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The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell
proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is
involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2
(MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1
(MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain
(TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial
vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary
arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the
accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the
proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP
knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In
addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and
differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the
hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More
researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory
diseases.
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FACTS

● Hippo signaling pathway, as a highly conserved evolutionary
pathway, plays an important role in regulating cell prolifera-
tion, organ size, tissue development, and regeneration.

● Accumulative evidences suggest that the hippo signaling
pathway is involved in respiratory diseases.

● YAP promotes PAVSMCs proliferation and pulmonary vascular
remodeling via PI3K/AKT pathway; thereby PAH is aggravated.

● When the stiffness of the extracellular matrix increases, YAP
enters the nucleus and binds to TEAD to promote Twist1 gene
transcription, cell proliferation, and collagen deposition, which
cause the pulmonary fibrosis.

OPEN QUESTIONS

● What are the core components of the hippo signaling
pathway in cells?

● How the hippo signaling pathway plays the functions in cells?
● What are the mechanisms that the hippo signaling pathway

regulates respiratory diseases?

INTRODUCTION
The hippo signaling pathway is first identified in Drosophila
melanogaster during screening for genes that negatively regulate
tissue growth and is a highly conserved evolutionary signaling
pathway that plays a central role in controlling tissue homeostasis,
development, regeneration, and organ size through the regulation
of cell proliferation and apoptosis [1–3]. Increasing studies confirm
that the hippo signaling pathway is involved in regulating a variety
of physiological processes in the human body, and its dysfunction
leads to uncontrolled cell growth and even malignant transforma-
tion [4–8]. In particular, the hippo signaling pathway plays an
irreplaceable role in regulating tumor initiation, tumor propaga-
tion, tumor resistance to therapy, innate immunity, and adaptive
immunity [4–8]. Nevertheless, accumulative evidences suggest that
the hippo signaling pathway is closely related to respiratory
diseases such as acute lung injury (ALI), pneumonia, idiopathic
pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH),
asthma, etc. [9–11]. This article aimed to review the mechanisms of
the hippo signaling pathway involvement in respiratory diseases.

HIPPO SIGNALING PATHWAY
Core components of the hippo signaling pathway
The core components of the hippo signaling pathway consist of a
kinase cascade transcription of the upstream and effector factors
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of the downstream [12, 13]. The kinase cascades of hippo
signaling pathway in mammalian cells mainly include mammalian
STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2
(LATS1/2), WW domain of Sav family containing protein 1
(SAV1), and MOB kinase activator 1 (MOB1) [3, 12–14]. Hippo
kinase cascades initiated by thousand-and-one amino acid kinase
(TAOK), which phosphorylates the activation loop of MST1/2,
thereby activating MST1/2 [15]. Also, MST1/2 is activated by
autophosphorylation of the MST dimer activation loop [15, 16].
The carboxyl terminal of MST1/2 has a distinctive coiled-coil
structure which is called the Sav/RassF/Hpo (SARAH) domain [16].
The activated MST1/2 is heterodimerized with SAV1 through
c-terminal SARAH domain to form the MST1/2-SAV1 complex
[17, 18]. The MST1/2-SAV1 complex recruits LATS1/2 and binds
MST1/2 to LATS1/2 [12, 15, 19]. Subsequently, MST1/2 phosphor-
ylates the hydrophobic motif (HM) of LATS1/2 [20, 21]. With the
assistance of MOB1, phosphorylated HM triggers autophosphor-
ylation of LATS1/2 in the activation loop; thus the kinases fully are
activated [20, 21]. In addition, other kinases parallel to MST1/2
including mitogen-activated protein kinase kinase kinase kinases
1–7 (MAP4K1-7) and TAOK1-3, can also directly phosphorylate the
HM of LATS1/2, leading to activation of LATS1/2 [15, 18, 19, 22].
Yes-associated protein (YAP)/transcriptional coactivator with

PDZ-binding motif (TAZ) is the downstream effector of hippo
signaling pathway and regulates the expression of target genes
[3, 12]. When hippo signaling pathway is activated, activated
LATS1/2 phosphorylates YAP at five sites (Ser61, Ser109, Ser127,
Ser164, and Ser381) and TAZ at 4 four (Ser66, Ser89, Ser117, and
Ser311) with a consensus phosphorylation motif of HxRxxS
[16, 17, 19, 23]. The two amino acid residues most associated
with YAP and TAZ degradation are Ser127 and Ser381 in YAP and
Ser89, and Ser311 in TAZ [23]. Phosphorylation of Ser127 in YAP or
Ser89 in TAZ creates a binding consensus for 14-3-3 proteins that
sequesters YAP/TAZ in the cytoplasm [19, 23]. Both phosphoryla-
tion of Ser381 in YAP and Ser311 in TAZ trigger a sequential
phosphorylation of casein kinase 1 (CK1), leading to recruitment of
SCFβ-TRCP E3 ligase, ubiquitination, and proteasome degradation
of YAP or TZA [19, 23]. When the hippo signaling pathway is

unactivated, unphosphorylated YAP/TAZ transfers from the
cytoplasm into the nucleus and binds to TEAD1-4, which has a
DNA binding domain and a YAP/ TAZ binding domain [12, 15, 24].
The YAP/TAZ-TEAD protein complex regulates the expression of
target genes such as connective tissue growth factor (CTGF),
cysteine-rich angiogenic inducer 61 (CYR61), fibroblast growth
factor (FGF1), and neuropeptide-1 (NRP1), which promote the cell
growth and proliferation [19, 25–27]. In the absence of nuclear
YAP/TAZ, TEAD combines with vestigial-like family member 4
(VGLL4) to form a default repression complex which acts as a
transcription repressors [12, 15, 18] (Fig. 1).

Upstream signals of the hippo signaling pathway
The hippo signaling pathway is regulated by G-protein-coupled
receptors, mechanical cues, cell adhesion, cell polarity link-related
proteins, and cell energy state [4, 28, 29].
G-protein-coupled receptor (GPCR) and its related ligands

regulate YAP activity and the expression of YAP by regulating
LATS1/2 kinase [30, 31]. Studies confirm that different GPCRs have
different biological effects on YAP [25, 32]. GPCRs coupled with
Gα12/13, Gα q /11, or Gα i/o promote the activation of YAP. On the
contrary, GPCRs binding to Gαs inhibits YAP activation [25, 32].
In addition, the hippo signaling pathway is regulated by

mechanical cues such as cell density, mechanical tension, and
extracellular matrix stiffness [20]. In different cell density, the
hippo signaling pathway shows different effects. In high-density
cells, the activated hippo signaling pathway induces phosphoryla-
tion of YAP and the phosphorylation of YAP is located in the
cytoplasm; thus the transcription of target genes and cell
proliferation are inhibited [33, 34]. On the contrary, the hippo
signaling pathway is not activated and YAP is not phosphorylated
in low cell density [33, 34]. In addition, YAP bound to TEAD is
located in the nucleus to induce the expression of target genes
and promote cell proliferation [33]. Meanwhile, filamentous actin
(F-actin) which response dynamically to mechanical changes, is
one of the important regulatory factors of hippo signaling
pathway [20]. When F-actin is broken down or lost, STK25 in the
GCKIII kinase family is involved in various cell proliferation,

Fig. 1 Hippo signaling pathway. The hippo pathway is mainly composed of MST1/2, LATS1/2, SAV1, MOB1, YAP or TAZ, and TEAD. When the
hippo pathway is unactivated, unphosphorylated YAP enters the nucleus and binds to TEAD, thus inducing transcription of target genes.
When the hippo pathway is activated, TAOK phosphorylates MST1/2. Phosphorylated MST1/2 binds to SAV1 to form the MST1/2-SAV1
complex. With the assistance of activated MOB1, the MST1/2-SAV1 complex induces phosphorylation of the LATS1/2. Phosphorylated LATS1/2
activates YAP, resulting in YAP being captured by 14-3-3 proteins in the cytoplasm or being degraded by SCFβ-TRCP E3 ubiquitin ligase
mediated ubiquitin-proteasome pathway. Note: TAOK, thousand-and-one amino-acid kinase; MAP4K1-7 mitogen-activated protein kinase
kinase kinase kinases 1–7, MST1/2 mammalian STE20-like kinase 1/2, SAV1 sav family containing protein 1, LATS1/2 large tumor suppressor 1/
2, MOB1 MOB kinase Activator 1, TEA TEA domain family, VGLL4 vestigial-like family member 4.
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transformation, migration, polarity, and apoptosis. Activated
STK25 promotes the hippo signaling pathway activation by
directly activating LATS1/2 [35–37]. On the contrary, the
accumulation of F-actin inhibits the hippo signaling pathway by
inhibiting the phosphorylation of LATS1/2 [35–37]. Moreover,
when cells grow on the extracellular matrix with low stiffness,
GTPase RAP2, MAP4K4, MAP4K6, and MAP4K7 activate the LATS1/
2 and promote the degradation of YAP in the cytoplasm [38, 39].
While, when cells grow on the extracellular matrix with high
stiffness, YAP locates in the nucleus and binds to TEAD
transcription factors to promote expression of fibrosis genes and
proliferation of cells [38, 39]. Consequently, the hippo signaling
pathway plays an important role in sensing the mechanical
microenvironment.
Additionally, it is reported that cell adhesion inhibits LATS1/2 by

stimulating the FAK-SRC-PI3K-PDK1 pathway and then induces
YAP transferring into the nucleus [40]. Accordingly, cellular
adhesion may be a negative upstream regulator of the hippo
signaling pathway.
Moreover, proteins involved in cell polarity and cell connection

may play an important role in regulating the hippo signaling
pathway [41–45]. By their WW domains, kidney and brain protein
(KIBRA) is bound to Merlin, which is also known as neurofibromin
2 (NF2). Subsequently, the combination of KIBRA and Merlin
recruits LATS1/2 to the cell membrane [41–43]. Meanwhile, the
WW domain of the KIBRA binding to SAV results in the form of
KIBRA/SAV heterodimer, which recruits MST1/2 to the cell
membrane; thus the LATS1/2-HM is phosphorylated. Subse-
quently, phosphorylation of Ser127 in YAP interacts with 14-3-3
proteins to form a complex that remains in the cytoplasm, and the
expression of target gene is also decreased [41–43]. It is reported
angiomotin (AMOT) is associated with cell polarity, regulation of
angiogenesis, cell migration, actin dynamics, and interaction with
YAP [44, 45]. The AMOT interacts with F-actin through N-terminal
of AMOT and promotes the stability of AMOT [20, 46–48].
However, when F-actin is destroyed, AMOT is phosphorylated by
LATS1/2 and then binds to MST1/2, LATS1/2, SAV1, and YAP
[20, 46–48]. In addition, AMOT can act as a Merlin binding scaffold
protein, and the phosphorylation of Ser176 induces AMOT-YAP-
Merlin complex to translocation from cytoplasm and nucleus to
the plasma membrane, thereby YAP activity is affected [49].
Meanwhile, the interaction between AMOT and MOB1 promotes
the autophosphorylation of LATS1/2 on the activated loop
independent of HM phosphorylation [20].
Additionally, when cells suffer from energy starvation, AMPK

activates and directly phosphorylates the amino acid residues of
Ser94 in YAP, which inhibits YAP binding to TEAD, and then the
YAP is inhibited [50]. Moreover, AMPK can directly inhibit the
activation of YAP and promote YAP phosphorylating LATS1/2
through the phosphorylation of AMOTL1 [51].

THE HIPPO SIGNALING PATHWAY AND RESPIRATORY
DISEASES
Hippo signaling pathway and ALI
ALI is characterized by the damage of alveolar epithelial cells and
pulmonary capillary endothelial caused by noncardiogenic factor
and results in acute hypoxic respiratory insufficiency [52, 53].
Severe ALI leads to life-threatening respiratory failure with high
morbidity and mortality [54, 55]. Infiltration of inflammatory cells,
increased blood-air barrier permeability, pulmonary edema, and
diffuse alveolar damage are often found in ALI [54, 56, 57].
Meanwhile, excessive lung inflammation and apoptosis of alveolar
epithelial cells (AECs) are key factors in the pathogenesis of ALI
[52, 56].
The respiratory epithelial cells of mature lung are stationary

under normal physiological conditions, but a variety of epithelial
cells, such as type II alveolar epithelial cells (AECIIs) and basal

cells, significantly regenerate when lung is injured [58–60]. It is
reported that the YAP improves the self-renewal of AECIIs and the
differentiation of AECIIs into type I alveolar epithelial cells (AECIs)
with lung injury [59, 61, 62]. In addition, YAP is essential for AECIIs
proliferating or differentiating into AECIs in response to mechan-
ical tension [59, 61, 63, 64]. In the process of alveolar
regeneration, AECIIs responds to the increase of mechanical
forces outside the environment, which lead to the aggregation
and the activation of YAP in nucleus and promote the
proliferation of AECIIs as well as the differentiation of the AECIIs
into AECIs [59, 61, 63, 64]. In addition, lung microvascular
endothelial cells (LMVECs) release sphingosine-1-phosphate (S1P),
which plays an important role in regulating the progenitor
function of AECIIs during the repair of alveolar epithelial [65]. As a
family of GPCRs, S1P receptor 2 (S1PR2) is affected by S1P and
inhibits LATS1/2 through G12/13, which induce unphosphory-
lated YAP to enter the nucleus and subsequently mediate
transcriptional expression of target genes, promote proliferation
and differentiation of AECIIs [65]. Meanwhile, the loss of MST1/2
and the expression of YAP target Ajuba LIM protein which
controls proliferation and differentiation of lung epithelial
progenitor cells during lung repair [60, 61, 63]. Accordingly, the
hippo signaling pathway may be involved in the repair process of
ALI by improving proliferation and differentiation of lung
epithelial progenitor cells.
The basal stem/progenitor cells (BSCs) are activated and

recruited to the site of injury in lung, where they help to
regenerate the lung epithelium [66]. Differentiated epithelial cells
recruit integrin-linked kinases to adhesion sites with the injury of
epithelial cells, which result in degradation of Merlin, down-
regulation of the hippo pathway, and induction of Wnt7b
secretion [66, 67]. The Wnt7b induces airway smooth muscle cells
(ASMCs) to release fibroblast growth factor 10 (Fgf10), which binds
to fibroblast growth factor receptor 2 (Fgfr2b) on BSCs to mobilize
and amplify stem/progenitor cell populations by inhibiting
premature differentiation of BSCs, thereby promoting efficient
lung regeneration [66, 67].
Moreover, alveolar epithelial cells are repaired by exogenous

bone marrow-derived mesenchymal stem cells (BMSCs) and
down-expression of LATS2 improves BMSCs repairing the tissue
in ALI, thereby alleviates the pathological damage of lung tissue
[57]. In addition, inhibition of hippo signaling pathway
increases BMSCs retention and migration to the site of injured
lung tissue and promoted the differentiation of BMSCs into
AECIIs [57].
In addition, the repair of pulmonary capillary endothelial is

important for ALI. YAP promotes the germination and remodeling
of neovascules through various angiogenesis factors such as Ang2,
MMP2, VE-cadherin, α‐SMA, and PGC1α [68, 69]. Knockout of the
YAP reduces vascular density, budding, and branching [70]. In
addition, it is reported that mutation of YAP significantly
promoted alveolar budding [69]. Meanwhile, mechanical stimula-
tion to the tissue microenvironment controls vascular morpho-
genesis and barrier function [71]. Mechanical tension, cell density,
and angiogenic factor expression are different after pneumonect-
omy treatment [61, 63, 64, 69]. YAP activity is controlled by a
variety of mechanical stimuli such as cell density, extracellular
matrix stiffness, mechanical tension, etc. [72–74]. Inhibition of YAP
activity can eliminate the potential of angiogenesis [75]. Accord-
ingly, the hippo signaling pathway may be involved in the repair
process of ALI by intervening in the repair of pulmonary capillary
endothelial (Fig. 2).

Hippo signaling pathway and PAH
PAH is a chronic, progressive pulmonary vascular disease with
abnormally elevated pulmonary arterial pressure [76, 77].
Pathogenesis of PAH is associated with pulmonary artery cell

proliferation, vascular remodeling, increased anti-apoptosis, and
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orthotopic thrombosis [78, 79]. Vascular remodeling caused by
abnormal proliferation and impaired apoptosis of pulmonary
arterial vascular smooth muscle cells (PAVSMCs) plays a key role in
PAH [78, 80]. Increasing studies suggest that YAP of the hippo
signaling pathway is involved in pulmonary vascular remodeling
[78, 80]. The inactivation of LATS1 enhances the activity of YAP,
which results in the proliferation of PAVSMCs and pulmonary
vascular remodeling [78, 80]. In addition, YAP directly promotes
the transcription of Pik3cb which encodes the catalytic subunit
P110β of PI3K and enhances TEAD, thereby activating the PI3K/
AKT pathway, and then the activation of PI3K/AKT pathway
inhibits AKT phosphorylation to improve PAVSMCs proliferation
and weaken pulmonary vascular remodeling [78]. Moreover,
inactivation of LATS1 is caused by negative bidirectional cross-
linking between YAP-fibronectin and integrin-linked kinase 1
(ILK1), and the dysregulation of LATS1-YAP promotes the
production of fibronectin and activates ILK1 in PAVSMCs
[80, 81]. Selective inhibition of ILK reactivates LATS1 to down-
regulate YAP, which inhibits proliferation and induces apoptosis of
PAVSMCs [80, 81].
In addition, S1P promotes the activation of signal transduction

and transcriptional activator 3 (STAT3) through S1PR2 or autocrine
loop signaling, which further leads to STAT3 translocating to the
nucleus and leads to reduced ubiquitination degradation of YAP in
PAVSMCs [82, 83]. Meanwhile, the accumulation of YAP further
increases the expression of Notch3, which participates in PAH by
promoting PAVSMCs proliferation and pulmonary vascular remo-
deling [82, 84, 85] (Fig. 3).

Hippo signaling pathway and pneumonia
Pneumonia refers to inflammation of the terminal airway, alveoli,
and interstitium of the lung and is caused by pathogenic
microorganisms, immune damage, physical and chemical factors,
and allergies [86–90]. Bacterial pneumonia is the most common
pneumonia [91].
The expression and nuclear localization of YAP in AECIIs were

significantly increased in mice with bacterial pneumonia, which
causes the production of inflammatory cytokines and affects the
activation of YAP-IκB [63]. IκB is the inhibitor of NF-κB which,
initiates the production of inflammatory mediators, pro-
inflammatory cytokines, and chemokines in the alveolar epithe-
lium [92, 93]. YAP alleviates lung inflammation and promotes
regeneration of alveolar epithelial cells in bacterial pneumonia by
activating IκB [63, 94]. Moreover, the loss of YAP in AECIIs leads to
continuous accumulation of inflammatory cells in the lung of
bacterial pneumonia, which results in persistent lung inflamma-
tion [63] (Fig. 4).

Hippo signaling pathway and IPF
IPF is a chronic, progressive, age-related, irreversible, fibrotic
interstitial lung disease characterized by excessive deposition of
extracellular matrix proteins and destruction of alveolar structures
[95–99]. Most patients with IPF die of respiratory failure within
3–5 years [97, 99].
Lung fibroblasts are the main effector cells of IPF, and the YAP

mediates the proliferation, migration, and collagen deposition of
lung fibroblasts induced by mechanical signals [100, 101]. When

Fig. 2 The role of hippo signaling pathway in ALI. During epithelial damage, BSCs are activated and recruited to the site of lung injury.
Surviving differentiated epithelial cells recruit integrin-linked kinases to adhesion sites with the injury, which result in degradation of Merlin,
downregulation of the hippo pathway, and the secretion of Wnt7b. The Wnt7b induces ASMCs to release Fgf10, which binds to Fgfr2b on
BSCs to mobilize and amplify stem/progenitor cell populations by inhibiting premature differentiation of BSCs, thereby promoting lung
regeneration. In addition, S1P released by LMVECs promotes the proliferation and differentiation of AECIIs through the S1P-S1PR2-YAP
signaling axis, thus regulating alveolar epithelial repair. Meanwhile, YAP promotes the germination and remodeling of neovascules through
various angiogenesis factors such as Ang2, MMP2, VE-cadherin, α‐SMA, and PGC1α. Note: ALI acute lung injury; BSCs basal stem/progenitor
cells, ASMCs airway smooth muscle cells, Fgf10 fibroblast growth factor 10, Fgfr2b fibroblast growth factor receptor 2, S1P sphingosine-1-
phosphate, LMVECs lung microvascular endothelial cells, AECIIs type II alveolar epithelial cells, AECI type I alveolar epithelial cells, YAP Yes-
associated protein, Ang2 Angiopoietin-2, MMP2 matrix metallopeptidase 2, α‐SMA α-smooth muscle actin, PGC1α peroxisome proliferator-
activated receptor γ coactivator 1α.
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Fig. 4 The role of the hippo signaling pathway in pneumonia. S. pneumoniae capsule invades lung tissue and activates NF-κB in AECIIs. NF-
κB is involved in regulating lung inflammation by initiating inflammatory mediators, pro-inflammatory cytokines, and chemokines. At this
point, YAP activates IκBa which inhibits NF-κB, thereby alleviating the lung inflammation. The loss of YAP in AECIIs promotes the expression of
inflammatory genes and the continued accumulation of inflammatory cells, resulting in persistent of lung inflammation and alveolar fibrosis.
Note: IL interleukin, AECIIs type II alveolar epithelial cells, AECIs type I alveolar epithelial cells, NF-κB nuclear factor-κB.

Fig. 3 The role of hippo signaling pathway in PAH. Inactivation of LATS1 enhanced the activity of YAP. YAP promotes the transcription of
Pik3cb, which encodes the catalytic subunit P110β of PI3K and enhances TEAD, thereby activating the PI3K/AKT pathway. PI3K/AKT pathway
promotes PAVSMCs proliferation and pulmonary vascular remodeling and aggravates PAH. In addition, inactivation of LATS1 leads to LATS1-
YAP dysregulation, which promotes the production of fibronectin and activates ILK1. Inhibition of ILK reactivating LATS1 in PAVSMCs leads to
downregulation of YAP, inhibition of PAVSMCs proliferation, and induction of apoptosis. In addition, S1P promotes the activation of STAT3
through S1PR2 or autocrine loop signaling, which further lead to STAT3 translocates to the nucleus [97, 108]. STAT3 translocation further
reduces the expression of E3 ubiquitin ligase β -transduction repeat protein and inhibits degradation of YAP ubiquitination in PAVSMCs. Note:
PAH pulmonary arterial hypertension, LATS1/2 large tumor suppressor 1/2, TEAD TEA domain family, S1P sphingosine-1-phosphate, PAVSMCs
pulmonary arterial vascular smooth muscle cells, S1PR2 sphingosine-1-phosphate receptor 2, ILK1 integrin-linked kinase 1, PI3K
phosphatidylinositol 3-kinase.
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extracellular matrix stiffness greatens, YAP/TAZ enters into the
nucleus and binds to TEAD, which promote transcription of
fibrosis Twist1 gene, leading to fibroblasts proliferation, collagen
deposition, and change of the fibroblasts from the relatively static
state into a state of pathologic activation; thus the pulmonary
fibrosis is promoted [38, 39, 74, 102].
Moreover, IPF development is a SMAD-3-dependent process,

which increases collagen deposition in AECs. It is reported that
YAP promotes the expression of SMAD-3 in pulmonary fibrosis
mice [103]. In addition, YAP knockout results in the reduction of
cell AECs senescence [103]. Accordingly, the YAP promotes AEC
senescence and aggravates the development of IPF.
Transforming growth factor-β (TGF-β) promotes the expression

of plasminogen activator inhibitor-1 (PAI-1), and then PAI-1
promotes fibrosis and regulates degradation of fibrin and stromal
adhesion of lung fibroblasts by affecting pericellular plasminase
activity, which results in IPF [104]. Serpine1, which encodes PAI-1
is a target gene of YAP/TAZ and is directly regulated by YAP/TAZ
[104, 105]. When YAP/TAZ is knocked out, the function of TGF-β is
inhibited, which decrease the expression of PAI-1 [104, 105].
Meanwhile, YAP regulates the abnormal proliferation, polarity, and
migration of respiratory epithelial cells, inhibits epithelial cell
differentiation, and participates in the pathogenesis of IPF through
the mTOR signaling pathway [106] (Fig. 5).

Hippo signaling pathway and asthma
Asthma affects >300 million people around the world and its
prevalence is increasing [107–110]. The main features of asthma
include airway inflammation, high response of airway smooth
muscle to multiple stimuli, and airway remodeling [107, 111–113].
The immune tolerance disorder of Notch4-mediated is a main

mechanism that induces chronic inflammation in asthma. It is
suggested that the Notch4 causes Treg cell dysfunction through
the hippo signaling pathway, which promotes allergic airway
inflammation [114]. When alveolar macrophages phagocytose

allergens and particulate pollutants, aryl hydrocarbon receptors
are activated to induce the expression of Notch ligand Jagged1
(Jag1) which activates Notch on CD4+ T cells, and then Notch
transforms Treg cells into Th2 or Th17 effector T (Teff) cells
through hippo pathway-dependent mechanisms, thus the stability
and function of Treg cells is damaged [114, 115].
Abnormal proliferation and migration of ASMCs play an

important role in airway hyperresponsiveness and airway remo-
deling in asthma [108, 116, 117]. S1P is a natural, multifunctional,
bioactive phospholipid molecule that is involved in cell prolifera-
tion, differentiation, migration, contraction, and vasculogenesis
[82, 108, 118–120]. It is reported that the level of S1P in
bronchoalveolar lavage fluid is significantly increased in asthmatic
patients, and the S1P stimulates the proliferation, migration, and
contraction of ASMC in vitro [108]. Meanwhile, S1P inhibits the
phosphorylation of YAP and promotes its nuclear localization
[108, 121]. In addition, abnormal YAP in pregnant mice increased
the susceptibility of their offspring to asthma [116]. However, the
mechanisms by which YAP affects asthma remain unclear (Fig. 6).

CONCLUSION
The hippo signaling pathway is mainly composed of MST1/2,
LATS1/2, SAV1, MOB1, YAP, or TAZ, and TEAD and is involved in
ALI, PAH, pneumonia, IPF, and asthma. YAP/TAZ, as the cascade
effector of the hippo signaling pathway, plays an important role
in these respiratory diseases. When YAP is activated, YAP
transfers from the cytoplasm to the nucleus and accumulates
in the nucleus, thereby acting on target genes such as Twist1
and Serpine1. Subsequently, the activation of target genes
affects the proliferation and migration of cells such as AECs,
PAVSMCs, lung fibroblasts, and AECIIs. However, the specific
mechanisms of the hippo signaling pathway regulating respira-
tory diseases remain unclear and more researches are needed in
further.

Fig. 5 The role of hippo signaling pathway in IPF. When the stiffness of the extracellular matrix increases, YAP enters the nucleus and binds
with TEAD to promote Twist1 gene transcription, cell proliferation, and collagen deposition, thus causing pulmonary fibrosis. Meanwhile, TGF-
β promotes the expression of PAI-1, which regulates the degradation of fibrin and stromal adhesion of lung fibroblasts by affecting the activity
of pericellular plasminase. The Serpine1 gene which encodes PAI-1 is regulated by YAP. In addition, YAP knockout reduces the expression of
Smad-3 and p21 in AECs, and reduces collagen deposition and aging AECs, thus slowing down the IPF. YAP can also interact with the mTOR
signaling pathway to regulate the abnormal proliferation, polarity and migration of respiratory epithelial cells, and participate in the
pathogenesis of IPF. Note: IPF idiopathic pulmonary fibrosis, TEAD TEA domain family, TNF tumor necrosis factor, AECs alveolar epithelial cells,
PAI-1 plasminogen activator inhibitor-1, TGF-β transforming growth factor-β, Serpine1 serine protease inhibitor clade E member 1.
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