the cophenetic matrix [40] and the similarity matrix.
The effective number of alleles (ne), Shannon’s information index (I), expected homozygosity (Ho),
expected heterozygosity (He), Nei’s expected heterozygosity, Wright’s fixation index (Fis) and the
Ewens-Watterson Test for Neutrality were calculated using Popgene software [41].

2.6. Population Structure

The population structure of 50 banana accessions was estimated using STRUCTURE 2.3.4
software [42]. The admixture model was used with a burn-in period length of 10,000 and 100,000 MCMC
iterations. Five independent runs were performed for each k from 1 to 10. The best value of k was
estimated based on the Delta k method using Structure Harvester software [43]. Barplots of the Q matrix
were drawn using DISTRUCT software [44]. Principal coordinate analysis (PCoA) for population
separation was carried out using the dissimilarity matrix data of each individual (genotype) and using
GenAlEx software [45].

2.7. Functional SSR Marker Database

In order to maximize the utility and ensure the availability of developed novel functional Musa SSR
markers, here we developed a searchable database using HTML, CSS, JavaScript, PHP and MySQL based
coding language. PHP script was used to bridge the search interface and database. JavaScript, PHP and
HTML use for results visualization, and download in XLS or CSV format. First all the marker information
(29 attributes) were organized in a table with a unique marker id. Then all these makers with their
corresponding attributes stored in a mySQL database. The database and database search interface hosted
in the published web site called Musa marker database (http://mmdb.genomicsres.org/index.html).

3. Results and Discussion

3.1. FRSM Marker Development, In-Silico Characterization, Chromosomal Distribution, Physical Mapping and
Genome Coverage

A total of 68,716 SSR-containing transcript sequences were extracted using MISA (with perfect
mono-, di-, tri-, tetra-, penta- hexa-, hepta-, octa-, nano- or deca-nucleotide motifs with a minimum
of 10, 6, 5, 5, 5, 5, 4, 4, 4 and 4 repeat units, respectively) from 222,124 transcripts sequences that
were originally obtained from four published Musa genome sequences and ~0.1 Gb EST sequences
(Supplementary Table S1). Subsequently those SSR-containing transcripts were assembled into
52,453 unigene sequences and searched for simple sequence repeats (SSRs) to design functionally
relevant SSR markers for Musa. The type and frequency distribution of SSR motifs are presented
in Table 1. The proportion of SSR-bearing Musa unigenes was 31% (68,716 out of 222,124), which
is higher than those reported for coffee, cassava, and cereals [46–49] and lower than those reported
for iris and sugarcane [3,50]. The frequency of SSRs in Musa unigenes was one per 2.2 kb, which is
higher than that reported for sugarcane transcript SSRs (1SSR/10.9 kb) [3], but similar to reports for rice
(1SSR/3.6 kb), sorghum (1SSR/5.9 kb) and barley (1SSR/8.9 kb) [51,52]. The proportion of SSR-bearing
unigenes was much higher in this study compared to earlier observations based on EST sequences
of Musa [53]. This difference may be due to the variation in search criteria, size of data sets and

http://mmdb.genomicsres.org/index.html
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software tools used in each study, as suggested previously for similar comparisons [5,54–59]. Out of
51,814 SSR-bearing unigenes, 30,780 (59.4%) contained more than one SSR motif. Among the different
repeat units, di-nucleotide (51.1%), mono-nucleotide (31.5%) and tri-nucleotide (14.6%) repeat motifs
were more frequent than other repeat motifs. In addition, tri-nucleotide repeats were more frequent
in CDS (coding sequences) regions (see Supplementary Table S2). The same trend was also reported
for Musa EST-SSRs and SSRs in cereals and legumes [51,60]. The high abundance of tri-nucleotide
repeat motifs in the coding region of most genomes can be explained by the fact that length-altering
mutations do not change the reading frame. Based on the repeat motif length, 59.6% SSRs were
characterized as Class II type (12–20 bp), and the remaining 40.4% were classified as Class I type
(>20 bp). Backiyarani et al. [9] also found more class II SSRs than class I SSRs in Musa EST sequences.
From 113,480 identified SSRs (di to hexa repeat SSR use for marker development), reverse and forward
primers could be designed for 80,899 (71.3%) SSRs. For the remaining 28.7%, primer design failed
due to insufficient flanking regions or due to insufficient sequencing quality in the genomic region of
interest. Similar results have been reported for many other plant species [57,61,62]. Primer redundancy
is a major problem in SSR primer design projects, especially if a large number of primers are designed
for a large set of sequences [63]. Primer redundancy may be the consequence of chromosomal or
gene duplications. Alternatively, some of the EST sequences possess multiple SSR tracts, in which
case multiple primer sets might be generated from the same flanking sequences. To filter redundant
and multiple sets of primers from the same flanking sequences, a Perl script called Duplicate Marker
Finder (http://mmdb.genomicsres.org/mumdb_Download.html) was used to reduce the SSR primer set
number to 66,246. In order to develop novel SSR markers, non-redundant markers were compiled
with the published Musa SSR markers and 35,136 (43.4%) novel Musa SSR markers were found. These
primer pairs were then characterized by both in-silico and wet lab methods. Out of the 35,136 primer
pairs, 1104 (1.7%) were characterized as transcription factor-associated primers (Table 1).

Table 1. Distribution of microsatellites in transcript sequences and functionally relevant SSR
marker development.

Characters under Study Unigenes %

Total number of sequences examined 52,453
Total size of examined sequences (bp) 359,005,912

Total number of identified SSRs 166,503
Number of SSR-containing sequences 51,814

Number of sequences containing > 1 SSR 30,780
Number of SSRs present in compound form 47,796

SSR density (1 SSR per bp) 2156
Class II SSRs (12–20 nucleotides) 99,231 59.60

Class I SSRs (>20 nucleotides) 67,272 40.40
AT rich SSRs 112,814 67.75
GC rich SSRs 17,073 10.25

AT/GC balance 36,616 21.99
Mononucleotide repeats 52,440 31.49

Dinucleotide repeats 85,090 51.10
Trinucleotide repeats 24,330 14.61

Tetranucleotide repeats 2884 1.73
Pentanucleotide repeats 413 0.25
Hexanucleotide repeats 763 0.46
Heptanucleotide repeats 180 0.11
Octanucleotide repeats 238 0.14
Nanonucleotide repeats 28 0.02
Decanucleotide repeats 137 0.08

No. of primers designed 80,899 71.29
Non-redundant primers 66,246 81.89

Novel SSR primer identified 35,136 43.43
TF-associated SSRs 1104 1.67

Transferable to other Musa sp. 18,209 51.82
Genome specific 16,927 48.18

In-silico polymorphic 8605 24.49
No. of SSRs in CDS 13,223 37.63

No. of SSRs in 5′ UTR 11,718 33.35
No. of SSRs in 3′ UTR 10,099 28.74

http://mmdb.genomicsres.org/mumdb_Download.html
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Among the TF-associated FRSM, 11%, 8% and 7% were related to the transcriptome factor families
ERF, NAC and C2H2 (Figure 1). In total, 13,223 (37.6%) primers were found to originate from CDS,
11,718 (33.4%) from 5′ UTR and 10,099 (28.7%) from 3′ UTR regions. Expansion or contraction of
SSR repeats in the 5′ UTR region of a gene may affect transcription and/or translation, while SSR
repeat unit variation in the 3′ UTR region may be responsible for gene silencing or transcriptional
slippage. SSR repeat polymorphisms in CDS regions may lead to the activation or deactivation of
gene function by truncating or extending proteins [5]. Therefore, SSR markers derived from different
regions (CDS, 5′UTR and 3′UTR) of genes may have different characteristics. Scott et al. [64] observed
polymorphism differences among SSR markers derived from different regions of genes in the grape
genome. The 5′ UTR-derived SSR markers are mostly polymorphic between cultivar and species, while
the 3′ UTR-derived SSR markers are polymorphic at the cultivar level and CDS-derived SSR markers are
polymorphic between species and genera. In terms of polymorphism detection, 3′-UTR-derived SSR
markers are superior to those derived from 5′-UTRs [4] for cultivar identification and genetic diversity
analysis. In view of the association of SSR from different gene regions with variation at different
taxonomic levels, from previous studies [5,64], we propose that SSR markers derived from different
regions of Musa genes should be used for different applications in banana breeding programmes; for
example, 3′UTR-derived Musa SSR markers may be most suitable to distinguish banana cultivars.Genes 2017, 8, x FOR PEER REVIEW  8 of 21 

 

 
Figure 1. Functional annotation of transcript sequences carrying microsatellites in their functional domains. 
A total of 1104 SSR-bearing transcript sequences were associated with functional domains of TF. 

The genomic distribution and physical localization of the 35,136 SSR markers on the A, B and S 
genomes of banana are presented in Table 2 and in Supplementary Figures S1–S3. A total of 17,561 
(50.0%), 15,373 (43.8%) and 16,286 (46.4%) markers mapped on the eleven chromosomes of the 
genomes of M. acuminata (A genome), M. balbisiana (B genome) and M. schizocarpa (S genome), 
respectively. All physically mapped markers are available in the Musa Marker Database 
(http://mmdb.genomicsres.org/mumdb_Download.html). The chromosome-wide distribution and 
frequency of the physically mapped markers revealed the highest frequency on chromosome 4 for 
the A and S genomes (2,203 markers (6.3%) for the A genome; 2,080 markers (5.9%) for the S 
genome), while for the B genome, the highest number of markers mapped on chromosome 8 and the 
lowest frequency on chromosome 1 (1,176 markers (3.3%) for the A genome; 1,227 markers (3.5%) 
for the S genome). The highest and lowest marker densities were found on chromosome 4 and 
chromosome 9, respectively, in both the A and S genomes. The physical map constructed in this study 
is highly dense compared to the physical map reported for foxtail millet [62]. The high-density SSR 
marker-based physical map constructed in this study will be helpful for the selection of suitable 
genome-wide SSR markers across the eleven chromosomes for various applications in improved 
banana breeding programmes, including large-scale genotyping, comparative genome mapping, 
QTL analysis and population genetic studies. 
  

Figure 1. Functional annotation of transcript sequences carrying microsatellites in their functional
domains. A total of 1104 SSR-bearing transcript sequences were associated with functional domains
of TF.



Genes 2020, 11, 1479 8 of 21

The genomic distribution and physical localization of the 35,136 SSR markers on the A, B and
S genomes of banana are presented in Table 2 and in Supplementary Figures S1–S3. A total of
17,561 (50.0%), 15,373 (43.8%) and 16,286 (46.4%) markers mapped on the eleven chromosomes of
the genomes of M. acuminata (A genome), M. balbisiana (B genome) and M. schizocarpa (S genome),
respectively. All physically mapped markers are available in the Musa Marker Database (http:
//mmdb.genomicsres.org/mumdb_Download.html). The chromosome-wide distribution and frequency
of the physically mapped markers revealed the highest frequency on chromosome 4 for the A and S
genomes (2203 markers (6.3%) for the A genome; 2080 markers (5.9%) for the S genome), while for
the B genome, the highest number of markers mapped on chromosome 8 and the lowest frequency
on chromosome 1 (1176 markers (3.3%) for the A genome; 1227 markers (3.5%) for the S genome).
The highest and lowest marker densities were found on chromosome 4 and chromosome 9, respectively,
in both the A and S genomes. The physical map constructed in this study is highly dense compared to
the physical map reported for foxtail millet [62]. The high-density SSR marker-based physical map
constructed in this study will be helpful for the selection of suitable genome-wide SSR markers across
the eleven chromosomes for various applications in improved banana breeding programmes, including
large-scale genotyping, comparative genome mapping, QTL analysis and population genetic studies.

Table 2. Summary of chromosomal distribution and average density of SSR markers mapped on the
genomes of M. acuminate (A genome), M. balbisiana (B genome) and M. schizocarpa (S genome).

Genome
No of Markers Mapped Density (1 Primer/Mb)

A (%) B (%) S (%) A B S

Chr1 1176 3.3 1227 3.5 1098 3.1 24.72 17.96 32.80
Chr2 1215 3.5 1276 3.6 1151 3.3 24.29 13.60 32.35
Chr3 1731 4.9 1155 3.3 1639 4.7 20.23 20.92 27.33
Chr4 2203 6.3 1001 2.8 2080 5.9 16.84 24.63 23.67
Chr5 1566 4.5 1512 4.3 1478 4.2 26.73 15.64 35.19
Chr6 1982 5.6 1547 4.4 1649 4.7 18.97 17.99 26.06
Chr7 1464 4.2 1276 3.6 1377 3.9 23.93 17.41 34.13
Chr8 1824 5.2 1567 4.5 1696 4.8 24.61 17.66 32.35
Chr9 1486 4.2 1232 3.5 1428 4.1 27.80 21.02 36.93
Chr10 1498 4.3 1564 4.5 1443 4.1 25.15 16.13 30.01
Chr11 1258 3.6 1204 3.4 1170 3.3 22.22 17.21 31.42
ChrUn 158 0.4 812 2.3 77 0.2

Total Mapped 17,561 50.0 15,373 43.8 16,286 46.4
Unmapped 17,575 50.0 19,763 56.2 18,850 53.6

3.2. Functional Annotation and Association of Transcription Factor

To identify the functional significance of the 35,136 novel microsatellites markers, a BLASTX
analysis was performed against the non-redundant protein database using the Blas2Go tools. A total
of 14,312 (41%) were functionally annotated due to their high similarity (e value < e−10) with at least
one protein in the non-redundant protein database (Figure S4a). The remaining 20,824 (59%) did
not show a significant similarity to known protein sequences in the databases and therefore were
not annotated. According to the Gene Ontology (GO) scheme, functionally annotated FRSMs were
classified into three categories: cellular components (CC), molecular function (MF) and biological
process (BP) (Figure S4e–g). The sum of these FRSMs per category did not add up to 100% because
some FRSMs were classified into more than one category. A total of 12,120 FRSMs were annotated
with 44,279 annotations for the three main GO categories, while 3891FRSMs were annotated with all
three GO categories and 4148 were assigned at least two GO annotation categories (Figure S4d, Tables
S3 and S4). Among the three categories, BP annotations were most frequent, followed by CC and
MF (Figure S4 and Table S4). SSR-bearing transcript with CC annotations were mainly annotated
as intracellular organelle (26%), cytoplasm (22%), membrane (21%) and cell periphery (5%) (Figure

http://mmdb.genomicsres.org/mumdb_Download.html
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S4e,h). Under the MF category, most of the SSR-bearing transcripts were annotated as organic cyclic
compound binding (26%), followed by heterocyclic compound binding (26%), transferase activity (16%),
and hydrolase activity (13%) (Figure S4f). Among the SSR-bearing transcripts with BP annotations,
annotations suggested that the proteins are involved in primary metabolic process (20%), nitrogen
compound metabolic process (17%), cellular metabolic process (16%) and biosynthetic process (11%)
(Figure S4g,h).

3.3. In-Silico Comparative Genomic Mapping between Musa and Non-Musa spp.

Comparative mapping of the FRSMs among the three Musa genomes is illustrated in Figure 2a–d
and revealed that 5938 (16.9%) of the FRSMs were common among the four Musa genomes, while
only 11 (0.03%) were found to be common in the genomes of four Musa and four non-Musa species
(Figure 2a,b). A total of 17,403 FRSMs physically mapped onto the eleven chromosomes of M.
acuminata. We compared their physical location on the Musa genome with their location on the
chromosomes of the related monocot plant genomes of foxtail millet, rice and sorghum (Figure 2c,d,
Table 3). In-silico comparative genomic mapping showed a considerable proportion of sequence-based
orthology and syntenic relationships, with SSR markers distributed over eleven Musa chromosomes
with the chromosomes of foxtail millet (~1%, 240), rice (~1%, 264) and sorghum (~2%, 268) (Figure 2,
Supplementary Table S5–S7). Many of these markers show syntenic relationships with more than
one chromosome of foxtail millet, sorghum and rice. This result hints at segmental duplication
events among the chromosomes of the respective genomes, similar to the observations reported
by Pandey et al. [62], that many of the physically mapped foxtail millet SSR markers have syntenic
relationships with more than one chromosome of sorghum, maize and rice.

Table 3. A summary of functionally related microsatellite marker-based comparative mapping showing
maximum syntenic relationships of the chromosomes of M. acuminata with those of foxtail millet,
rice and sorghum.

Musa
Chromosomes

Foxtail Millet
Chromosomes

Rice
Chromosomes

Sorghum
Chromosomes

Chr 01 F03 (10; 42%) R01 (13; 42%) S01 (11; 41%)
Chr 02 F04 (3; 23%) R01 (5; 25%) S01 (6; 29%)
Chr 03 F09 (4; 16%) R01 (5; 16%) S02 (9; 27%)
Chr 04 F03 (9; 27%) R01 (13; 46%) S02 (7; 21%)
Chr 05 F02 (6; 24%) R01 (5; 25%) S06 (4; 20%)
Chr 06 F08 (5; 22%) R03 (6; 20%) S02 (6; 21%)
Chr 07 F02 (5; 28%) R01 (6; 30%) S03 (5; 24%)
Chr 08 F04 (6; 19%) R01 (8; 27%) S01 (6; 23%)
Chr 09 F04 (3; 21%) R07 (4; 16%) S01 (3; 18%)
Chr 10 F04 (6; 33%) R02 (4; 24%) S01 (5; 19%)
Chr 11 F09 (5; 33%) R01 (3; 25%) S04 (4; 27%)

Note: % represent the number of Musa microsatellite markers mapped on the chromosome of related plant species.

In-silico comparative mapping between Musa and foxtail millet genomes demonstrated a syntenic
relationship of 240 SSR marker loci distributed on eleven chromosomes of the Musa genome with 480
genomic regions on 9 chromosomes of the foxtail millet genome (Figure 2d; Supplementary Table S5).
The higher frequency of SSR marker-based syntenic relationships with foxtail millet and Musa was
(10; 42%) found between Foxtail millet chromosome 3 and Musa chromosome 1 (Table 3). A total of
264 SSR marker loci that physically mapped onto the eleven chromosomes of Musa showed synteny
with the 12 chromosomes of rice with an average frequency of 9%, which is lower than what we
found for the foxtail millet and sorghum chromosomes (Figure 2d; Supplementary Table S6). The 264
Musa SSR marker loci showed significant matches with 436 genomic regions of 12 rice chromosomes.
Overall, rice chromosome 1 showed a high frequency of syntenic relationships with most of the Musa
chromosomes, except Chromosomes 1, 4 and 6. The syntenic relationship between the Musa and
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sorghum genomes revealed that 268 SSR marker loci have significant matches with 656 genomic regions
on 10 chromosomes of sorghum. Maximum syntenic relations were found between Musa chromosome
1 and sorghum chromosome 1 (11, 41%) (Figure 3; Supplementary Table S7).
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Figure 2. Functionally related microsatellite marker-based genomic relationships of Musa with other
plant species. (a) Venn diagram representing the common FRSM markers among the three Musa
genomes. (b) Venn diagram representing the common (transferable) FRSM markers among the Musa
and non-musa genomes. (c) FRSM-based syntenic relationship among the three Musa genomes.
(d) FRSM-based syntenic relationship among the Musa and non-Musa genomes.

In-silico mapping often retains the orthologous region of the target species without SSR regions,
and this phenomenon may limit the applicability of SSR markers in other species, especially distant
relatives. Therefore, we checked all orthologous regions from the target species for the presence of
SSR repeats. Our results showed that 83.6% (for M. acuminata), 93.2% (for M. balbisiana) and 91.9%
(M. schizocarpa) of the homologs (Table S8) may have either the same or shorter SSR lengths than the
reference SSR motifs. However, a small percent of the orthologous regions of the foxtail, rice and
sorghum genomes contain SSR motifs. These findings indicated that homologous regions may exist in
the targeted species, but some of them lacked SSR motifs.
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Although many studies have reported comparative mapping analyses of plants based on SSR
markers [62,65–68], this is the first report of an SSR marker-based comparative genome mapping
analysis of Musa with foxtail millet, rice and sorghum. SSR marker-based comparative genome
mapping between Musa and other non-Musa species could allow the transfer of marker information
among these target plant species, consequently accelerating map-based gene isolation of important
agronomic traits in Musa species. In this study, we recorded the highest syntenic relationships between
Musa and sorghum, followed by between Musa and foxtail millet, and between Musa and rice. A lower
degree of syntenic relationships was recorded in this study compared with the previous reports of
Pandey et al. [62] in which comparative maps were constructed between foxtail millet and sorghum as
well as between foxtail millet and maize. As foxtail millet, sorghum and maize species belong to the
same subfamily, Panicoideae, these are more closely related than the species compared in our current
study. The similarities found among the genomes are in line with their evolutionary distances and
conform to the expectation that syntenic relationships among plant species decrease with increasing
phylogenetic distance [62,66]. Our findings show that microsatellite marker-based comparative genome
mapping of Musa and other plant species (monocots) provides a first picture of genome conservation
among Musa, foxtail millet, rice and sorghum. Furthermore, these comparative maps will be useful in
map-based gene cloning from Musa, which is agronomically important for obtaining marker-based
genotyping information from other related plant species.

3.4. PCR Amplification Efficiency, Polymorphism, Transferability and Genetic Marker Potential

A sub-set of 273 selected FRSMs was tested for PCR amplification efficiency, polymorphism,
transferability and genetic marker potential (Figure 3; Supplementary Table S9). Among these markers,
259 produced a clear, reproducible PCR amplification product of the expected size. A total of 249 (91%)
markers produced single bands, whereas 24 markers had more than one band. Furthermore, 36 markers
produced either longer or shorter fragments than the expected size. Overall, 203 (74%) of the markers
showed polymorphism in the wet lab (PCR) assay among eight accessions of Musa, and a total of



Genes 2020, 11, 1479 12 of 21

715 different alleles were detected among the eight accessions. The number of alleles per marker ranged
from 2 to 12 (Supplementary Table S9 and Figure S5), with an average of 3.5 alleles. Trinucleotide repeat
motif-containing markers showed the highest percentage of polymorphism both from in-silico and wet
lab assays (Figure 3). It should be noted that the proportions of markers found to be monomorphic
and polymorphic in the in-silico and in the wet lab assays differed substantially, most likely because a
larger number of accessions (Supplementary Table S10) were used for the PCR experiments, while
genomic sequences were not available for all accessions for the in-silico polymorphism assay. Therefore,
only three (A, B and S genomes) available genomes were used for the in-silico polymorphism assay.

Transferability to closely related species is one of the most important potential features of SSR
markers, offering the opportunity to use markers developed from one species to be applied to multiple
species. This is particularly useful if little is known about the genomic sequence of the species of interest.
Transferable markers are a good source for detecting orthologous loci between two species and are
useful for incorporation into genetic maps. To estimate the cross-species transferability of the markers
developed in this study, a set of 273 markers were analysed for the ability to amplify genomic DNA of
eight banana species representing different genomic groups (Supplementary Table S10). A total of 194
(71%) markers produced amplicons in at least three species among the eight Musa species. From the
literature, it was found that few markers are transferable to less closely related species; for example,
on average, 25% of the Centella asiatica EST-SSR markers were shown to be transferable to the family
Apiaceae, while 40% of the barley EST-SSR markers were found to be transferable to rice [46,69]. Higher
levels of SSR marker transferability have been reported for other plant species, including citrus, millet
and sugarcane [57,62,66]. The transferability of the SSR markers between species or families greatly
relies on the evolutionary distance between the species [66]. In this study, we tested the SSR marker
transferability between Musa species (M. acuminata and M. balbisiana and between hybrids of the two)
while the above-mentioned studies by Thiel et al. [46]. Sahu et al. [69] examined marker transferability
at the genus and family levels. Consequently, our marker transferability rate is expected to be higher
than that found by Thiel et al. [46] and Sahu et al. [69]. The high transferability rate of FRSMs between
banana species supports their utility in comparative mapping studies and for the identification of
markers associated with important agronomic traits.

3.5. Assessment of Genetic Diversity and Population Structure

One of the most important applications of SSR markers is the assessment of genetic diversity within
natural populations, among core collections of germplasm and among breeding lines. Such genetic
variation information is vital for efficient conservation and for the use of genetic resources for crop
improvement programmes. Consequently, a core set of 50 Musa accessions and 15 FRSMs was used to
determine the effectiveness of the selected FRSMs for the assessment of genetic diversity in Musa spp.
In total, 49 alleles were identified in 15 loci with an average of 3.3 alleles per locus (Supplementary
Table S11). The PIC (polymorphic information content) values for individual loci ranged from 0.26
to 0.66 with a mean of 0.50 and the effective number of alleles per locus varied from 2.02 to 3.44.
The Shannon information index (I) ranged from 0.74 to 1.44, with a mean of 0.94. The average PIC
value found in this study was comparable with that reported for SSR markers in citrus species by
Biswas et al. [57] and higher than that reported for SSR markers in Musa by de Jesus et al. [70]. As PIC
values are greatly influenced by the number of genotypes and genetic background of the genotypes,
this explains the discrepancy between the current study and the findings reported by de Jesus et al. [70],
which used different sets of germplasm. The average observed and expected heterozygosity were 0.71
and 0.62, respectively (Supplementary Table S12). The Nei’s average genetic diversity [71] ranged from
0.51 to 0.71, with an average of 0.62. The fixation index (FIS) was found to be positive for four loci
(C01P3AA00134, A2M000167, AB2M006866 and NovelTSSR001634) and negative for the remaining
eleven loci (Supplementary Table S12). In this collection of loci, the majority were homozygous
in the tested population and thus should be informative for population genetic studies in banana.
The overall mean value of the fixation index was 0.17, revealing an excess of heterozygosity present in
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the studied population. Several factors can result in an excess of heterozygosity in plant populations,
including a wide range of cross-compatibility and polyploidy and a high proportion of loci under
selection and allele-scoring biases. Most likely, the excess heterozygosity observed in this study
is due to the polyploidy of the banana accessions studied, which are representative of commonly
grown cultivars. Since population genetics applications require selectively neutral markers to avoid
misleading results [72], neutrality tests have been advocated, for example by Kim et al. [73]. Therefore,
in this study, we performed the Ewens-Watterson test for the neutrality of 15 markers and observed
frequency values ranging from 0.291 to 0.494 (Supplementary Table S13). At all loci, the mean expected
homozygosity value was higher than the observed value.

The clustering of subpopulation based on k-value (Figure 4a), UPGMA tree (4b) and admixture
model base population structure was assed to test the strength of the FRSMs. Phylogeney analysis
showed that 50 banana accessions (Figure 4b) clustered into two major groups according to their
genomic background, with cluster II including all genotypes with only the A genome, while the AB
genomic composition genotypes grouped in cluster I. According to the genome composition and ploidy
level, cluster I and cluster II were further divided into two and five sub-groups, respectively. Most of
the accessions of sub-group 1 were diploids and triploids. Sub-group 2 was composed of diploids and
triploids; while sub-group 3 included most of the accessions from the Musa sub-group Mutika/Lujugira
and in this sub-group the members were diploid, triploid and tetraploid. In sub-group4, most of
the members were triploid Cavendish banana. As expected Ensete sp. was located in a distinct
clade outside of the Musa species. Cluster analysis clearly showed that diploid A accessions share
sub-clusters with other triploid and tetraploid accessions of the A genomic group. Similar results
were also reported by earlier studies [74]. These observations may suggest that the variation within
subspecies of M. acuminata is complex and that cultivars of M. acuminata have a wide partition from
their fertile diploids rather than their cultivated AAA relatives. In this study we noticed that most
of studied genotypes were different from each other with few exceptions. For example, we cannot
distinguish genotype “Nyamwihogora” and “Intokatoke”, both are triploid and composed with A
genome. Our SSR marker was unable to differentiate “Igitsiri” and “Ingagara”. We were also unable
to distinguish two cavendish cultivars “Dwarf Parfitt” and “Formosana”. This finding is due to the
genomic similarity of these genotypes. Such as triploid A genome type cultivars like cavendish are
known to be less diverse cultivars. Different types of molecular markers such as PCR-RFLP, SSR and
ITS failed to distinguish completely all the triploid A genome type cultivar [74]. Considering our
findings and previous evidence, we recommended SNP or DART types of molecular markers may
be suitable for distinguishing triploid A genome type cultivars of banana. To verify the adjustment
between similarity matrices and respective dendrogram-derived matrices, we estimated the cophenetic
correlation coefficient (r), and the significance of the correlation was determined by the Mantel matrix
correspondence test. The correlation coefficient was statistically significant (Supplementary Table S14),
demonstrating that the FRSMs are capable of distinguishing the A and AB genotypes of Musa spp.

A Bayesian clustering model-based analysis estimated the distribution of 49 alleles at 15 SSR loci
among 50 accessions of banana. The number of subpopulations (k) was estimated to range between 2
and 10. To identify the approximate number of subpopulations, we estimated the maximum value of the
logarithm of likelihood (LnP(k)). However, we did not find the LnP(k) value to achieve a clear plateau,
and the value continued to increase together with the variances between the tested k. Under these
conditions, the k value was anticipated to be between 5 and 7 (Figure 4a). We noticed that there was no
longer variation for the population grouping at the k values of 5, 6 and 7 (Figure 4a). In this situation,
the highest peaked value of k is more suitable to estimate the number of subpopulations than the
lowest peak value [75]. This approach fit well to identify the sub-population in banana [70]. Therefore,
we adopted this approach for identifying the number of sub-populations, and the highest k value (k = 7)
was chosen for 50 banana accessions distributed in six subpopulations. This subpopulation clustering
clarifies the underlying genetic structure among the studied banana accessions. A Principal Coordinates
analysis (PCoA) estimate of the efficiency of tested FRSMs grouped the 50 banana accessions into
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two major categories according their genome composition (Supplementary Figure S6). Therefore,
PCoA analyses are also able to differentiate banana accessions according to the main genotypes.
Phylogenetic clustering methods for detecting genomic compositions were also reported for bananas by
Ning et al. [74]. Our STRUCTURE analysis demonstrated clear separation of the 50 banana germplasm
accessions according to their genomic background and provided further evidence of the utility of our
FRSMs for the characterization of banana germplasm.

Altogether, we were able to show that FRSMs are promising markers for successful large-scale
genotyping analyses, germplasm characterization, genetic diversity, and population structure studies
in Musa.
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(a) plot of delta K values for different numbers of population assumed; (b) UPGMA dendrograms
constructed based on the NEI72 similarity matrix; (c) sub-populations represented by distinct colours.
Each column represents each accession (the name of the accession are presented in Table S15) that can
be fractionated into segments, and the whole size has the potential to estimate membership fractions
(q) in k clusters. The genomic background of each accession was based on morphological descriptions
recorded in the Musa germplasm database.
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3.6. Novel Functional Musa SSR (NFMS) Marker Database Developments

All the developed (35,136) novel functional Musa SSR markers with 29 features have been placed
in the freely search able marker database. This marker database contains eight flexible search fields
including SSR Type, SSR Class, SSR Motif rich with, SSR Polymorphism, SSR Transferable to other
plant species and SSR associated with gene function (Figure 5a–c). The search results display as a list
of markers with Marker ID, forward- and reverse-primer sequences, and the sequence id, with links to
additional information including all the 29 features such as transferability, polymorphism, genome
position, flanking sequences and functional annotations. Query results can be downloaded in XLS and
CSV file formats for subsequent use.
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Identifying the most suitable SSR markers from a large data set is both challenging and time
consuming. The availability of a well-structured and searchable SSR marker database facilitates
the selection of desirable SSR markers for breeders, as well as reducing the time, cost and labour.
Hence, we built the banana SSR marker database to store and to share the novel functional Musa
SSR markers identified by our study. SSR marker databases have been developed for several plant
species including rice [76], maize, sorghum, soybean [77], tomato [78], chickpea [79], pigeon pea [80],
and also previously for banana [81]. The existing online genomic resources for Banana including the
Banana Genome Hub (http://banana-genome-hub.southgreen.fr/home1) (BGH), TropGENE Database
(http://tropgenedb.cirad.fr/tropgene/JSP/index.jsp) and BanSatDb database (http://webtom.cabgrid.
res.in/bansatdb/index.php) also contain molecular marker information Among these three databases,
BGH and TropGENE store only Musa SNP markers, while BanSatDb was developed for Musa
SSR markers. BanSatDb allows the design SSR primers from the genomes of three Musa species:
M. acuminata, M. balbisiana, and M. itinerans, but not for M. schizocarpa. There are some other important
limitations of the BanSatDb database including the very limited and inflexible search parameters:

http://banana-genome-hub.southgreen.fr/home1
http://tropgenedb.cirad.fr/tropgene/JSP/index.jsp
http://webtom.cabgrid.res.in/bansatdb/index.php
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It does not permit a user to develop primers from the genome; it cannot provide the primer redundancy,
transferability, or information on polymorphism to the other Musa and non Musa species; and it does
not provide SSR motif information in the designed primers. Overall, there is no unique identifier for
the designed primers which can affect reproducibility in downstream application of the markers by
the same or different researchers. The NFMS data base, by comparison, is more user friendly, flexible
and contains a much larger volume of information for each developed marker: Each maker entry
has 29 different features to assist users to easily select the most suitable marker pair from their query
result. Users are able to download the entire search result in a single XLS or CVS format file within a
single click. These unique features, the volume of the information and the quality of data in the NFMS
database provide a user friendly, unique and versatile novel Musa marker database.

4. Conclusions

Here, we present the first set of functional SSR markers (FRSMs) developed for Musa spp. together
with a freely searchable database. A large number of FRSMs were mapped onto the Musa A, B and S
genomes. The markers were characterized by both in-silico and wet lab techniques, and their utility for
genetic diversity studies was estimated. Our results demonstrate the utility of FRSMs for large-scale
banana germplasm characterization, comparative mapping and genomic-associated studies among
Musa and non-Musa spp.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1479/s1,
Figure S1: Physical map of M. acuminata genome specific FRSMs. A genomic distribution of 2871 functionally
relevant SSRs marker on the eleven chromosomes of M. acuminata. Left bar represents chromosome length (Mb).
Figure S2: Physical map of M. balbisiana genome specific FRSMs. A genomic distribution of 2754 functionally
relevant SSR markers on the eleven chromosomes of M. balbisiana. Left bar represents chromosome length (Mb).
Figure S3: Physical map of M. schizocarpa genome specific FRSMs. A genomic distribution of 2591 functionally
relevant SSR markers on the eleven chromosomes of M. schizocarpa. Left bar represents chromosome length
(Mb). Figure S4: Functional annotation and GO classification of FRSM markers. Distribution of FRSM markers
among three GO categories. Top 20 GO terms of the GO Distribution, Figure S5: Allelic variation represent
by FRSM markers (Marker: A2M000167 and AB2M002966). Len 1 to 50 represent the genotypes (Name of the
genotype and genomic composition listed in Table S15) and M = 100 bp Marker. Figure S6: Principal coordinate
analysis (PCoA) of 50 individuals based on genotypic information from 49 alleles obtained from 15 SSR markers.
Here Cluster I represent AB genomic composition genotypes and Cluster II represent genotypes with only the A
genome. Table S1: Summary of transcript sequences assembly, Table S2: Distribution of different types of SSR
within UTR and CDS (%), Table S3: FRSMs annotated by GO category, Table S4: Distribution of unique FRSMs
among three GO categories, Table S5: Comparative mapping between M. acuminata (A genome) and Foxtail millet,
Table S6: Comparative mapping between M. acuminata (A genome) and Rice, Table S7: Comparative mapping
between M. acuminata (A genome) genome and Sorghum, Table S8: Percentages of the orthologous regions from
the targeted species having SSR motifs, Table S9: Wet lab assay summary, Table S10: Percent transferability of
FRSM from different Musa Spp., Table S11: Summary of genic variation statistics for all Loci, Table S12: Summary
of heterozygosity statistics for all Loci, Table S13: The Ewens-Watterson test for neutrality, Table S14: 2-way Mantel
(1967) method test results., Table S15: List of accessions used in this study.
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