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A B S T R A C T   

Precise diagnosis of early prostate cancer (PCa) is critical for preventing tumor progression. However, the 
diagnostic outcomes of currently used markers are far from satisfactory due to the low sensitivity or specificity. 
Here, we identified a diagnostic subpopulation in PCa tissue with the integrating analysis of single-cell and bulk 
RNA-seq. The representative markers of this subpopulation were extracted to perform intersection analysis with 
early-PCa-related gene module generated from weighted correlation network analysis (WGCNA). A total of 24 
overlapping genes were obtained, the diagnostic roles of which were validated by distinguishing normal and 
tumorous prostate samples from the public dataset. A least absolute shrinkage and selection operator (LASSO) 
model was constructed based on these genes and the obtained 24-gene panel showed high sensitivity and 
specificity for PCa diagnosis, with better identifying capability of PCa than the commercially used gene panel of 
Oncotype DX. The top two risk factors, TRPM4 and PODXL2, were verified to be highly expressed in early PCa 
tissues by multiplex immunostaining, and PODXL2 was more sensitive and specific compared to TRPM4 and the 
pathologically used marker AMACR for early PCa diagnosis, suggesting a novel and promising pathology marker.   

1. Introduction 

Prostate cancer (PCa) is one of the most common malignancies in the 
male genitourinary system, with approximately 1.5 million new cases a 
year [1]. As the advanced PCa remains to be a leading factor in tumor 
causing deaths, early diagnosis has become increasingly critical [2]. 

Over the years, nuclear magnetic resonance imaging (NMRI), serum 
prostate-specific antigen (PSA) testing and digital rectal examination 
(DRE) has been the main approaches for early PCa detection [3]. 
However, all of these approaches have their own limitations, such as low 
sensitivity or specificity and a high false positive rate, resulting in plenty 
of overdiagnosis and misdiagnosis [3]. Prostatic needle biopsy is a 
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relatively more accurate and currently preferred approach for early PCa 
identification. Sometimes, morphological changes are difficult to iden-
tify by only histological observation due to the very limited malignant 
glands in small specimens, causing problems in confirming or discarding 
the possibility of PCa [4]. 

To accurately examine the morphological features of PCa, such as the 
loss of basal cells and hyperplasia of luminal epithelia, abundant 
markers have been used for immunohistochemical identification. TP63, 
as a nuclear protein from the tumor-suppressor gene TP53 family, spe-
cifically stains basal cells and is therefore widely used in the patholog-
ical diagnosis of PCa [5]. However, PCa biopsies are mostly not 
sufficient for the evaluation of the presence or absence of basal cells, and 
to worsen this situation, several lines of studies have shown that nearly 
0.3–1.1% of PCa tissues are positive for basal cells [6,7]. AMACR is a 
mitochondrial and peroxisomal enzyme involved in the β-oxidation of 
fatty acids and is significantly overexpressed in malignant luminal cells 
[8]. In recent decades, it has usually been used as an adjunct to basal cell 
markers to identify early PCa [9]. Despite its usefulness in PCa diagnosis, 
AMACR is also occasionally positive in benign prostates and conversely 
negative in up to 25 % of typical PCa tissues [5,6]. It is urgent to identify 
more specific and sensitive markers to prevent missing the optimal time 
for PCa treatment. 

Better understanding of the mutational and transcriptomic land-
scapes in PCa has helped us to identify various potential markers for 
early PCa detection, including NKX 3.1 [10], GOLM1 [11] and FOLH1 
[12]. However, the clinical applications of these candidate markers in 
PCa diagnosis are very limited due to their low sensitivity or specificity. 
PCa tissues consist of multiple types of cells, and it is practically 
impossible to precisely examine the expression characteristics of tumor 
cells by bulk RNA-seq. With the development of high-throughput 
sequencing in recent years, single-cell RNA-seq has been applied in 
various types of malignancies to reveal the expression profiles of tumor 
cells and identify distinct subpopulations, providing many novel per-
spectives on tumorigenesis, progression and drug resistance [13–16]. 
Additionally, in our previous study, we identified a unique subpopula-
tion in PCa essential for diagnosis and stratification and verified the 
expression features of its representative marker HPN [17]. 

To identify more sensitive and specific markers for early PCa diag-
nosis, in the present study, we combined the single-cell and bulk RNA- 
seq profiles to identify a diagnostic subpopulation similar to our previ-
ous findings [17], and performed weighted correlation network analysis 
(WGCNA) to identify the diagnostic module. To narrow down the 
candidate genes, we conducted intersection analysis and used the 
overlapping genes to construct a least absolute shrinkage and selection 
operator (LASSO) model for early PCa diagnosis. Furthermore, top two 
risk factors from this gene model were identified and examined if 
capable of distinguishing early PCa from normal prostates by immuno-
staining in tissue microarray. Our findings provided a diagnostic gene 
panel consisted of genes essential for PCa early development and a novel 
molecule with high sensitivity and specificity in pathology diagnosis of 
early PCa. 

2. Materials and methods 

2.1. Data collection and processing 

The single-cell RNA-seq profiles of 10 PCa patients were obtained 
from the website www.prostatecellatlas.org. Tumorous and matching 
normal samples from patients with Gleason scores of 6 or 7 were 
extracted. The mRNA expression profiles of these patients have under-
went quality control to remove environmental RNA contamination and 
doublets via the SoupX R [18] and Scrublet packages [19], respectively. 
High-quality cells with identified genes ranged from 200 to 6000, and 
mitochondrial gene proportions less than 15 % were preserved. Mito-
chondrial and ribosomal genes were further removed, as well as those 
expressed in fewer than 3 cells. The gene expression matrices for the 

remaining cells were normalized and integrated according to the stan-
dard procedure of the Seurat R package [20]. 

The bulk RNA-seq profiles of PCa patients were downloaded from the 
TCGA and GTEx databases. The TCGA dataset contains 495 PCa samples 
and 51 normal prostate samples, while the GTEx dataset includes 100 
normal prostate samples. The count matrices of these two datasets were 
integrated, and we used the SVA package to remove batch effects 
(Fig. S1) [21]. Tumor samples with Gleason scores greater than 7 were 
removed from further analysis. 

2.2. Clustering and cell-type annotation 

The cell cycle effects on clustering were removed in ScaleData. The 
top 2000 variable genes were extracted, and dimensionality reduction 
was then performed with principal component analysis (PCA). Cell 
clusters were visualized by a t-distributed stochastic neighbor embed-
ding (tSNE) plot. Marker genes of each cluster were identified by 
FindMarkers and then used to align to the known markers of major types 
of cells in the CellMarker database for cell-type annotation. 

Subclustering of epithelial cells was performed using the same 
method described above. Marker genes of each subpopulation identified 
by FindMarkers were further filtered by log2FC > 0.5, p value < 0.05 and 
pct.1 > 0.3. Since there are no universal standards for the annotation of 
the epithelial subpopulation, the subpopulations were annotated as 
representative marker genes. 

2.3. Gene set variation analysis (GSVA) 

To determine the potential pathways in which each subpopulation 
was enriched, we examined the expression levels of representative genes 
from 50 hallmark pathways in the molecular signature database using 
the GSVA package (version 1.48.0) with default settings as described in 
the GSVA github repository [22]. The obtained hallmark gene set scores 
for each subpopulation were visualized by heatmap. 

2.4. Expression correlation to public data 

Public bulk RNA-seq profiles of PCa patients were integrated by 
TCGA and GTEx datasets as described above. The top 20 markers of each 
subpopulation were extracted to represent their expression signatures 
using the AddModuleScore function and then used to examine the 
expression levels in normal and tumorous samples from the integrated 
dataset. Conversely, the expression levels of the PCa signature, obtained 
by the upregulated genes in tumorous samples (Gleason score = 6, 7) 
from the integrated dataset, were examined in each subpopulation and 
visualized by feature plot and violin plot. Furthermore, the correlations 
of each subpopulation to normal and tumorous prostate tissues (Gleason 
score = 6, 7) were examined by a hypergeometric distribution test and 
visualized by heatmap. 

2.5. Identification of the PCa diagnostic subpopulation 

BayesPrism was used to perform deconvolution of bulk RNA-seq 
profiles from our integrated dataset based on the single-cell RNA-seq 
data [23], and the cell proportion of each epithelial subpopulation was 
estimated by their gene expression levels in bulk samples. The diagnostic 
capability of each subpopulation was evaluated by receiver operating 
characteristic (ROC) curves created by the pROC R package based on the 
cell proportion and clinical information of the tumor event [24]. 
Furthermore, the cell proportion of each subpopulation in patients from 
single-cell data was analyzed and visualized by pie graph. The subpop-
ulation with the highest area under the curve (AUC) value and positive 
rate in each patient was considered the PCa diagnostic subpopulation. 
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2.6. Weighted correlation network analysis (WGCNA) 

The WGCNA R package was used to construct the gene co-expression 
network [25]. After removal of outlier samples and genes, a total of 10, 
000 genes with the top median absolute deviations were selected for 
subsequent analysis. To explore the correlation between gene modules 
and early PCa development, normal and tumorous samples with Gleason 
scores of 6 or 7 were converted into numerical values of 0 and 1, 

respectively. The pathology gradings of tumorous samples were repre-
sented by their Gleason scores, while the normal samples were assigned 
the value of 0. The gene module with the most significant correlation to 
both tumor event and Gleason score was considered the PCa diagnostic 
module. 

Fig. 1. Cell-type landscape of tumorous and matched normal prostate tissues revealed by single-cell RNA-seq. (A) Cellular compositions of normal and tumorous 
prostate tissues. (B) The expression levels of representative markers of each cluster. (C) Cell-type proportions of normal and tumorous prostate tissues in each patient. 
(D) Number of DEGs between normal and tumorous prostate tissues within each cluster. (E) Upregulated (red) and downregulated (blue) DEGs in epithelial cluster 
between normal and tumorous prostate tissues. (F) The biological progresses that DEGs between normal and tumorous epithelia mainly enriched in. 
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2.7. Least absolute shrinkage and selection operator (LASSO) 

A total of 24 overlapping genes between the marker genes of the 
diagnostic subpopulation and the genes in the diagnostic module were 
identified. Based on these genes, LASSO regression analysis was per-
formed to establish a diagnostic model of early PCa [26]. Samples from 
the integrated public dataset were randomly divided into the training set 
and test set at a ratio of 7:3. The diagnostic model was established using 
the training set to distinguish normal and tumorous prostates. The 
predictive capability was evaluated by ROC analysis and further vali-
dated using the test set. The top risk genes were identified by the 
regression coefficient of each gene from the 24-gene panel, the higher of 
which indicated more critical roles in the LASSO model. 

2.8. Multiplex Immunostaining 

The human PCa tissue microarray (HProA150PG02, Shanghai Outdo 
Biotech Co. Ltd., China), consisting of 55 normal tissues and 95 
tumorous tissues with Gleason scores ranging from 6 to 9, was obtained 
to examine the expression patterns of PODXL2, TRPM4 and AMACR. The 
multiplex immunostaining assay was performed as described before 
with the primary antibodies of anti-PODXL2 (diluted at 1:200, Sigma 
Aldrich, cat. no. HPA042265), anti-AMACR (MXB Biotechnologies, cat. 
no. RMA-0546) and anti-TRPM4 (diluted at 1:200, Proteintech, cat. no. 
21985–1-AP) [17]. The corresponding staining order was Alexa Fluor™ 
488-labeled tyramide (Thermo Fisher Scientific, cat. no. B40953), Alexa 
Fluor™ 555-labeled tyramide (Thermo Fisher Scientific, cat. no. 
B40955) and Alexa Fluor™ 647-labeled tyramide (Thermo Fisher Sci-
entific, cat. no. B40958). 

The staining score was evaluated by two qualified pathologists as 
follows: positive signal rate (negative: 0 points, 1–25 % of cells: 1 point, 
26–50 % of cells: 2 points, 51–75 % of cells: 3 points, and 76–100 % of 
cells: 4 points) and positive signal intensity (none: 0 points, weak 
staining: 1 point, moderate staining: 2 points, strong staining: 3 points). 
Integration of the positive signal rate and intensity scores by multipli-
cation was the final staining score of each antibody. The staining scores 
were presented as the means ± standard deviation and analyzed by one- 
way analysis of variance (ANOVA). Differences between groups were 
evaluated using the Student-Newman-Keuls multiple comparison test in 
SPSS version 20.0 and considered statistically significant at p < 0.05. 
Samples of squamous carcinoma, signet-ring cell carcinoma and 
mucinous carcinoma from the tissue microarray were filtered out during 
the staining score evaluation. 

3. Results 

3.1. Cellular composition of normal and tumorous prostates 

The single-cell RNA-seq profiles of 16 samples of normal and 
tumorous prostates from 8 patients with Gleason scores of 6 or 7 were 
preserved for dissection of the cellular composition. A total of 10,176 
cells passed quality control and were divided into 8 clusters (Fig. 1A). 
Based on the expression levels of the representative cell-type markers 
(Table S1), the clusters were annotated as B cells, endothelial cells, 
epithelial cells, fibroblasts, macrophages, mast cells, NK cells and T cells 
(Fig. 1A, B). None of these cells were disease- or patient-specific, 
demonstrating that the cells were clustered predominantly by cell-type 
characteristics rather than batch effects (Fig. 1A, C). The cellular 
composition between tumorous and matching normal prostates within 
the same individual varied significantly, as did that among patients, 

suggesting high heterogeneity of PCa (Fig. 1C). 
Differently expressed genes (DEGs) between normal and tumorous 

prostates within each cluster were examined and showed epithelial cells 
with the highest transcriptomic differences (Fig. 1D). Tumorous 
epithelial cells highly expressed genes related to PCa progression, such 
as FABP5, PCA3 and HPGD (Fig. 1E). Subsequently, we performed 
functional enrichment analysis to explore the biological significance and 
found that tumorous epithelial cells highly expressed genes mainly 
involved in oxidative phosphorylation, biological macromolecule 
metabolism and negative regulation of apoptosis (Fig. 1F). Considering 
PCa is an epithelia-derived malignancy and the epithelial cells exhibited 
prominent transcriptomic changes related to tumor occurrence and 
progression, we therefore focused on epithelial cells for further analysis 
of identifying PCa diagnosis-related cells. 

3.2. High heterogeneity of PCa tissue 

The epithelial cells were extracted and performed data normalization 
using ScaleData function in the Seurat R package. After removal of cell 
cycle effects, we conducted PCA and clustered them into 12 sub-
populations with the resolution parameter of 0.5 and dims of 1:20. 
Marker genes were identified and used for the annotation of each sub-
population (Fig. 2A, B, Table S2). Although none of these cells were 
disease-specific, several subpopulations were approximately enriched in 
tumorous prostates, including C2-HPGD, C6-HPN, C10-KLK12 and C11- 
TGM4, suggesting positive correlations with early PCa development 
(Fig. 2C). To eliminate the impact of different captured cell counts, we 
contrasted the cell proportions of each subpopulation in normal and 
tumorous samples and further validated the tumorous enrichment of 
these subpopulations in PCa (Fig. 2D). In addition, except for C1-MTIM 
and C4-GADD45B, all subpopulations were mainly distributed in 
tumorous prostates (Fig. 2D). 

To determine the malignant subpopulations, we examined the 
expression levels of reported PCa-related genes and performed GSVA for 
each subpopulation. C1-MT1M showed no significantly high expression 
of any PCa-related genes, suggesting no participation in PCa occurrence 
of progression (Fig. 2D, E). C2-HPGD highly expressed the urine marker 
of PCa, PCA3, and genes enriched in oxidative phosphorylation and MYC 
targets, exhibiting malignant potentials (Fig. 2E, F). C3-KRT15 cells 
highly expressed basal markers such as TP63 and KRT15, possibly being 
basal cells [4] (Fig. 2E). Additionally, the biological processes of 
C4-GADD45B markers enriched in were very similar to those of 
C3-KRT15 (Fig. 2E, F). C5-AHCY highly expressed genes, including 
ANXA3 and SPINK1, were mainly enriched in MYC targets and 
PCa-related aberrant metabolism (Fig. 2E, F). In contrast, C6-HPN 
highly or moderately expressed abundant PCa diagnostic markers, 
including SPINK1, PCA3, FOLH1, AMACR, HPN, GOLM1 and EZH2, 
suggesting a diagnostic role for PCa [4,12] (Fig. 2E). C7-SCD and 
C8-MGP exhibited similar expression characteristics to C6-HPN, despite 
the low expression levels of diagnostic markers (Fig. 2F). C9-FTX 
moderately expressed PCa early development-related genes, such as 
KLK3, TMPRSS2, HPN and EZH2, and was mainly involved in epithelial 
mesenchymal transition (EMT) and angiogenesis, suggesting an infil-
tration- or migration-promoting role [4,12] (Fig. 2E, F). Similar to 
C6-HPN, C10-KLK12 highly expressed PCA3, FOLH1 and AMACR, the 
widely used PCa diagnostic molecules [4,12] (Fig. 2E). High expression 
of GSTP1 suggested that C11-TGM4 could be benign luminal cells, as it is 
an epigenetic biomarker for PCa, DNA methylation of which is nearly 
universally present in all PCa cells [27] (Fig. 2E). C12-TPPP3 exhibited 
the most proliferative potential due to the high expression levels of 

Fig. 2. Epithelial cell reclustering and the characterization of each subpopulation. (A) Epithelial cells reclustered into 12 subpopulations. (B) The expression levels of 
representative markers of each epithelial subpopulation. (C) Normal and tumorous tissue distribution of each subpopulation. (D) Cell proportion of each subpop-
ulation in tumorous vs normal tissue. (E) The expression levels of PCa progression-related genes in each subpopulation. (F) The pathway enrichment analysis of each 
subpopulation evaluated by GSVA. 
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Fig. 3. Identification of malignant cells by clinical correlation analysis of each subpopulation in PCa progression. (A) The expression levels of marker genes from 
each subpopulation examined by the integrated dataset of TCGA and GTEx. (B) The correlations between the highly expressed genes in each subpopulation and the 
DEGs of normal and tumorous prostate samples from public datasets. (C) Feature plot and (D) violin plot showing the expression levels of PCa highly expressed genes 
in each subpopulation of normal and tumorous prostates, respectively. * p < 0.05, * * p < 0.01, * ** p < 0.001. 
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Fig. 4. The diagnostic capability and sample distribution of each malignant subpopulation. (A) The diagnostic capability of each candidate malignant subpopulation 
in early PCa evaluated by ROC analysis. (B) Cell proportion of each malignant subpopulation in tumorous vs normal tissue. (C) The sample distribution of each 
malignant subpopulation. (D) The homogeneity of the sample distribution of each malignant subpopulation. 
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Fig. 5. Screening of 24 genes with critical potential in early PCa diagnosis by WGCNA. (A) The correlation of the power values of the soft threshold with the scale- 
free topology model fit. (B) The relationship between power values and mean connectivity. (C) The clustered gene modules with different colors. Each color rep-
resents one kind of gene module. Gray color represents genes that could not be classified into any gene module. (D) Topological correlations between genes within 
different modules. (E) The correlations of different gene modules with the gene expression signature of each subpopulation and the clinical information, including 
Gleason score and tumor event. (F) The correlation of genes in module 5 with the upregulated genes in early PCa. (G) The expression levels of genes in module 5 and 
markers of C6-HPN in normal and tumorous prostates. The overlapping genes are shown on the left. 
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MKI67 and genes involved in the G2M checkpoint and mitotic spindle 
[4] (Fig. 2E, F). 

Taken together, epithelial cells from PCa consisted of 12 sub-
populations with various roles in PCa progression. C1-MT1M, C3- 
KRT15, C4-GADD45B and C11-TGM4 were likely the normal cells with 
low expression of PCa progression-related genes and high expression of 
basal markers or PCa-suppressing genes. Other subpopulations were 
more likely to be malignant components in PCa. In particular, C6-HPN 
and C10-KLK12 could be involved in PCa diagnosis considering the 
highly expressed diagnostic markers. 

3.3. Identification of malignant subpopulation 

The expression levels of the top subpopulational markers were 
examined in normal and tumorous prostate samples from the TCGA and 
GTEx integrated public datasets to determine the clinical correlation to 
PCa progression. The top markers of C2-HPGD, C5-AHCY, C6-HPN, C9- 
FTX, C10-KLK12 and C12-TPPP3 were highly expressed in tumorous 
prostates (Fig. 3A). While the gene expression characteristics of C1- 
MT1M, C3-KRT15, C4-GADD45B, C7-SCD, C8-MGP and C11-TGM4 
were more similar to normal tissues (Fig. 3A). Furthermore, we per-
formed multimodal intersection analysis (MIA) to examine the correla-
tion between the expression signature of each subpopulation and PCa 
tissues. Consistently, abundant upregulated genes in PCa tissues were 
also detected in C2-HPGD, C5-AHCY, C6-HPN, C9-FTX, C10-KLK12 and 
C12-TPPP3 (Fig. 3B). 

To further validate the clinical correlation of each subpopulation, we 
examined the expression levels of PCa-upregulated genes in each sub-
population (Table S3) and found that these genes were mostly expressed 
in the potentially malignant subpopulations we identified earlier 
(Fig. 3C). Despite moderate expression of PCa-upregulated genes in cells 
from normal samples was detected, the positive cell counts were small 
and the expression levels were relatively low (Fig. 3C, D). Therefore, via 
the overall considerations of cell proportion by tumorous derivation, the 
potential biological function and the clinical correlation of each sub-
population, C2-HPGD, C5-AHCY, C6-HPN, C9-FTX, C10-KLK12 and 
C12-TPPP3 were regarded as malignant subpopulations. 

3.4. Screening for the diagnostic subpopulation 

The deconvolution of bulk-seq data from the integrated public 
dataset was performed by BayesPrism, and the cell proportion of each 
malignant subpopulation in the normal and tumorous samples was 
calculated. We further performed ROC analysis based on the cell pro-
portion of each malignant subpopulation and the tumor event to 
examine the capability of predicting PCa occurrence. In contrast, C6- 
HPN and C12-TPPP3 showed extremely high sensitivity and specificity 
for predicting PCa, with AUC values higher than 0.9 (Fig. 4A). 
Furthermore, the cell proportion by tumorous derivation of each sub-
population was examined, and similar results were obtained: the cell 
proportions of C6-HPN and C12-TPPP3 in PCa samples were signifi-
cantly higher than those in normal prostates, and the differences were 
huge (Fig. 4B). Particularly, C6-HPN had a slightly higher AUC value 
and larger differences between the cell proportions in PCa and normal 
prostates compared to C12-TPPP3 (Fig. 4A, B). 

We further analyzed the cell proportions by patient derivation and 
found that C2-HPGD was mainly derived from one patient labeled D5 
(Fig. 4C). Similarly, C10-KLK12 and C12-TPPP3 mostly originated from 

patients D15 and D4, respectively (Fig. 4C). However, C5-AHCY, C6- 
HPN and C9-FTX were distributed in almost all of the patients, sug-
gesting that they are more universal than other subpopulations (Fig. 4C). 
The universality of subpopulational distribution in PCa patients was 
evaluated by the homogeneity and positive ratio, showing that C5-AHCY 
and C6-HPN were homogeneously distributed in all patients (Fig. 4D). 
Taken together, C6-HPN was the most universal subpopulation with 
great predictive capability for PCa, making it a potentially diagnostic 
subpopulation for PCa occurrence. 

3.5. Identification of genes essential for early PCa diagnosis 

WGCNA was performed using the integrated public data to identify 
the tumor-event-correlated gene module. A total of 10,000 genes with 
the top median absolute deviations were preserved for subsequent 
analysis. Integrating the correlation analysis of the power value of the 
soft threshold with the scale-free topology model fit and with the mean 
connectivity, a soft threshold of 6 was selected (Fig. 5A, B). With this soft 
threshold, a co-expression network consisting of 18 gene modules was 
constructed (Fig. 5C, D, Table S4). 

To identify the diagnostic genes for early PCa, we examined the 
correlations of each gene module with the epithelial subpopulations and 
clinical phenotypes, and found that gene modules 5 and 8 exhibited high 
correlations to C6-HPN (Fig. 5E). Meanwhile, gene module 5 was also 
positively and significantly related to Gleason score and tumor event, 
which was further validated by correlation analysis of genes from 
module 5 and those highly expressed in early PCa (Fig. 5E, F). The 
expression levels of gene module 5 and C6-HPN markers were examined 
in normal and tumorous prostate samples in the TCGA and GTEx data-
sets. As expected, most of these genes were highly expressed in PCa, and 
a total of 24 overlapping genes between gene module 5 and C6-HPN 
markers were filtered out as candidate genes essential for PCa diag-
nosis (Fig. 5G). 

3.6. Molecular diagnosis based on the candidate genes 

Normal and tumorous prostate samples were extracted from TCGA 
and GTEx integrated datasets and divided into 2 clusters according to 
the expression levels of 24 candidate genes (Fig. 6A). We examined the 
origin of these samples and found that cluster 1 and cluster 2 closely 
overlapped with tumorous and normal samples, respectively (Fig. 6B). 
To further validate that the 24 genes could divide these samples into 
normal and tumorous prostates, we examined the expression levels of 
PCa signature genes in these 2 clusters and found that they were highly 
and specifically expressed in cluster 1, demonstrating that cluster 1 
mostly consisted of tumorous samples (Fig. 6C, D). In addition, func-
tional enrichment analysis showed that cluster 1 was mainly involved in 
the regulation of mitotic nuclear division and mitotic spindle assembly 
checkpoint signaling, essential for cell proliferation (Fig. 6E). Cluster 2 
was mainly related to urogenital system development and epidermis 
development, suggesting an enrichment of normal tissues in cluster 2 
(Fig. 6F). 

We next analyzed the expression levels of the marker genes of cluster 
1 and cluster 2 in our single-cell RNA-seq data. The cluster 1 top markers 
were highly expressed in the malignant subpopulations, including C2- 
HPGD, C5-AHCY, C6-HPN, C9-FTX, C10-KLK12 and C12-TPPP3 
(Fig. 6G). Moreover, C6-HPN highly expressed approximately all of 
the cluster 1 top markers, showing a significant correlation between 

Fig. 6. Verification of the diagnostic roles of the 24 candidate genes with bulk and single-cell RNA-seq profiles. (A) Samples from the integrated public dataset 
clustered according to the expression levels of the 24 candidate genes. (B) Normal and tumorous tissue distribution of the samples shown by tSNE plot. (C) Feature 
plot and (D) violin plot showing the expression levels of highly expressed PCa genes in clusters 1 and 2, respectively. (E) The biological processes that cluster 1 highly 
expressed genes were enriched in. (F) The biological processes that cluster 2 highly expressed genes were enriched in. (G) The expression levels of cluster 1 highly 
expressed genes in each epithelial subpopulation from single-cell RNA-seq profiles. (h) The expression levels of cluster 2 highly expressed genes in each epithelial 
subpopulation from single-cell RNA-seq profiles. 
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cluster 1 and C6-HPN (Fig. 6G). However, the cluster 2 top markers were 
significantly enriched in C3-KRT15, which was earlier identified as basal 
cells (Fig. 6H). Taken together, the 24 candidate genes obtained from 
the diagnostic subpopulation and gene module were verified to be 
capable of identifying early PCa and had enormous potentials for PCa 
diagnosis. 

3.7. Establishment of a diagnostic model for PCa 

To establish a risk gene model for early PCa occurrence, we per-
formed LASSO regression on the 24 candidate genes. The optimal 
lambda of 0.0042 was selected with the binomial deviance tended to be 
0 (Fig. 7A). ROC analysis was performed with this gene model in the 
training set and showed great sensitivity and specificity for PCa diag-
nosis with an AUC value of 0.971, which was further validated in the test 
set with an AUC value of 0.939 (Fig. 7B). Furthermore, we examined the 
expression levels of the 24-gene panel in normal and tumorous samples 
from the integrated dataset and made a comparison with the commer-
cially used gene panel of Oncotype DX. Both of them were highly 
expressed in PCa tissues, and significant differences were observed be-
tween normal and tumorous samples (Fig. 7C). In comparison, ROC 
analysis of these two gene panels showed a higher AUC value of our 
candidate gene panel (AUC = 0.964) than Oncotype DX (AUC = 0.951), 
suggesting that it is more sensitive and specific in early PCa diagnosis 
(Fig. 7D). 

Furthermore, we examined the regression coefficients of these 24 
genes from the LASSO model and identified TRPM4 and PODXL2 as the 
top two critical factors (Fig. 7E). Since AMACR is a widely used pa-
thology marker for PCa diagnosis and our candidate gene panel did not 
contain this marker, we performed ROC analysis and compared the AUC 
value of AMACR to TRPM4 and PODXL2 in predicting PCa. AMACR 
showed a slightly higher AUC value than either TRPM4 or PODXL2, 
suggesting that they were not adequate to replace AMACR in PCa 
diagnosis (Fig. 7F). However, AMACR exhibited a slightly lower AUC 
value than TRPM4 and PODXL2 when combined with basal marker TP63 
(Fig. 7G). In summary, TRPM4 and PODXL2, as the top two critical genes 
for PCa diagnosis from the candidate 24-gene panel, had similar capa-
bility for early PCa detection to AMACR and even better capability when 
combined with TP63. 

3.8. Verification of TRPM4 and PODXL2 in PCa diagnosis 

To further validate the diagnostic roles of TRPM4 and PODXL2 in 
PCa, we examined their expression levels in a tissue microarray con-
sisting of 55 normal prostate tissues and 95 PCa tissues with different 
Gleason scores. Meanwhile, we examined the expression level of AMACR 
in the same section to make a comparison. All of these markers exhibited 
relatively low expression levels in normal prostates, while in tumorous 
tissues, AMACR and PODXL2 showed higher expression levels than 
TRPM4 (Fig. 8A, B). Moreover, we found that not all tumor cells pre-
sented overlapping signals, particularly the AMACR-positive cells and 
those with high expression levels of TRPM4 and PODXL2, which was 
consistent with our earlier findings that they represented different 
subpopulations (Fig. 8A). To determine if TRPM4 and PODXL2 were 
qualified markers for early PCa detection, we examined the expression 
differences of normal and tumorous prostates with various Gleason 
scores individually. All of these markers exhibited significantly high 
expression levels in PCa tissues with Gleason scores of 6 and 7 (Fig. 8C). 

However, compared with TRPM4, the expression differences in early 
PCa and the corresponding normal tissues were more significant in 
PODXL2 and AMACR (Fig. 8C). 

Based on the expression levels of each candidate marker in the tissue 
microarray, we performed ROC analysis to examine the sensitivity and 
specificity for PCa diagnosis. PODXL2 exhibited the best diagnostic 
capability for early PCa with an AUC value of 0.941, which was much 
higher than that of both AMACR and TRPM4 (Fig. 8D). In contrast, 
TRPM4 presented a relatively weak capability for PCa diagnosis with an 
AUC value of 0.782 (Fig. 8D). Overall, PODXL2 was highly expressed in 
early PCa and exhibited significant sensitivity and specificity compared 
with the widely used pathology marker AMACR, showing a promising 
potential for future PCa diagnosis. 

4. Discussion 

Early PCa identification by prostatic needle biopsy is critical for 
preventing malignant progression, which currently remains challenging 
when malignant glands are few or benign mimickers are present. Despite 
the extensive use of AMACR and TP63 to mark the tumor and basal cells, 
the overdiagnosis and misdiagnosis rates remain to be high in clinically 
diagnosed cases. Numerous markers for PCa diagnosis have been iden-
tified with the development of sequencing technologies [4,12]. How-
ever, the clinical applications for the pathological diagnosis of PCa are 
still very limited [4]. The reasons for this dilemma could be the low 
sensitivity and specificity of markers identified from conventional bulk 
RNA-seq. The gene expression profiles obtained from bulk-seq are usu-
ally normalized by various types of cells rather than tumor cells, let 
alone the heterogeneity of tumor cells [28,29]. In comparison, 
single-cell RNA-seq measures gene expression at the individual cell 
level, allowing examination of tumor cells alone or their subpopulations 
[30,31]. This relatively new technology has been used in a variety of 
types of tumors to identify distinct subpopulations critical for tumor 
progression and drug resistance in PCa [32–34]. However, to our 
knowledge, no diagnostic subpopulation of PCa has ever been reported. 

In this study, we integrated single-cell and bulk RNA-seq data from 
published and public datasets to reveal the intratumoral heterogeneity 
of PCa and identified a distinct subpopulation, C6-HPN, with high 
expression levels of genes related to early PCa development, such as 
GOLM1, HPN, TFF3, TMPRSS2 and KLK3. GOLM1 is a Golgi trans-
membrane protein highly expressed in PCa and critical for TGFβ1/ 
Smad2 signaling-induced epithelial-mesenchymal transition (EMT) [35, 
36]. HPN is a type II transmembrane serine protease overexpressed in 
early PCa, targeting which could significantly suppress PCa invasion and 
metastasis [37,38]. TFF3 has a non-CpG island promoter with significant 
hypomethylation in PCa compared to normal prostates, and the over-
expression of mRNA levels can be found in most PCa samples, exhibiting 
a diagnostic potential for early PCa [39]. TMPRSS2-ERG gene fusion has 
long been identified as a specific genomic aberration in PCa and has 
recently been developed as a promising urine marker for early PCa 
detection [40,41]. KLK3 is the coding gene of PSA and has been widely 
used for early PCa screening, although its low specificity has caused 
abundant overdiagnosis and overtreatment [42]. Furthermore, we per-
formed deconvolution to obtain the cell proportion in normal and 
tumorous prostates and calculated the AUC values for identifying PCa. In 
particular, C6-HPN exhibited the highest AUC value of 0.926, suggesting 
great sensitivity and specificity to diagnose early PCa, and was further 
considered the diagnostic subpopulation. 

Fig. 7. Top risk genes from the 24-gene panel identified by the LASSO model. (A) Binomial deviance under different lambda values. (B) The diagnostic capability of 
the 24-gene panel in the training and test sets was analyzed by ROC. (C) The expression levels of genes from Oncotype DX and the 24-gene panel in normal and 
tumorous prostates from the integrated dataset. (D) The diagnostic capability of Oncotype DX and the 24-gene panel evaluated by ROC analysis using the integrated 
dataset. (E) Regression coefficients of the 24 candidate genes in the LASSO model. (F) The diagnostic capability of AMACR, TRPM4 and PODXL2 analyzed by ROC 
using the integrated dataset. (G) The diagnostic capability of AMACR, TRPM4 and PODXL2 combined with TP63 individually analyzed by ROC using the inte-
grated dataset. 
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Most of the markers from the diagnostic subpopulation showed 
enormous potentials in early PCa detection. To determine the most 
critical markers for PCa diagnosis, we performed WGCNA to identify a 
PCa occurrence-related gene module and filtered out the overlapping 
genes with the C6-HPN markers to construct a LASSO model. The ob-
tained 24-gene panel exhibited significant expression differences be-
tween normal and tumorous prostates. To further explore the potential 
applications in PCa diagnosis, we compared the sensitivity and speci-
ficity of this gene panel with the commercially used gene panel of 
Oncotype DX using the integrated dataset. Oncotype DX is a widely used 
gene panel for the prediction of a variety of malignancies, including PCa, 
which contains a total of 12 tumor progression-related genes, specif-
ically TPX2, AZGP1, KLK2, SRD5A2, FAM13C, FLNC, GSN, TPM2, 
GSTM2, BGN, COL1A1 and SFRP4 [43,44]. Therefore, more significant 
roles in early PCa detection exhibited by the 24-gene panel suggested 
that it could be a more sensitive and specific tissue-based gene panel for 
future PCa diagnosis. 

From the candidate gene panel, TRPM4 and PODXL2 were identified 
as the top two risk factors based on the regression coefficient. TRPM4 is 
a calcium-activated monovalent-selective cation channel overexpressed 
in various types of malignancies, including breast cancer, endometrial 
cancer, cervical cancer, colorectal cancer and prostate cancer [45–49]. 
Particularly in PCa, several lines of studies have shown that TRPM4 is 
significantly involved in regulating EMT and associated with biochem-
ical recurrence following surgery [50,51]. However, the diagnostic role 
of TRPM4 in early PCa has yet to be reported. Here, we found that 
TRPM4 was highly expressed in tumorous prostates compared to normal 
tissues and exhibited great diagnostic capability for early PCa, as 
determined by a public dataset and immunostaining of over 100 sam-
ples. PODXL2 is a transmembrane glycoprotein of the CD34 family 
significantly correlated with poor prognosis of breast cancer and could 
promote tumor progression via the RAC1/AKT pathway [52]. No further 
correlations of PODXL2 with other malignancies have been reported, 
including PCa. In this study, we examined the expression characteristics 
in normal and tumorous prostates and found that PODXL2 was specif-
ically and highly expressed in early PCa with Gleason scores of 6 and 7. 
The diagnostic capability of early PCa evaluated by ROC analysis 
showed that PODXL2 is more sensitive and specific than TRPM4 and is 
even a more qualified marker than the widely used marker AMACR. 

5. Conclusion 

In summary, we identified a diagnostic subpopulation for early PCa 
with the integrating analysis of single-cell and bulk RNA-seq profiles. 
Furthermore, a diagnostic gene module generated from WGCNA was 
used to perform intersection analysis with the marker genes of the 
diagnostic subpopulation. A total of 24 overlapping genes were ob-
tained, based on which a LASSO model was constructed and showed 
better diagnostic capability for early PCa than the commercially used 
gene panel of Oncotype DX. The top two risk factors from the 24-gene 
panel, TRPM4 and PODXL2, were identified based on the regression 
coefficient and showed similar capability of PCa diagnosis verified by 
the integrated public dataset. The expression characteristics of these two 
genes were further validated by multiplex immunostaining on a PCa 
tissue microarray. Both TRPM4 and PODXL2 were highly expressed in 
PCa tissues, but in comparison, PODXL2 showed more sensitivity and 
specificity for PCa diagnosis than TRPM4 and was even a better marker 
than the pathologically used marker AMACR. Taken together, our 

findings have provided a novel and promising diagnostic marker for 
early PCa detection, while the roles in tumor occurrence remain to be 
further investigated. 
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