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Abstract: A web application, DesMol2, which offers two main functionalities, is presented:
the construction of molecular libraries and the calculation of topological indices. These functionalities
are explained through a practical example of research of active molecules to the formylpeptide
receptor (FPR), a receptor associated with chronic inflammation in systemic amyloidosis and
Alzheimer’s disease. Starting from a data(base) of 106 dioxopiperazine pyrrolidin piperazine
derivatives and their respective constant values of binding affinity to FPR, multilinear regression and
discriminant analyses are performed to calculate several predictive topological-mathematical models.
Next, using the DesMol2 application, a molecular library consisting of 6,120 molecules is built and
performed for each predictive model. The best potential active candidates are selected and compared
with results from other previous works.

Keywords: DesMol2; topology descriptors; molecular libraries; multilinear regression analysis; linear
discriminant analysis; Alzheimer’s disease

1. Introduction

Nowadays, one of the biggest challenges in chemistry is to associate a given property (toxicity,
biodegradation, pharmacological activity) to a specific compound. For instance, if given a certain
chemical structure, being able to determine if it will show a certain experimental property. Researchers,
who search for molecules with certain physicochemical, biological or pharmacological properties, have
large molecular databases at their disposal. In fact, there are currently more than 144 million chemical
compounds cataloged with their CAS registration number [1]. In addition to different commercial
molecular databases currently available on the internet (ChemIDplus, DrugBank, Zinc, ChemBank,
Specs, Molbase, etc.), along with the information that can be obtained from bibliographic databases
(SciFinder, PubMed, Scopus, etc.), researchers can build new molecules thanks to combinatorial
chemistry and virtual synthesis. Current software allows the creation of a new molecule in a matter of
seconds, without the need of a laboratory to perform the real synthesis. All this requires is the use of
quick and effective filtering methodologies and the selection of the most interesting compounds in
each field of research and development. QSAR (Quantitative Structure-Activity Relationship) modeling
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techniques represents one of the main computational tools used address this challenge and the process
of designing and searching for new compounds.

The core of any QSAR model lies in molecular descriptors. These descriptors are made up of
a series of numerical values that identify the molecule along with a specific physical, chemical or
biological property. Depending on the type of information that is parameterized, one can differentiate
between constitutional, topological (including topochemical) electrostatic, geometric and quantum
indices [2].

In particular, the structural characterization of a molecule through its topological indices is
an extremely useful tool in QSAR analysis. Molecular topology which converts a molecule into
a graph whose vertices are the atoms and whose edges are the bonds, is used to calculate these
indices [3]. A proof of molecular topology are the results obtained in the design of new chemical
compounds in areas as diverse as cancer [4], malaria [5], Alzheimer [6], mosquito repellents [7], green
chemistry [8,9], etc.

Currently, several free access computer tools allow the construction of molecular libraries. The
most complete tools are usually desktop applications. Among them are SmiLib v2.0 [10], ChemT [11]
and Library Synthesizer [12]. The main weakness when using SmiLib or ChemT is that they do not
verify if the SMILES (Simplified Molecular Input Line Entry Specification) codes entered by the user
are correct, so that the resulting libraries may contain wrongly identified molecules. On the other
hand, Library Synthesizer does not allow the introduction of molecules by means of SMILES code,
forcing the user to draw them instead. This can be a very tedious process when the lists of substituents
are large. In addition, all three programs have restrictions when introducing the different molecular
fragments because they limit the quantity or the combinations that can be made between them. There
are also other web applications whose purpose is the construction of molecule libraries. However,
their functionalities are limited. For example, cheminfo.org offers a virtual combinatorial library [13],
and e-LEA3D has its own combinatorial library design tool [14]. In both cases, the user is forced to
draw the different molecular fragments since they do not allow direct entry of SMILES code.

As a result, DesMol2 provides significant advantages over the other leading software. For example,
it allows the introduction of more than one base and lists of substituents for each anchor point at a
time, and it does not matter where the anchor point of the substituent is placed. It also verifies that the
introduced SMILES codes correspond to valid molecular fragments and re-numbers the cycles of the
generated molecules to ensure that they are correct.

In this paper, a web application, DesMol2 [15] is used to combine two functionalities in a single
environment. Firstly, it constructs molecular libraries and calculates topological indices. These
operations are carried out without the need for any other software, supporting different formats of
chemical files, offering the output in compatible formats with classic QSAR analysis programs and
automating the creation of new molecules.

One of the biggest advantages of DesMol2 compared to other software with similar functionalities
is that it internally checks each SMILES code entered by the user to verify that it is correct. If so,
it accepts the fragment to be able to process it later. If it detects an anomaly, it informs the user so any
corrections can be made. Similarly, DesMol2 only builds correct molecules, unlike other programs
that simply bind SMILES code fragments without verifying whether the result is a well-constructed
molecule or not. Our software is using The Chemistry Development Kit (CDK) to carry out this process;
this is an open source library with LGPL license.

The steps to follow are:

Using DesMol2, design a complete library of molecules from the SMILES codes of the bases and
the substituents defined by Besalú [16].
Calculate with DesMol2 the topological indices of each of the generated molecules.
Build the topological model of activity prediction against the FPR receptors.
Apply the topological model to the library and select the potentially most active molecules.
Compare the results with those reported in other works.
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2. Results and Discussion

With the help of Statistica software, Lineal Discriminant Analysis (LDA) was performed with the
training group, using the grouping variable (see Table S3, Clas(obs)) as the dependent variable and the
topological indices calculated by DesMol2 as independent variables.

The discriminant function (DF) selected was:

DF = 245.5 − 296.2C1χ + 50.2D4χpc − 0.0034W + 4.4V4 (1)

N = 85 λ = 0.421 F(4,80) = 27.5 p < 0.00001

The DF is statistically significant, both for the equation as a whole, p < 0.00001, and for each of the
variables that enter the model, p < 0.004.

The topological descriptors C1χ, D4χpc and V4 provide fundamental topological information
related to molecular branching. The model also includes the Wiener index.

When the DF function is applied to each compound, it is classified as active (A) if DF > 0 or
inactive (I) if DF < 0.

Table S3 shows the DF values obtained for each compound together with the activity probability
(Prob (A)) and the predicted classification (Clas (pred)) for both the training group and the external
validation group. The molecules marked with an asterisk represent classification errors.

Figure 1 shows the sensitivity (percentage of actives correctly classified), specificity (percentage
of inactives correctly classified) and accuracy (percentage global correctly classified) for each data set.
In both sets, specificity is higher than 86.5%, which reduces to the maximum the possibility of false
assets, while the sensitivity is higher than 80.5%.
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Figure 1. Percentages of correct classification obtained from the LDA (Linear Discriminant Analysis)
for each set.

To determine the domain of applicability of the selected discriminant function, DF, the
corresponding activity distribution diagram was created, which is shown in Figure 2.

This diagram represents the expectation (probability) of finding active or inactive compounds
for different DF values [17]. The red bars represent the active group (Logki < 2.60) and the blue bars
represent the inactive group (Logki > 2.60). Thus, the useful DF range for classifying the compounds
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as active is between 0 and 8 such that a compound will be classified as active if DF falls within that
range. Values of DF < 0 classify the compound as inactive, while values of DF > 8 or DF < −8 will be
outside the domain of applicability of DF and will, therefore, be unclassified.Molecules 2018, 23, x FOR PEER REVIEW  4 of 11 
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Figure 2. Pharmacological distribution diagram for bonding affinity, ki, (red columns represents
activity, and blue columns inactivity).

Once the mathematical model of classification (DF) has been selected, as well as the domain of
application, the next step is to apply it to the rest of the previously constructed library. As previously
mentioned, the topological indices have been calculated for each molecule with DesMol2. Next,
the equation DF is applied to them. All molecules with DF values between 0 and 8 are classified as
potentially active. The result was 1403 of a total of 6120, which represents approximately 23% of the
bookstore. These 1403 molecules have been classified as active, with a theoretical value of Logki < 2.60,
which represents activity at concentrations lower than 400 nM (see Table S5). To predict the Logki value
of each of these molecules, it will be necessary to perform the corresponding multilinear regression
analysis (MLRA). In this case, experimental Logki values for 48 of the 106 compounds of the working
group are available (Logki values = 4 represent molecules with a concentration higher than 10,000 nM
and have been eliminated from the MLRA). Taking the Logki variable as the dependent and the
topological indices as the independent variables, Statistica was used again to perform MLRA analysis.
Since the indices of Equation (1) did not correctly predict the LogKi values, which was to be expected as
the equation was discriminant in nature and not quantitative, new topological indices were calculated
using the Dragon program [18].

The prediction equation selected was:

Logki = 76.50 + 0.000033ww − 9.50MAXDN − 15.68BELm5 − 3.18GGI10 − 5.12VEA1 (2)

N = 48 R2 = 0.875 Q2 = 0.841 SEE = 0.376 F = 58.9 p < 0.00001

which is a multilinear equation with 5 variables: hyper detour index, ww, [19]; maximal
electrotopological negative variation, MAXDN [20] (this descriptor can be related to the nucleophilicity
of the molecule [21]); lowest eigenvalue n◦ 5 of Burden matrix / weighted by atomic masses,
BELm5 [22]; topological charge index of order 10, GGI10 [23], and eigenvector coefficient sum from
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adjacency matrix, VEA1 [22]. All of them were classified as statistically significant (p < 0.005) with a
high predictive power as indicated by the high value of the correlation coefficient, R2 = 0.875, as well
as the prediction coefficient obtained in the "leave-one-out" cross-validation, Q2 = 0.841. The standard
error of estimation, SEE = 0.376, corresponds to a value less than 10% of the interval in which the Logki

property is moving. Table S4 and Figure 3 show the prediction results obtained for each compound
and for the set, respectively.Molecules 2018, 23, x FOR PEER REVIEW  5 of 11 

 

 
Figure 3. Graphical representation of Logki (obs) versus Logki (calc) obtained from Equation. 2. 

The randomness test performed at Equation 2 shows excellent stability thereof (see Figure 4). 

 
Figure 4. Randomness test performed on the selected regression model, Equation 2. 

In view of the results obtained with the LDA and MLRA, a topological bonding prediction model 
affinity, ki, can be established, consisting of the two functions: Equation 1 and Equation 2. This way, 
the library generated with DesMol2 (6120 molecules) can be used to select new potential active 
molecules. The selection criteria were: A DF (Equation 1) with values between 0 and 8 and Logki 
(Equation 2) with values lower than 2.60, which is equivalent to concentrations lower than 400 nM. 
Of the 1403 molecules theoretically classified by the DF as active, 785 had a predicted Logki value 
<2.60, which is equivalent to approximately the 13% of the total library molecules (see Table s5, 
molecules marked in yellow, green and blue). If we limit the activity further and we impose a Logki 

<1.0 (ki < 10nM), the number of highly active molecules is reduced to 87 (1.4% of the library) (see 
Table s5, molecules in yellow). Comparing these results with the ones by Besalú [16] using the SSIR 
(Superposing Significant Interaction Rules) method and the same library, it can be observed that of 
the 50 molecules selected by the SSIR method as the most active theoretical, 14 of them have been 

Figure 3. Graphical representation of Logki (obs) versus Logki (calc) obtained from Equation (2).

The randomness test performed at Equation (2) shows excellent stability thereof (see Figure 4).

Molecules 2018, 23, x FOR PEER REVIEW  5 of 11 

 

 
Figure 3. Graphical representation of Logki (obs) versus Logki (calc) obtained from Equation. 2. 

The randomness test performed at Equation 2 shows excellent stability thereof (see Figure 4). 

 
Figure 4. Randomness test performed on the selected regression model, Equation 2. 

In view of the results obtained with the LDA and MLRA, a topological bonding prediction model 
affinity, ki, can be established, consisting of the two functions: Equation 1 and Equation 2. This way, 
the library generated with DesMol2 (6120 molecules) can be used to select new potential active 
molecules. The selection criteria were: A DF (Equation 1) with values between 0 and 8 and Logki 
(Equation 2) with values lower than 2.60, which is equivalent to concentrations lower than 400 nM. 
Of the 1403 molecules theoretically classified by the DF as active, 785 had a predicted Logki value 
<2.60, which is equivalent to approximately the 13% of the total library molecules (see Table s5, 
molecules marked in yellow, green and blue). If we limit the activity further and we impose a Logki 

<1.0 (ki < 10nM), the number of highly active molecules is reduced to 87 (1.4% of the library) (see 
Table s5, molecules in yellow). Comparing these results with the ones by Besalú [16] using the SSIR 
(Superposing Significant Interaction Rules) method and the same library, it can be observed that of 
the 50 molecules selected by the SSIR method as the most active theoretical, 14 of them have been 

Figure 4. Randomness test performed on the selected regression model, Equation (2).

In view of the results obtained with the LDA and MLRA, a topological bonding prediction model
affinity, ki, can be established, consisting of the two functions: Equation (1) and Equation (2). This
way, the library generated with DesMol2 (6120 molecules) can be used to select new potential active
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molecules. The selection criteria were: A DF (Equation (1)) with values between 0 and 8 and Logki

(Equation (2)) with values lower than 2.60, which is equivalent to concentrations lower than 400 nM.
Of the 1403 molecules theoretically classified by the DF as active, 785 had a predicted Logki value < 2.60,
which is equivalent to approximately the 13% of the total library molecules (see Table S5, molecules
marked in yellow, green and blue). If we limit the activity further and we impose a Logki < 1.0
(ki < 10 nM), the number of highly active molecules is reduced to 87 (1.4% of the library) (see Table S5,
molecules in yellow). Comparing these results with the ones by Besalú [16] using the SSIR (Superposing
Significant Interaction Rules) method and the same library, it can be observed that of the 50 molecules
selected by the SSIR method as the most active theoretical, 14 of them have been selected with our
model with theoretical values of Logki < 1.0 (CAAA, CABG, CACE, CBAA, CBAF, CBBE, CBBG,
CBCA, CBCG, CBCI, CBCL, CBCM, CBCP, CBHC) (see Table S5, molecules in yellow) and 28 with
theoretical values of Log ki between 1.0 and 2.0 (CABB, CABD, CACA, CACF, CADC, CADH, CAFC,
CAFH, CAHC, CAHH, CAIC, CAIH, CBAD, CBAE, CBBB, CBCD, CBCJ, CBCK, CBCN, CBCO, CBCQ,
CBDC, CBDH, CBFC, CBFH, CBHH, CBIC, CBIH) (see Table S5, molecules in green). As can be seen,
the most active compounds contain the isopropyl substituent in position R1; 4-hydroxybenzyl or
2-naphthylmethyl in R2; benzyl, 4-hydroxybenzyl or butyl in R3 and different substituents in position
R4. All this suggests that the substituents indicated above for positions R1 and R2 are crucial for the
design of new active compounds against the FPR receptor. Figure 5 shows the chemical structure of
some of the potentially most active molecules.
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The next step in the search for new active compounds against RPF would be the synthesis of some
of the molecules proposed in Figure 5 and Table S5 (molecules in yellow) and the realization of the
corresponding pharmacological tests.

3. Materials and Methods

3.1. Data Set

The present work consists of a practical exercise using DesMol2 web application for the search
of active molecules against the FPR receptors. It starts from the work by Besalú [16] that contains a
library of 106 derivatives of dioxopiperazine pyrrolidin piperazine with their respective values of
affinity constant of binding for the FPR, ki, (see the Table S1 in the Supplementary Material). Besalú
presents the SSIR (Superposing Significant Interaction Rules) method as a systematic procedure used
to rank series of combinatorial analogues. Table 1 shows the substitution codifications along the four
available molecular scaffold sites and Table S1, the codified and activity set of 106 compounds.

Table 1. Base structure and substituents used in the construction of the molecular library.
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CC(C)[R] [R]C1=CC=CC=C1 [R]CC(C=C1)=CC=C1C2=CC=CC=C2

I
propyl 4-Tert-butyl-cyclohexylmethyl
CC[R] [R]C1CCC(C(C)(C)C)CC1

J 2-(3-Methoxyphenyl)-ethyl
[R]CC1=CC(OC)=CC=C1

K
2-(4-Isobutylphenyl)-propyl

[R]C(C1=CC=C(CC(C)C)C=C1)C

L
m-Tolylethyl

[R]CC1=CC(C)=CC=C1

M
p-Tolylethyl

[R]CC1=CC=C(C)C=C1

N
2-(4-Methoxyphenyl)-ethyl
[R]CC1=CC=C(OC)C=C1

O
2-(4-Ethoxyphenyl)-ethyl

[R]CC1=CC=C(OCC)C=C1

P
Phenethyl

[R]CC1=CC=CC=C1

Q 3-(3,4-Dimethoxyphenyl)-propyl
[R]CCC1=CC=C(OC)C(OC)=C1
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3.2. Building of the Virtual Molecular Library

The DesMol2 application meets the following functional requirements when building a
molecular library:

• The application is capable of generating libraries of molecules by combining different bases, and
substituents provided by the user.

• You can enter one or more bases and each of them can have one or more anchor points. For each
anchor point, zero or more substituents can be entered. The following syntax indicates the anchor
points: [R]. For each substituent, the atom that goes at the anchor point is also indicated.

• All possible combinations are made between bases and substituents.
• The user can graphically visualize each molecular structure, be it a base, a substituent or the result

of the combination of both.
• The user is informed when an error occurs when entering the information incorrectly.
• The final result will be a *.smi file, so that each line of it represents a molecule through its code

SMILES followed by a unique identifying name. The output file can be used for the calculation of
molecular descriptors with other programs such as Dragon [18], PaDel [24], etc.

In the Supplementary Material section, Figure S2 shows a workflow diagram of DesMol2.
This work starts with a main structure and four anchor points: R1, R2, R3 and R4. For each of them,

5, 8, 9 and 17 substituents have been defined, respectively. Therefore, the library generated contains
6120 molecules (see Table S2). To build the library with DesMol2, the SMILES code was obtained from
both the base and the substituents (see Table 1), and they were introduced in the DesMol2 application
(see Figure S1). Once all the possible combinations between the base and substituents have been made,
a *.smi file is obtained that contains the code SMILES of each generated molecule followed by the
identification code (see Table S2). The *.smi file generated with the 6120 molecules library will be used
to structurally identify each molecule through its corresponding topological indices, also calculated
with DesMol2.

In this sense, DesMol2 is a very efficient application, since it is capable of building large libraries
of molecules in a few seconds. For the data set chosen in this work, a library of 6120 molecules was
built in just 6 s. For its part, the calculation of topological indices has also offered good results. To verify
the computational efficiency of our web application, we have calculated the topological indexes of the
6120 molecules with DeMol2, Dragon and PaDel programs. To do this, a group of similar topological
indices was selected in the three applications and the average time required for each molecule was
obtained: 0.11 s for DesMol2, 0.05 for Dragon and 1.28 for PaDel. Keep in mind that DesMol2 is a web
application while Dragon and PaDel are desktop applications. In addition, Dragon is a paid software,
while PaDel and DesMol2 are free. Therefore, in view of the results obtained, we can affirm that our
software has very competitive response times.

3.3. Molecular Descriptors

The DesMol2 application calculates the Kier and Hall topological connectivity indices up the
fourth order, mχt (indexes that evaluate fundamentally the topological assembly of molecules) [25],
topological charge indices, Gi, Ji, (which evaluate the intramolecular charge transfer) [23], quotients
and differences between the valence and non-valence connectivity indexes (Cmχτ, Dmχτ) [26],
the Wiener index [27], and a group of constitutional indices (including the number of atoms, degree
of branching, etc.) [26]. The recognized formats are: MDL Molfile (*.mol), Smiles (*.smi) and MDL
DSfile (*.sdf). The generated topological indexes are formatted as an Excel file that contains two sheets:
The first shows the calculated indices for each molecule, while the second contains the file information
and unprocessed molecules.
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3.4. Development of the QSAR Models

In this work, we have used linear discriminant analysis, LDA, and multilinear regression analysis,
MLRA. The goal of the linear discriminant analysis (LDA) is to find a linear combination of variables
that allow the discrimination between two or more categories or objects. In this case, the data set is
formed by 106 molecules distributed in two groups: the active set, A, (Log ki < 2.60, ki < 400 nM) and
the inactive set, I, (Log ki > 2.60, ki > 400 nM). LDA has been used to find the grouping descriptors
that best discriminate the bonding affinity, ki, with the Statistica 9.0 software [28]. The search for the
discriminant function is carried out with the training group formed by 80% of the molecules (26 active
and 59 inactive). The remaining 20%, selected at random, will serve as an external validation test
(6 active and 15 inactive). In addition, as the experimental bonding affinity data of the active and
inactive groups are quite unbalanced (26 active and 59 inactive), it is necessary to perform the LDA
assigning different weights to each group depending on the existing imbalance. In this study, p = 0.306
and p = 0.694 were established for the active and inactive groups respectively. Multilinear regression
analysis, MLRA, will be used to predict the activity of molecules classified as active by the LDA.
Log ki values < 4.0 as the dependent variable and topological indices as independent variables were
used respectively. In summary, information is available for 46 molecules.

The predictability, quality and robustness of the model selected can be verified by means of
different types of criteria. In this study two strategies are adopted [29]:

(a) Internal validation or cross-validation with leave-one-out (LOO) analysis. To do this, one
compound of the set is extracted, and the model is recalculated using as a training set the
remaining N-1 compounds. The property is then predicted for the removed element. This process
is repeated for all the compounds of the set, obtaining a prediction for each of them. From the
residual values obtained, the prediction coefficient, R2(cv) or Q2 is determined.

(b) Data randomization or Y-scrambling. A randomization test can be analyzed to identify the
possible existence of fortuitous correlations [30]. To do this, the values of the property of each
compound are randomly permuted and linearly correlated with the topological descriptors.

4. Conclusions

DesMol2 software is presented as a tool available to researchers for the construction of molecular
libraries and their subsequent implementation in QSAR analysis. Using SMILES code, large libraries
can be designed consisting of one or more structural starting bases and different substituents or
anchor points. The output format of the generated library is prepared for the calculation of topological
descriptors, either with the DesMol2 itself or other existing software in the market and applied in
the QSAR model search. DesMol2 is an open-access web application that, unlike other software with
similar functionalities, provides great flexibility when introducing molecular fragments and always
verifies the validity of both the introduced SMILES codes and the resulting molecules after making all
possible combinations.

Supplementary Materials: All TIs used in the present study along with their values for every compound (training,
test, and molecular library) are shown in the supporting information section.
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