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To better predict how populations and communities respond to climatic temperature variation, it is necessary to understand how

the shape of the response of fitness-related rates to temperature evolves (the thermal performance curve). Currently, there is

disagreement about the extent to which the evolution of thermal performance curves is constrained. One school of thought has

argued for the prevalence of thermodynamic constraints through enzyme kinetics, whereas another argues that adaptation can—

at least partly—overcome such constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis of the

thermal performance curves of growth rate of phytoplankton—a globally important functional group—controlling for environ-

mental effects (habitat type and thermal regime). We find that thermodynamic constraints have a minor influence on the shape

of the curve. In particular, we detect a very weak increase of maximum performance with the temperature at which the curve

peaks, suggesting a weak “hotter-is-better” constraint. Also, instead of a constant thermal sensitivity of growth across species, as

might be expected from strong constraints, we find that all aspects of the thermal performance curve evolve along the phylogeny.

Our results suggest that phytoplankton thermal performance curves adapt to thermal environments largely in the absence of hard

thermodynamic constraints.
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Temperature changes can affect the dynamics of all levels of bio-

logical organization by changing the metabolic rate of individual

organisms (Brown et al. 2004; Pörtner et al. 2006; Hoffmann and

Sgrò 2011; Pawar et al. 2015). Thus, to better understand the im-

pacts of current and future climate change on whole ecosystems,

it is essential to understand how key fitness-related metabolic

traits (e.g., growth rate, photosynthesis rate) respond to changes

in environmental temperature.

In ectotherms, the relationship of fitness-related rates with

temperature (the “thermal performance curve”; TPC) is typically

unimodal (Fig. 1; Angilletta 2009). Rate values increase with

temperature until a critical point (Tpk), after which they drop

rapidly. To understand the capacity for adaptation of the TPC

to different thermal environments, it is important to investigate

how the shape of the TPC evolves across species and, in so do-

ing, to identify any constraining factors that operate over both

short (ecological and microevolutionary) and long (macroevolu-

tionary) timescales. This remains an area of ongoing debate, with

multiple competing hypotheses existing in the literature. Such hy-

potheses can be broadly classified along a continuum that ranges
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Figure 1. The relationship of growth rate (rmax) with tempera-

ture in ectotherms (the thermal performance curve; TPC). The TPC

is generally unimodal and asymmetric, here quantified by the four-

parameter Sharpe-Schoolfield model (black line; Schoolfield et al.

1981) fitted to growth rate measurements of the dinoflagellate

Amphidinium klebsii (Morton et al. 1992). The parameters of the

model are B0 (in units of s−1), E (eV), Tpk (K), and ED (eV). B0 is

the growth rate at a reference temperature below the peak (Tref)

and controls the vertical offset of the TPC. E sets the rate at which

the curve rises and is, therefore, a measure of thermal sensitiv-

ity at the operational temperature range. Tpk is the temperature

at which growth rate is maximal, and ED controls the fall of the

curve. Two other parameters control the shape of the curve and

can be calculated from the four main parameters: Bpk (s−1); the

maximum height of the curve, andWop (K); the operational niche

width, which we define as the difference between Tpk and the

temperature at the rise of the curve where growth rate is half of

Bpk. Further information regarding the assumptions of the model

are provided in the section “Estimation of TPC parameter values”

of the Methods.

from strong and insurmountable constraints on TPC evolution

due to thermodynamic constraints on enzyme kinetics, to weak

constraints that can be overcome through adaptation (Fig. 2).

At the strong thermodynamic constraints extreme, the

“hotter-is-better” hypothesis (Frazier et al. 2006; Kingsolver and

Huey 2008; Knies et al. 2009; Angilletta 2009; Angilletta et al.

2009) posits that TPCs evolve under severe constraints, due to the

impact of thermodynamics on enzyme kinetics. More precisely, it

predicts that a rise in the peak temperature (Tpk) through adapta-

tion to a warmer environment will necessarily lead to an increase

in the maximum height of the curve (Bpk; Fig. 2A). This adaptive

increase in Bpk with temperature is assumed to be the direct out-

come of the acceleration of enzyme-catalysed reactions because

enzyme activity also has a unimodal relationship with tempera-

ture (Feller 2010). Hotter-is-better is implicit in the “Universal

Temperature Dependence” (UTD) concept of the Metabolic The-

ory of Ecology (MTE; Brown et al. 2004). MTE also (implic-

itly) posits that increases in Bpk should be associated with body

size declines, as metabolic trait performance (normalized to a

standard temperature) scales negatively with body size across di-

verse taxonomic groups (Brown et al. 2004). In its strictest form

(Fig. 2A), hotter-is-better makes a number of strong and possibly

unrealistic assumptions. First, because of thermodynamic con-

straints, E (a measure of thermal sensitivity, also referred to as

“activation energy”; Fig. 1) is expected to vary very little across

species, with negligible capacity for environmental adaptation

(the UTD; Gillooly et al. 2006). Second, if B0 is calculated at

a low enough normalization temperature (Tref), then it is expected

to be nearly invariant, that is, performance at a low temperature

would be almost constant across species (Fig. 2A). This also im-

plies that the body size-scaling of growth rate predicted by MTE

must occur at temperatures close to the peak of the curve and not

at a low Tref.

Thus, under the strict hotter-is-better hypothesis, both B0 (at

a low Tref) and E must be nearly constant across species. Relaxing

at least one of these leads to a more realistic weak hotter-is-better

hypothesis (Fig. 2B; also see Fig. S1 for three variants). For ex-

ample, variation in B0 can arise from vertical shifts in the whole

TPC, driven by changes in body size (Brown et al. 2004). Part of

the variation in B0 may also be driven by the process of metabolic

cold adaptation, which results in an elevation of baseline perfor-

mance in species adapted to low-temperature environments (e.g.,

see Wohlschlag 1960; Clarke 1993; Seibel et al. 2007; White et al.

2012; Clarke 2017; DeLong et al. 2018). Similarly, recent work

has shown that significant variation in E exists within and across

species, suggesting that this variation is likely adaptive (Dell et al.

2011; Nilsson-Örtman et al. 2013; Pawar et al. 2016; García-

Carreras et al. 2018). In any case, under a weak hotter-is-better

hypothesis, growth rate is still expected to increase with temper-

ature but the correlation between Tpk and Bpk should be weaker.

A third hypothesis, also lying in the middle of the spec-

trum, is the specialist–generalist tradeoff hypothesis (Huey and

Hertz 1984; Angilletta 2009; Fig. 2C). It posits a tradeoff between

maximum rate performance (Bpk) and thermal niche width (Wop).

That is, a widening of the niche necessarily incurs a metabolic

cost (e.g., a cost in enzyme performance), leading to a decrease

in peak performance. Note that the weak hotter-is-better and the

specialist–generalist tradeoff hypotheses are not mutually exclu-

sive, as their predictions stem from very different mechanisms

that could potentially interact.

Finally, at the other end of the spectrum lies a class of hy-

potheses that posit that the influence of thermodynamic con-

straints should be minimized through adaptation of species’ bio-

chemical machinery (Hochachka and Somero 2002; Clarke and

Fraser 2004; Angilletta 2009; Clarke 2017). An extreme exam-

ple is “perfect biochemical adaptation,” which posits that adap-

tation should allow species to maximize their performance (Bpk)

in any thermal environment (Fig. 2D) by overcoming biochem-

ical constraints. An upper limit to the maximum possible Bpk

across species or evolutionary lineages would still exist, but due

to a different thermodynamic constraint from that expected under
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Figure 2. The spectrum of hypotheses for the evolution of thermal performance curves across species. A key area of difference among

these hypotheses concerns the impact of thermodynamic constraints on the shape of the TPC. Thus, hypotheses can be classified between

those lying near the strong thermodynamic constraints end, the middle of the spectrum, or the weak thermodynamic constraints end

where thermodynamic constraints can be overcome through biochemical adaptation. It is worth clarifying that in panel (D), the maximum

value that Bpk can take would also be under a thermodynamic constraint, but this constraint would be different from those assumed in

panels (A) and (B). A detailed description of each hypothesis and its assumptions (e.g., the impact of body size on rate performance) is

provided in the main text.

hotter-is-better. This hypothesis further predicts the existence of

strong correlations between environmental conditions and TPC

parameter values (due to adaptation), with the exception of Bpk

that would be nearly invariant. While some studies have found

support for biochemical adaptation (e.g., for photosynthesis rate;

Padfield et al. 2016, 2017), it remains unclear whether adaptation

can indeed equalize Bpk across different environments.

The above hypotheses are not an exhaustive list but lie

on a spectrum (Fig. 2). To understand the position of different

metabolic traits and/or species groups on this spectrum, it is nec-

essary to investigate (i) the correlations between multiple thermal

parameters and (ii) how each thermal parameter evolves across

species. Here, we tackle this challenge by performing a thorough

phylogenetic analysis to investigate the evolution of TPCs of a

fundamental measure of fitness—population growth rate (rmax)—

using a global database for phytoplankton species. We chose phy-

toplankton as a study system for ecological and practical reasons.

First, phytoplankton form the autotroph base of most aquatic food

webs and contribute around half of the global primary production

(Field et al. 1998). Second, phytoplankton (along with prokary-

otes; Ratkowsky et al. 2005; Corkrey et al. 2014) are one of the

few species groups for which sufficiently large TPC datasets for

growth rate are available.

Within phytoplankton, we also explore whether the impact

of thermodynamic constraints on the shape of the TPC varies

between freshwater and marine species. In particular, as fresh-

water phytoplankton have a relatively more limited potential for

dispersal compared to marine phytoplankton that are passively

moved by ocean currents across large distances (Doblin and van

Sebille 2016), the timescale of temperature fluctuations that the

former experience can be quite different from that of the latter.

Such intricacies of the marine environment could potentially be

reflected in the TPCs of marine species, which could be under

different selection pressures for overcoming thermodynamic con-

straints. Through this detailed analysis, we also shed light on the

evolutionary processes that underlie the Eppley curve (i.e., the

relationship between the maximum possible growth rate of all

marine phytoplankton and temperature; Eppley 1972), which is

widely used in marine ecosystem models (e.g., Palmer and Tot-

terdell 2001; Stock et al. 2014).

Methods
To understand whether and how thermodynamic constraints in-

fluence the evolution of the shape of TPCs of phytoplankton,

here we analyze the correlations between TPC parameters across

species. For this, we take a phylogenetic comparative approach

that allows us to partition the covariance between six TPC pa-

rameters of phytoplankton into a phylogenetically heritable com-

ponent, a fixed effects component, and a residual component. To
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this end, we estimate the amount of heritable covariance by build-

ing a phylogeny of the species in our dataset and combining it

with multi-response regression models. To reduce confounding

effects of the local environment on TPC parameter covariances,

we control for the habitat of species/strains as well as the latitude

of their isolation locations through the fixed effects component of

our models. For marine species in particular, we also simulate the

trajectories of drifting marine phytoplankton to get realistic esti-

mates of the temperatures that they experience through drifting.

DATA

We compiled a global database on growth rate performance of

phytoplankton species by combining the previously published

datasets of López-Urrutia et al. (2006), Rose and Caron (2007),

Bissinger et al. (2008), and Thomas et al. (2012). Growth rates

across temperatures were typically measured under light- and

nutrient-saturated conditions in these studies. Species names

were standardized by querying the Encyclopedia of Life (Parr

et al. 2014) via the Global Names Resolver (Global Names Ar-

chitecture 2017), followed by manual inspection. This ensured

that synonymous species names were represented under a com-

mon name. From 795 original species/strain names, this process

yielded 380 unique taxa from nine phyla. Where multiple strains

of the same species (or isolates from different locations) were

available, we did not perform any averaging of growth rate mea-

surements, but analyzed each isolate separately. This allowed

us to capture both the inter- and intraspecific variation, where

possible. The isolation locations of species/strains in the dataset

ranged in latitude from 78◦S to 80◦N (Fig. S2).

For cell volume data, those available from original studies

were combined with median volume measurements reported by

Kremer et al. (2014) and with measurements from Kremer et al.

(2017). This process resulted in a dataset with cell volumes for

132 species of phytoplankton, spanning seven orders of magni-

tude.

ESTIMATION OF TPC PARAMETER VALUES

To quantify all key features of the shape of each growth rate TPC,

we used a modified formulation (with Tpk as an explicit parame-

ter; Supporting Information Section S3.1) of the four-parameter

variant of the Sharpe–Schoolfield model (Schoolfield et al. 1981;

Fig. 1):

B(T ) = B0 · e
[

−E
k ·

(
1
T − 1

Tref

)]

1 + E
ED−E · e

[
ED
k ·

(
1

Tpk
− 1

T

)] . (1)

Here, the growth rate, B (s−1), at a given temperature T (K)

is expressed as a function of four parameters (B0, E , ED, and Tpk;

see Fig. 1 for their description and units), and the Boltzmann con-

stant, k (8.617×10−5 eV/K). The key assumption of this model

is that growth rate is controlled by a single rate-limiting enzyme

that is deactivated at high temperatures, and that operates at a de-

creased rate at low temperatures because of low available kinetic

energy. While this assumption is shared by many TPC models,

its validity remains under debate (Clarke 2017; DeLong et al.

2017). For example, growth rate may be determined by the ef-

fects of temperature on both the activity and the stability (free

energy) of one or multiple catalyzing enzymes (DeLong et al.

2017). Other factors besides enzyme thermodynamics might also

be important, such as the transport of reaction products in the

cell (Ritchie 2018). Nevertheless, the Sharpe–Schoolfield model

remains widely used because it adequately captures the relation-

ship between metabolic traits and temperature (e.g., see Padfield

et al. 2016; Salis et al. 2016; Bestion et al. 2018; Francis et al.

2019).

Furthermore, because the Sharpe–Schoolfield model has an

exponential term in its numerator (Eq. (1)), B(T ) values esti-

mated with the model will necessarily be positive. Therefore,

any negative or zero growth rate measurements had to be re-

moved from the dataset before fitting the model to data. As we

show in Supporting Information Section S3.2, using a model

that can accommodate nonpositive growth rates instead of the

Sharpe–Schoolfield model would not qualitatively change the re-

sults of our study. Thereafter, we fitted the Sharpe–Schoolfield

model separately to each species/strain in the dataset, using the

Levenberg–Marquardt nonlinear least squares minimization algo-

rithm (Supporting Information Section S3.3). After obtaining es-

timates of the four main model parameters, we used them to cal-

culate the values of two more parameters: Bpk (s−1) and Wop (K)

(Fig. 1). We note that we focus on Wop and not the full niche width

of the TPC as (i) most species typically experience temperatures

well below Tpk (Martin and Huey 2008; Thomas et al. 2012;

Pawar et al. 2016), and (ii) experimentally determined TPCs typ-

ically do not cover a sufficient temperature range to estimate the

full niche width (Dell et al. 2011; Pawar et al. 2016).

For a correct comparison of B0 estimates, Tref needs to be

set lower than the minimum Tpk in the dataset. Otherwise, for

certain TPCs, B0 is estimated at the fall of the curve instead

of the rise, and the comparison becomes meaningless. As there

were a few fits with Tpk values close to 0◦C, we set Tref to 0◦C

(i.e., 273.15 K). However, to ensure that a performance compar-

ison at 0◦C does not bias the results of this study—given that

some species may not tolerate that low a temperature—we also

fitted the Sharpe–Schoolfield model using a Tref of 10◦C (i.e.,

283.15 K). In that case, we excluded fits with Tpk < 10◦C. All

subsequent analyses were performed using both datasets (i.e.,

those obtained with a Tref of 0◦C and 10◦C), to identify poten-

tial areas of disagreement. Finally, as the estimate of B0 from the

Sharpe–Schoolfield model is an approximate measure of the TPC

value at Tref (B(Tref )) and can sometimes strongly deviate from it,
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depending—among others—on the choice of Tref (Kontopoulos

et al. 2018), we calculated B(Tref ) manually after obtaining esti-

mates of the four main model parameters (we henceforth refer to

B(Tref ) as B0).

Quality filtering of the fits resulted in a TPC dataset of 270

curves using a Tref of 0◦C and of 259 curves using a Tref of 10◦C

(Figs. S4 and S5). Approximately 56 % of the species in our

dataset were exclusively represented by a single TPC, ∼37% of

species were represented by two to five TPCs, whereas all other

species were represented by as many as 12 TPCs.

RECONSTRUCTION OF THE PHYTOPLANKTON

PHYLOGENY

We reconstructed the phylogeny of the species in our TPC dataset

using nucleotide sequences of the small subunit rRNA gene (see

Table S22). One sequence was collected per species where possi-

ble, resulting in a dataset of 138 nucleotide sequences. Given that

increased taxon sampling has been shown to improve the qual-

ity of phylogenetic trees (Nabhan and Sarkar 2012; Wiens and

Tiu 2012), we also collated a second dataset of 323 sequences by

expanding the previous dataset with further sequences of phyto-

plankton, macroalgae, and land plants. The two sets of nucleotide

sequences were aligned with MAFFT (version 7.123b; Katoh

and Standley 2013), using the L-INS-i algorithm. We then used

the entire alignments to build phylogenetic trees without mask-

ing any columns, as this has been shown to occasionally result

in worse topologies when only a single gene is used (Tan et al.

2015).

Tree topologies were inferred with RAxML (version 8.2.4;

Stamatakis 2014), PhyML (version 20151210; Guindon et al.

2010), and ExaBayes (version 1.4.1; Aberer et al. 2014), un-

der the General Time-Reversible model (Tavaré 1986) with

� -distributed rate variation among sites (four discrete rate cat-

egories; Gu et al. 1995). For RAxML, in particular, we inferred

300 distinct topologies using the slow hill-climbing algorithm

(which performs a more thorough exploration of likelihood space

than the default algorithm; option “-f o”), and selected the tree

topology with the highest log-likelihood. For PhyML, we used

the default options, with the exception of the topology search

that was set to include both the Nearest Neighbor Interchange

(NNI) and the Subtree Pruning and Regrafting (SPR) procedures.

For ExaBayes, we executed four independent runs with four

Metropolis-coupled chains per run for 55 million generations.

Samples from the posterior distribution were obtained every 500

generations, after discarding the first 25% of samples as burn-

in. We confirmed that the four ExaBayes runs had converged

through a range of tests (see Supporting Information Sections

S4.1 and S4.2), and obtained a tree topology by computing the

extended majority-rule consensus tree. The best tree topology—

among those produced by RAxML, PhyML, and ExaBayes—

was selected on the basis of proximity to the Open Tree of Life

(Hinchliff et al. 2015), and log-likelihood (Supporting Informa-

tion Section S4.3).

We then estimated relative ages for all nodes of the best

topology, using the uncorrelated � -distributed rates model

(Drummond et al. 2006), as implemented in DPPDiv (Heath

et al. 2012; Flouri and Stamatakis 2012). To this end, we exe-

cuted five independent runs for 750,000 generations, sampling

from the posterior distribution every 100 generations. As be-

fore, we discarded the first 25% of samples as burn-in, and per-

formed diagnostic tests to ensure that the posterior distributions

of the four runs had converged and that the parameters were

adequately sampled (Supporting Information Section S4.4). To

obtain the final relative time-calibrated tree, we sampled every

300th tree from each run (after the burn-in phase) for a total of

9375 trees, and calculated the median age estimate for each node

using the TreeAnnotator program (Rambaut and Drummond

2017).

MODELING THE LOCAL THERMAL ENVIRONMENTS

OF MARINE PHYTOPLANKTON

As mentioned previously, although marine phytoplankton are

passively moved by ocean currents across large distances, lit-

tle attention has been given to the potential effects of this on

their thermal physiology. In particular, Doblin and van Sebille

(2016) showed that the temperature range that marine microbes

likely experience is usually much wider if oceanic drifting is

properly accounted for. Therefore, to accurately quantify the

thermal regimes of marine phytoplankton, we simulated La-

grangian (drifting) trajectories with the Python package Ocean-

Parcels (Lange and van Sebille 2017). More precisely, we used

hydrodynamic data from the OFES model (ocean model for

the Earth Simulator; Masumoto et al. 2004) to estimate 3,770

backwards-in-time replicate trajectories for each marine location

in the dataset over 500 days (using a one-day timestep), at a depth

of 2.5, 50, or 100 meters (where possible). These depth values

were chosen after considering global estimates of oceanic eu-

photic depth (Morel et al. 2007), that is the depth below which

net primary production by marine autotrophs becomes negative

(Falkowski and Raven 2013).

We then calculated the following environmental variables:

(i) the median temperature experienced, (ii) the median latitude

visited, (iii) the interquartile range of temperatures, and (iv) the

interquartile range of latitudes. The median captures the central

tendency of the temperatures or latitudes that phytoplankton ex-

perienced, whereas the interquartile range is a measure of devi-

ation from the central tendency. Measuring all four variables is

important, as each of them may have a different effect on the

shape of the TPC. The values of the variables were first calcu-

lated for each trajectory over the full duration of 500 days, but
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also over the first 350, 250, 150, and 50 days. They were then

averaged across all replicate trajectories per location, depth, and

duration, weighted by the length of the trajectory, as some tra-

jectories could be estimated for fewer than 500 days. These vari-

ables are hereafter referred to as T̃d, t (median temperature), L̃d, t

(median latitude), IQR(Td, t) (interquartile range of temperatures),

and IQR(Ld, t) (interquartile range of latitudes), where d and t

stand for the depth and duration of the trajectory, respectively.

We also obtained temperature data of the isolation loca-

tions of marine phytoplankton, in order to compare their explana-

tory power with that of the Lagrangian trajectory variables. To

this end, we used the NOAA Optimum Interpolation Sea Sur-

face Temperature dataset, which comprises daily measurements

of sea surface temperature at a global scale and at a resolu-

tion of 1/4◦ (Banzon et al. 2016). Currently, two variants of

this dataset are available: (i) “AVHRR-Only” that is primarily

based on the Advanced Very High Resolution Radiometer, and

(ii) “AVHRR+AMSR” that also uses data from the Advanced Mi-

crowave Scanning Radiometer on the Earth Observing System.

The latter variant is considered more accurate, but, for techni-

cal reasons, is only available from 2002 until 2011, whereas the

former variant is available from 1981 until the present day. In our

case, we obtained a daily sea surface temperature dataset between

September 1, 1981 and June 25, 2017, using AVHRR-Only, or

AVHRR+AMSR when that was available. Given that our growth

rates dataset did not include information on the date (or tempera-

ture) of isolation of each marine strain, we calculated the median

temperature of each marine location across all days (T̃orig), and

the interquartile range of temperatures (IQR(Torig)).

INFERENCE OF TPC PARAMETER CO-EVOLUTION AND

ASSOCIATIONS WITH ENVIRONMENTAL VARIABLES

Across the entire dataset
To infer the interspecific correlation structure among the pa-

rameters of the TPC and simultaneously detect associations

with the local environment of the species in our study, we fitted

phylogenetic Markov Chain Monte Carlo generalized linear

mixed models using the R package MCMCglmm (version 2.24;

Hadfield 2010). This package can be used to fit phylogenetic

regression models, enabling the partitioning of phenotypic trait

variance into a phylogenetically heritable component, a fixed

effects component of explanatory variables, and a residual

variance component (i.e., variance that should be mostly due to

environmental effects that are not already controlled for). For the

purposes of this study, we constructed multi-response regression

models (i.e., models with multiple response variables instead of

one; see e.g., Santini et al. 2016 and Møller et al. 2017), in which

the response comprised all six TPC parameters. In other words,

instead of trying to predict a single response variable, the models

would predict all six TPC parameters, while simultaneously

inferring their variance/covariance matrix. Each element of this

matrix was estimated as a free parameter from the data, so that

any correlations between pairs of TPC parameters could be

detected.

To ensure that the distribution of each response variable was

as close to normality as possible, we applied a different transfor-

mation to each TPC parameter: 4
√

B0, ln(E ), T 2
pk, ln(Bpk), ln(ED),

ln(Wop). It was necessary to perform those transformations as

each response variable in an MCMCglmm needs to conform to

one of the implemented distributions in the package (e.g., Gaus-

sian, Poisson, multinomial), with the Gaussian distribution being

the most appropriate here. Besides this, most macroevolutionary

models assume that the evolutionary change in trait values fol-

lows a Gaussian distribution. Thus, statistical transformations of

trait values are often used to satisfy this assumption. In any case,

applying these transformations does not affect our results qualita-

tively even though thermal parameter correlations are estimated

in transformed (not linear) scale. To incorporate the uncertainty

for each transformed thermal parameter estimate, we used the

delta method (e.g., see Oehlert 1992) implemented in the R pack-

age msm (version 1.6.4; Jackson 2011) to obtain appropriate es-

timates of the variance of the standard error for 4
√

B0, ln(E ), T 2
pk,

ln(Bpk), and ln(ED). As we manually calculated ln(Wop) a poste-

riori without an analytical solution, we performed bootstrapping

to obtain error estimates for it.

For the majority of the TPCs in our dataset, there was at least

one parameter whose value could not be estimated with certainty

due to lack of adequate experimental measurements (Supporting

Information Section S3.3). MCMCglmm can accommodate such

missing values in the response by treating them as “Missing At

Random” (MAR; see Hadfield 2010, de Villemereuil and Naka-

gawa 2014, and Tierney and Cook 2018). The MAR assumption

is valid as long as (i) missing values in a response variable can be

estimated (with some uncertainty) from other components of the

model (i.e., other covarying response variables or the phylogeny),

and (ii) data missingness is not driven by a variable that is not

included in the model. When these two conditions are true, the

inferred estimates of missing values are unbiased (see Nakagawa

and Freckleton 2008; Garamszegi and Møller 2011). Applying

this method allowed us to include TPC parameter estimates from

curves that were only partly well sampled (e.g., only the rise of

the curve), increasing the statistical power of the analysis and

reducing the possibility of estimation biases (e.g., in the covari-

ances among TPC parameters).

The fixed effects component of each candidate model

contained at the very minimum a distinct intercept for each

response variable. Starting with this, we fitted models with (i)

no other predictors (the intercepts-only model), (ii) the latitude

of the isolation location of each species, (iii) the habitat of each

species (marine vs. freshwater), or (iv) both latitude and habitat.
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For models that included latitude as a predictor, we specified

either the absolute latitude of the location or a second order

polynomial (because mean environmental temperature and its

fluctuations are approximately unimodal functions of latitude

from the equator to mid-latitudes). In any case, we estimated the

association of each fixed effect (latitude and/or habitat) with each

response variable separately (by inferring distinct coefficients

for, e.g., ln(E ):|latitude|, ln(Bpk):|latitude|). It is worth noting

that we did not include the temperature of the environment

as a fixed effect in these particular models, as there was no

reliable temperature dataset with high enough resolution for both

marine and freshwater locations. To avoid any potential biases

introduced by a combination of two temperature datasets (one

for the marine locations and one for the freshwater ones), we

instead used latitude as a proxy for temperature variation.

Species identity was specified as a random effect on the in-

tercepts. To integrate phylogenetic information into the model,

we first pruned the phylogeny to the subset of species for which

data were available (Fig. S15). We next calculated the inverse of

the phylogenetic covariance matrix from the phylogenetic tree,

including ancestral nodes as this allows for more computationally

efficient calculations (Hadfield and Nakagawa 2010; de Ville-

mereuil and Nakagawa 2014).

The default prior was used for the fixed effects, whereas

for the random effect and the residual variance components, we

used a relatively uninformative inverse-� prior with shape and

scale equal to 0.001 (the lower this number the less informative

is the prior). For each model, two chains were run for 100 million

generations, sampling from the posterior distribution every 1000

generations after discarding the first 10 million generations as

burn-in. Convergence between each pair of chains was verified

by calculating the potential scale reduction factor (Gelman and

Rubin 1992; Brooks and Gelman 1998) for all estimated param-

eters (i.e., fixed effects, elements of the phylogenetically herita-

ble and residual matrices), and ensuring that it was always lower

than 1.1. We also confirmed that the effective sample size of all

model parameters—after merging samples from the two chains—

was greater than 200, so that the mean could be adequately

estimated.

Model selection was done on the basis of the Deviance Infor-

mation Criterion (DIC; Spiegelhalter et al. 2002), averaged across

each pair of chains. We excluded models if a fixed effect had a

95% highest posterior density (HPD) interval that included zero

for every single response variable (e.g., if all of 4
√

B0 :habitat,

ln(E ):habitat, T 2
pk :habitat, etc. had 95% HPD intervals that in-

cluded zero). In frequentist statistics terms, this is roughly equiv-

alent to excluding models whose predictors were not significant

for any response variable.

Phenotypic correlations between pairs of TPC parameters

(rphe) were broken down into their phylogenetically heritable

(rher) and residual components (rres) by dividing the covariance

estimate between two parameters by the geometric mean of their

variances. These were inferred from the best-fitting model in

terms of DIC.

Finally, we measured the phylogenetic heritability (i.e., the

ratio of heritable variance to the sum of heritable and residual

variance) of each TPC parameter. As the phylogeny is integrated

with the MCMCglmm, the resulting estimates are equivalent to

Pagel’s λ (Pagel 1999; Hadfield and Nakagawa 2010), and reflect

the strength of the phylogenetic signal, i.e., the extent to which

closely related species are more similar to each other than to

any species chosen at random (Pagel 1999; Kamilar and Cooper

2013; Symonds and Blomberg 2014). Strong phylogenetic sig-

nal would indicate that variation in the TPC parameter can be

explained by its gradual evolution across the phylogeny. On the

other hand, a lack of phylogenetic signal would reflect either trait

stasis (with any variation among species being noise-like) or very

rapid evolution (that is independent of the phylogeny). Intermedi-

ate values of phylogenetic signal would imply either that the TPC

parameter is under constrained evolution (e.g., due to stabilizing

selection), or that its evolutionary rate changes through time (e.g.,

an evolutionary rate acceleration could lead to the convergence of

the niches of distantly related species). We obtained phylogenetic

heritability estimates from the intercepts-only model as the addi-

tion of fixed effects would reduce the residual variance and bias

the heritability estimates toward higher values.

For the marine subset of the data
To test whether the correlation structure of thermal parame-

ters across the entire phytoplankton dataset differs from that of

marine species only, we also performed the above analysis for

only the marine species in the dataset. The main difference in

the specification of the MCMCglmms for marine species was

that we used fixed effects that captured both the latitude and

the temperature characteristics of the local environment of phy-

toplankton (see the “Modeling the local thermal environments

of marine phytoplankton” section above): (i) no fixed effects

(intercepts-only model), (ii) Lorig, (iii) T̃orig, (iv) IQR(Torig), (v)

T̃orig + IQR(Torig), (vi) T̃d, t, (vii) IQR(Td, t), (viii) T̃d, t + IQR(Td, t),

(ix) L̃d, t, (x) IQR(Ld, t), and (xi) L̃d, t + IQR(Ld, t). All latitude vari-

ables other than IQR(Ld, t) were specified—in different models—

both as a second order polynomial and with absolute values.

A second order polynomial was also tested for IQR(Torig) and

IQR(Td, t) variables to investigate the existence of a quadratic re-

lationship of these variables with thermal parameters.

As there was a very large number of MCMCglmms to

execute (158 pairs of chains), we first ran each of them for

60 million generations. We then checked whether the two chains

per model had converged as previously described, and reran

the subset that had not converged for 120 million generations.
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At that point, all pairs of chains converged on statistically in-

distinguishable posterior distributions. As above, samples from

the first 10% generations of each model were discarded as

burn-in.

SIZE-SCALING OF B0 AND Bpk

As explained in the introduction, MTE predicts that temperature-

normalized rmax should be constrained by body mass across tax-

onomic groups (Brown et al. 2004). However, at finer taxo-

nomic resolutions (e.g., within species), this relationship may

take the opposite direction, that is, selection for high rmax may

lead to declines in body size as has been observed widely (the

“temperature-size rule”; Atkinson 1996; Winder et al. 2009;

Yvon-Durocher et al. 2011; Peter and Sommer 2013; Sommer

et al. 2017). For example, warming may confer a competitive

advantage to smaller phytoplankton due to their higher rmax

(Reuman et al. 2014). Therefore, as a final step for understand-

ing how TPCs evolve, we tested whether and how growth rate

scales with body size. Under the strict hotter-is-better hypothe-

sis, such scaling would be expected only for growth rates near

each species’ Tpk, whereas if the weak hotter-is-better hypoth-

esis holds, size scaling could also—but not necessarily—occur

at low temperatures. Understanding if the latter holds requires

first the calculation of growth rate values for all TPCs at a com-

mon normalization temperature (Tref), followed by their exami-

nation for any size scaling patterns. Therefore, to test both hy-

potheses of body size-scaling, we fitted MCMCglmms with cell

volume as a fixed effect and a single response of either (i) B0

(at a Tref of 0◦C), (ii) B0 (at a Tref of 10◦C), or (iii) Bpk. Like

before, B0 and Bpk were transformed toward normality using a

fourth root and a natural logarithm transformation, respectively.

However, because metabolic traits are expected to scale with cell

volume (or body mass), typically investigated with both vari-

ables logarithmically transformed (e.g., see Brown et al. 2004;

López-Urrutia et al. 2006), we also fitted models with ln(B0) as

the response variable. Species identity was treated as a random

effect on the intercept, the slope, or both. Each model was fit-

ted with and without the phylogenetic variance/covariance ma-

trix to compare the predictions obtained by ignoring the phy-

logeny or accounting for it. Two chains were run per model for

a length of 3 million generations, and convergence was estab-

lished as in the previous section after removing samples from

the first 300,000 generations. DIC was used to identify the

most appropriate model for each response variable. To evalu-

ate the quality of the best-fitting model, we first calculated the

amounts of variance explained by fixed (σ2
fixed) and random ef-

fects (σ2
random), and the residual variance (σ2

resid). From these, we

calculated the marginal (R2
m) and conditional (R2

c ) coefficients

of determination, as described by Nakagawa and Schielzeth

(2013).

Results
INTERSPECIFIC CORRELATIONS AND PHYLOGENETIC

SIGNAL

The best-fitting phylogenetic regression model on the basis of

DIC had only latitude as a fixed effect (Fig. S16). Models with

habitat as a predictor were excluded from the DIC comparison, as

the 95% HPD interval of every single habitat coefficient included

zero. This likely reflects that any effects of habitat type on TPC

parameters are already captured by the phylogenetic correction,

especially given that phytoplankton habitat is phylogenetically

structured (Fig. S15). In contrast, the 95% HPD intervals of the

coefficients of latitude for Tpk (for both Tref values) and E (for a

Tref of 0◦C only) did not include zero (Fig. S17). A minor differ-

ence between the analyses with a Tref of 0◦C and 10◦C was that

in the former case, the model with a second order polynomial in

latitude was selected, whereas in the latter case, absolute latitude

performed better. The shapes of the two fitted curves (Fig. S17)

suggest that the effect of latitude on the TPC is particularly strong

for colder-adapted species, leading to a deviation from a strictly

linear association.

From the analysis of the resulting interspecific vari-

ance/covariance matrices (Tables S4, S5, S8, and S9), we iden-

tified only two correlations among TPC parameters: (i) between

Bpk and Tpk (Fig. 3A), and (ii) between E and Wop (Fig. S18).

The former correlation appears to be driven entirely by the phy-

logenetically heritable (rher) component of the coldest-adapted

species in the dataset (i.e., the three data points with Tpk < 10◦C

in Fig. 3A), and becomes nonexistent when these are excluded.

Such a weak correlation is consistent with the weak hotter-is-

better hypothesis (Fig. 2). Also, as E and Wop are both mea-

sures of thermal sensitivity in the range of temperatures where

organisms typically operate, a negative correlation between them

was expected under all TPC evolution hypotheses. In contrast, a

negative correlation between Bpk and Wop, which would be ex-

pected by the specialist–generalist tradeoff hypothesis, was not

supported by the data (Fig. 3B). Finally, we detected varying

amounts of phylogenetic signal in all TPC parameters, with Tpk

showing the strongest (perfect phylogenetic) signal (Fig. 4). This

was in contrast to the assumptions of the strict hotter-is-better and

the perfect biochemical adaptation hypotheses, which posit that

E and Bpk, respectively, should vary very little across species and

not in a phylogenetically heritable manner (Fig. 2).

Running MCMCglmms for the marine species only yielded

mostly similar conclusions (Supporting Information Section

S5.2). The only correlation that could be detected was between

E and Wop (Supporting Information Fig. S22). The best-fitting

model had a fixed effect of T̃50m, 250d (for Tref = 0◦C) or

IQR(T50m, 50d) (for Tref = 10◦C). More precisely, the analysis

of all marine species revealed a negative relationship between
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A

B

Figure 3. The relationship of Bpk with Tpk (A) and Wop (B). rphe,

rher, and rres stand for phenotypic correlation, phylogenetically

heritable correlation, and residual correlation, respectively. The

three correlation coefficients were simultaneously inferred after

correcting for phylogeny and for environmental effects (latitude).

For panel (A), in particular, correlations were estimated across the

entire dataset, and after excluding data points with Tpk < 10◦C.
The reported estimates are for the correlation of ln(Bpk) with T 2

pk

and ln(Wop), respectively, but the horizontal axes are shown in lin-

ear scale for simplicity. Values in parentheses correspond to the

95% HPD interval of each correlation coefficient. Correlation coef-

ficients whose 95% HPD interval did not include zero are shown

in bold.

ln(Bpk) and the median temperature of trajectories at a depth of

50 m and for a duration of 250 days (T̃50m, 250d; Fig. S20). If,

instead, only marine species with Tpk > 10◦ C are included, ln(E )

is the parameter that associates with the environment, increasing

with the interquartile range of temperatures of trajectories at

a depth of 50 m and for a duration of 50 days (IQR(T50m, 50d);

Fig. S21). For both Tref values, the best-fitting Lagrangian

models had consistently lower DIC values (at least 30 DIC

units difference; see Tables S10 and S15) than their non-

Lagrangian equivalents.

SIZE-SCALING OF GROWTH RATE

Cell volume-growth rate scaling as predicted by the MTE and

expected by the two (strict and weak) hotter-is-better hypothe-

ses, was detected only in the maximum height of the curve

(R2
m = 0.14 and R2

c = 0.72; Fig. 5C and D) and not at the perfor-

mance at a temperature of 0 or 10◦C (R2
m = 0.00 and R2

c = 0.73;

Figure 4. Phylogenetic heritability estimates across the TPC. Cir-

cles indicate the mean of the posterior distribution, whereas hor-

izontal bars show the 95% HPD interval. Note that each TPC pa-

rameter was transformed toward approximate normality in order

to satisfy the requirement of the MCMCglmm method.

Fig. 5A and B). In particular, across the entire dataset, Bpk was

found to scale with cell volume raised to an exponent of −0.09

(95% HPD interval = (−0.15, −0.05); Fig. 5C). Regressions with

ln(B0) as the response violated the MCMCglmm assumption of

a Gaussian-distributed response variable, but provided a qualita-

tively identical result (Fig. S23). That is, cell volume influences

growth rates more strongly at temperatures close to the peak of

the TPC (R2
m increased with Tref) rather than at low temperatures.

The best-fitting models always had a random effect of species

identity on the intercept and not the slope (Tables S20 and S21).

Discussion
In this study, we investigated the influence of thermodynamic

constraints on the shape of the thermal performance curve of phy-

toplankton (Fig. 2). To this end, we performed a thorough anal-

ysis of correlations among six TPC parameters. Controlling for

the phylogeny of species and their local environment allowed us

to better tease apart the relationships among thermal parameters

and quantify the influence of phylogeny on each TPC parameter.

We detected a positive correlation between Bpk and Tpk

(Fig. 3A), which was however very weak and only held if TPCs

with very low Tpk values were included. This pattern is incon-

sistent with the strict hotter-is-better hypothesis (Fig. 2). There-

fore, we can conclude that phytoplankton TPCs do not support

the strong thermodynamic constraints extreme of the spectrum

of hypotheses. The only other correlation that we detected was

between E and Wop (Fig. S18), which is expected because niche

width within the operational temperature range varies inversely

with thermal sensitivity (E ). When focusing only on marine phy-

toplankton, we detected neither a correlation between Bpk and

Tpk, nor any correlation uniquely present in marine species. How-

ever, this may reflect the lower statistical power of the analysis

of marine species due to the smaller sample size. In any case, as
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a correlation between Bpk and Wop was not detected in either the

analysis of the entire dataset (Fig. 3B) or in the analysis of cor-

relations from marine species, the generalist–specialist tradeoff

hypothesis can also be rejected.
To further narrow down the location of phytoplankton TPCs

on the spectrum of hypotheses (Fig. 2), we examined the esti-

mates of phylogenetic signal of all six TPC parameters, which

were simultaneously inferred from our multi-response regression

models. We used the estimates to test both the strict hotter-is-

better hypothesis and the perfect biochemical adaptation hypoth-

esis, which predict a complete lack of phylogenetic signal in E

and Bpk, respectively. This analysis also yielded a basic under-

standing of how the remaining TPC parameters (e.g., Tpk) evolve.

Overall, the mean phylogenetic signal estimate of E was the

lowest of all TPC parameters, but its 95% HPD interval was

well above zero (Fig. 4). This result further supports the rejec-

tion of the strict hotter-is-better hypothesis. Moreover, it indi-

cates that E is not nearly constant across species—contrary to

what the MTE initially assumed (see Fig. S1A and Gillooly et al.

2001; Clarke and Fraser 2004; Clarke 2004; Gillooly et al. 2006;

Clarke 2006)—and suggests that the inter- and intraspecific vari-

ation in E reported by previous studies (e.g., Dell et al. 2011;

Nilsson-Örtman et al. 2013; Pawar et al. 2016) arises partly from

adaptive evolution (Fig. 4; Fig. S17).
At the right end of the hypotheses spectrum, we were also

able to reject the perfect biochemical adaptation hypothesis be-

cause Bpk also exhibited phylogenetic signal. It is worth noting

that the phylogenetic signal in Bpk does not merely reflect that

the local environment is phylogenetically heritable (with closely

related species occurring in geographically close environments),

as the correlation between phylogenetic distance and geograph-

ical distance was almost zero (Supporting Information Section

S5.1). In any case, variation in Bpk was not found to be latitudi-

nally structured across the entire dataset (contrary to E and Tpk;

Fig. S17), albeit marine species that experienced low tempera-

tures had slightly higher Bpk values (Fig. S20A). An elevation

of Bpk (or B0) in organisms living at cold environments could

arise from the process of metabolic cold adaptation, which has

sometimes been detected in other species groups (see Wohlschlag

1960; Clarke 1993; Seibel et al. 2007; White et al. 2012; Clarke

2017; DeLong et al. 2018).
Lastly, we examined the effect of body size on growth rate.

While B0 exhibited phylogenetically structured variation even

when normalized at 0◦C (contrary to the expectation of the strict

hotter-is-better hypothesis), such variation was not associated

with shifts in cell volume (Fig. 5A,B). In contrast, Bpk (the

maximum height of the TPC) was found to scale weakly and

negatively with cell volume (Fig. 5C and D). The mechanisms

that lead cell volume to increasingly influence growth rate as

temperature approaches Tpk need to be further investigated in fu-

ture studies. Nevertheless, it is possible that selection on growth

rate is stronger near the peak of the TPC, as the environmental

temperatures that most organisms usually experience tend to

be slightly below Tpk (Martin and Huey 2008; Thomas et al.

2012; Pawar et al. 2016). The weak negative scaling of Bpk with

cell volume suggests the presence of an energetic tradeoff in

phytoplankton, likely arising from the balance between resource

supply and energy demand (the “supply-demand body size opti-

mization model” of DeLong 2012). That is, as long as the energy

supplied to the cell from the environment is fixed, the evolution

and maintenance of a larger cell volume should impose high

energetic demands that ultimately result in a decreased growth

rate. Note that a fixed energy supply in phytoplankton could arise

if both (i) nutrients and light are available at saturating levels, and

(ii) the uptake rate is constant (independent of cell volume). The

weak negative size scaling of Bpk is consistent with our only re-

maining hypothesis: the weak hotter-is-better hypothesis. Indeed,

given the weak correlations of (i) Bpk with Tpk, and (ii) Bpk with

cell volume, an increase in Tpk would lead to a weak increase in

Bpk and, indirectly, to a weak decrease in cell volume. Therefore,

a decrease in cell size with warming—which has often been

observed (Winder et al. 2009; Yvon-Durocher et al. 2011; Peter

and Sommer 2013; Sommer et al. 2017)—could be constrained

by an indirect correlation between Tpk and cell volume.
Our results about the weak relationship between Bpk and Tpk,

and the scaling of the former with cell volume are consistent with

the conclusions of Kremer et al. (2017). They found evidence for

the effects of temperature, taxonomic group, and cell size on the

maximum growth rate of phytoplankton, effectively suggesting

adaptation of Bpk across lineages. This further means that the

classical Eppley curve (Eppley 1972; Bissinger et al. 2008) does

not necessarily indicate as strong a global (thermodynamic)

constraint on maximum performance across species as has been

previously thought. In this context, we also note that ideally

cell size should be directly accounted for in analyses of TPC

evolution. This was partially done in our study (i.e., by exam-

ining the relationship of cell volume with B0 and Bpk), as we

could not obtain cell volume measurements for all species in our

dataset.
Given all these results, we conclude that the TPCs of

phytoplankton evolve in the general absence of hard thermody-

namic constraints, similarly to the expectations of a very weak

hotter-is-better hypothesis (Fig. 3A). A possible mechanistic

interpretation of the observed patterns is that, at very low tem-

peratures, the limiting factor is low available kinetic energy,

which constrains the rate of biochemical reactions. At higher

temperatures, on the other hand, maximum rate performance

appears temperature-independent, suggesting the presence of

biophysical or other constraints. For example, given that Bpk

scales negatively with cell volume, a lower limit in cell volume
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Figure 5. The relationships of cell volume with B0 (panels A and B) and Bpk (panels C and D) with Tref set to 0 or 10◦C, according to

the best-fitting model (e.g., with or without a phylogenetic correction) in terms of DIC in each case (see Table S20). Coefficients shown

in bold had 95% HPD intervals that did not include zero. The sample sizes of B0 and Bpk estimates shown here are higher than those

reported in Figs. S4 and S5, aswe included estimates from specieswith unknown isolation locations. Note thatwe used different statistical

transformations for B0 and Bpk so that their estimates would be nearly normally distributed (see also Supporting Information Section

S6.2).

(e.g., due to the need for maintaining non-scalable cellular

components such as membranes; Raven 1998) will also set an

upper limit to the maximum possible growth rate.

To the best of our knowledge, a thorough analysis of the cor-

relation structure among parameters that control the entire range

of the TPC has never been conducted. At most, previous stud-

ies have investigated the existence of correlations between two

or three selected TPC parameters (e.g., between Tpk and Bpk; see

Frazier et al. 2006 and Sørensen et al. 2018). This can be prob-

lematic for two reasons. First, by only focusing on parameters

that control the peak of the TPC, such studies ignore potential

correlations with parameters in other areas of the curve (e.g., E ).

Second, even if a statistical correlation can be observed between

two thermal parameters, it could be driven by the covariance of

the two parameters with other, overlooked TPC parameters. In-

deed, many studies on TPCs do not explicitly account for phy-

logenetic relationships among species at all (but see Sal et al.

2015 for a phylogenetically controlled study on the size-scaling

of phytoplankton growth rate). Our results highlight the fact that

ignoring potential phylogenetic effects can make it harder to

differentiate between alternative hypotheses on the evolution of

TPCs, and may leave studies vulnerable to biases introduced by
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phylogenetic nonindependence (e.g., an observed relationship be-

tween two TPC parameters could arise solely from uneven phy-

logenetic sampling).

Perhaps the most striking result of this study is that we

detected a very limited number of correlations or tradeoffs

across the entire TPC. One potential explanation for this could

be that different phytoplankton lineages have evolved distinct

strategies to maximize their fitness. Such strategies may in-

volve thermal parameter correlations that are lineage-specific

and hence hard to detect. A similar analysis performed sepa-

rately for each phytoplankton phylum could potentially address

this question. However, obtaining accurate estimates of lineage-

specific variance/covariance matrices of TPC parameters would

require bigger thermal performance datasets than those that—to

our knowledge—are currently available. It would also be inter-

esting to investigate whether the phylogenetic signal of TPC pa-

rameters and the correlations among them vary across rates (e.g.,

photosynthesis, respiration) or phylogenetic groups (e.g., bacte-

ria, plants). Such analyses could provide useful insights into the

nature of possible constraints and their degree of influence on the

shape of the thermal performance curve across different branches

of the tree of life.

Another direction that could be further pursued involves in-

vestigating the effects of the marine environment on phytoplank-

ton TPCs, and, in particular, how TPCs adapt to temperature fluc-

tuations due to oceanic drifting (see e.g., Schaum et al. 2018). It

is worth emphasizing that, in our study, models that accounted

for oceanic drifting of marine phytoplankton (models with La-

grangian variables) systematically performed better (in terms of

DIC) than models that only incorporated the latitude or the sea

surface temperature of the isolation locations of the strains. While

we detected some associations between environmental variables

and TPC parameters, the low sample size and the coarse model-

ing of drifting prevent us from drawing very strong conclusions.

More precisely, some of the limitations of our approach were that

simulations were done at only three depths, and did not account

for the vertical movement of phytoplankton or the concentration

of nutrients. A more in-depth analysis on these matters could be

the focus of future studies.

Finally, there is mounting evidence that the shape of TPCs

is also affected by a range of other factors such as nutrient avail-

ability (Thomas et al. 2017; Bestion et al. 2018), oxygen sup-

ply (Gangloff and Telemeco 2018), and predation risk (Dell et al.

2014; Luhring et al. 2018). Thus, to improve our understanding

of how species adapt to different thermal environments, future

studies could investigate the adaptive potential of organismal re-

sponses not only to temperature, but to the interaction of multiple

factors. Such an approach could uncover important adaptive con-

straints that may not be detectable by studying the responses of

biological rates to each factor in isolation.
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Figure S1: Three alternative ways in which a weak hotter-is-better pattern may emerge.
Figure S2: Isolation locations of phytoplankton species, coloured by phylum.
Figure S3: The ratio of B(Tref ) to Bpk for experimentally-determined TPCs with a growth rate value of 0 s−1 at the rising part.
Figure S4: Estimates obtained with a Tref value of 0◦, for phytoplankton species/strains available in our phylogeny and with known isolation locations.
Figure S5: Estimates obtained with a Tref value of 10◦C, and excluding fits with Tpk < 10◦C, for phytoplankton species/strains available in our phylogeny
and with known isolation locations.
Figure S6: Violin plots of Effective Sample Size (ESS) and Potential Scale Reduction Factor (PSRF) values for the parameters of the evolutionary model
across all ExaBayes runs.
Figure S7: Pairwise comparisons of split frequencies among the four ExaBayes runs, indicating excellent convergence.
Figure S8: Projection of the sampled tree topologies in two dimensions for each ExaBayes run.
Figure S9: Violin plots of Effective Sample Size (ESS) and Potential Scale Reduction Factor (PSRF) values for the parameters of the evolutionary model
across all ExaBayes runs.
Figure S10: Pairwise comparisons of split frequencies among the four ExaBayes runs, indicating excellent convergence.
Figure S11: Projection of the sampled tree topologies in two dimensions for each ExaBayes run.
Figure S12: Heat map of Matching Cluster distances between all produced tree topologies and that of the Open Tree of Life (v. 4).
Figure S13: Statistical support – in terms of bootstrap values or posterior probabilities – for the nodes of the extended RAxML topology, according to
RAxML, PhyML, and ExaBayes.
Figure S14: Violin plots of Effective Sample Size (ESS) and Potential Scale Reduction Factor (PSRF) values for the parameters of the relative time-
calibration model across the five DPPDiv runs.
Figure S15: The phylogeny of phytoplankton species in this study, with branches coloured by habitat.
Figure S16: DIC weights of models fitted to the entire dataset of phytoplankton TPC parameters.
Figure S17: Latitudinal associations of E and Tpk. These thermal parameters decrease with absolute latitude, especially if we include species/strains
adapted to colder temperatures with Tpk < 10◦C.
Figure S18: E versus Wop using a Tref of 0◦C (panel A), or a Tref of 10◦C and excluding species/strains with Tpk < 10◦C (panel B).
Figure S19: Scatter plots of B0 at Tref = 0◦C (panel A) or Tref = 10◦C (panel B). The same sample size across the two panels reects how a change in the
Tref value – when fitting the Sharpe-Schoolfield model – can have a minor impact in the value of R2, leading to the acceptance of some fitted curves with
R2 values that were previously just below our cutoff of 0.5.
Figure S20: Inferred associations between TPC parameters of marine species/strains and environmental variables.
Figure S21: A positive scaling of E with IQR(T50m,50d) was detected for the marine subset of the dataset and using a Tref of 10◦C.
Figure S22: Inferred correlations between TPC parameters of marine species/strains.
Figure S23: Scaling of ln(B0) with the natural logarithm of cell volume.
Table S1: Parameter bounds set for nonlinear least squares fitting.
Table S2: Phylogenetically heritable variance/covariance matrix of TPC parameters, as estimated from the intercepts-only model.

EVOLUTION APRIL 2020 789



D.-G. KONTOPOULOS ET AL.

Table S3: Residual variance/covariance matrix of TPC parameters, as estimated from the intercepts-only model.
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Table S12: Residual variance/covariance matrix of TPC parameters, as estimated from the best fitting model (i.e., with T̃50m,250d as fixed effect).
Table S13: Phylogenetically heritable variance/covariance matrix of TPC parameters, as estimated from the model with |Lorig| as fixed effect.
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Table S17: Residual variance/covariance matrix of TPC parameters, as estimated from the best fitting model (i.e., with IQR(T50m,50d) as fixed effect).
Table S18: Phylogenetically heritable variance/covariance matrix of TPC parameters, as estimated from the intercepts-only model.
Table S19: Residual variance/covariance matrix of TPC parameters, as estimated from the intercepts-only model.
Table S20: DIC values for regressions of 4

√
B0 or ln(Bpk) against the natural logarithm of cell volume.

Table S21: DIC values for regressions of ln(B0) against the natural logarithm of cell volume.
Table S22: Species names and Accession IDs of sequences that were used in this study.
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