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Simple Summary: Initial studies suggested the additional diagnostic value of amino acid positron
emission tomography (PET) radiomics using the tracer O—(Z—[18F]ﬂuoroethyl)—L—tyrosine (FET) in
brain tumor patient management. However, to ensure the reliable performance of the generated
FET PET radiomics models for clinical diagnostics, repeatability of radiomics features is essential.
Hence, we assessed the impact of brain tumor volumes and key molecular alterations such as an
isocitrate dehydrogenase (IDH) mutation on the repeatability of FET PET radiomics features in
50 newly diagnosed glioma patients. In a test-retest approach based on routinely acquired FET PET
scans, we identified 297 repeatable features. The IDH genotype did not affect feature repeatability.
Moreover, these robust features were able to differentiate patients with IDH-wildtype glioma from
those with an IDH mutation. Our results suggest that robust radiomics features can be obtained
from routinely acquired FET PET scans, which are valuable for further standardization of radiomics
analyses in neurooncology.

Abstract: Amino acid PET using the tracer O—(Z-[l8F]ﬂuoroethyl)—L—tyrosine (FET) has attracted con-
siderable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic
value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of
radiomics models strongly depends on feature generalizability. We here evaluated the repeatability
of feature-based FET PET radiomics. A test-retest analysis based on equivalent but statistically
independent subsamples of FET PET images was performed in 50 newly diagnosed and histo-
molecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from
semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the
influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were
positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating
the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehy-
drogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed.
For tumor VOlIs, 73% of first-order features and 71% of features extracted from the gray level co-
occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91-1.00). In the largest
spherical tumor VOlIs, 67% of features showed high repeatability, significantly decreasing towards
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smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features,
two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH
mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET
scans, which are valuable for further standardization of radiomics analyses in neurooncology.

Keywords: machine learning; artificial intelligence; textural features; amino acid PET

1. Introduction

Radiomics, a subdiscipline of artificial intelligence, is based on high-throughput
quantitative analysis of routinely acquired imaging data, facilitating the development of
mathematical models to support clinical decision-making. Most commonly, image features
are usually extracted from predefined volumes-of-interest (VOIs). Importantly, image qual-
ity deviations caused by non-standardized acquisition parameters, varying segmentations,
or image post-processing steps may considerably affect quantitative radiomics features
regarding repeatability and generalizability [1]. Furthermore, feature repeatability may
depend on phenotype differences in extracranial tumors [2,3]. Therefore, identifying robust
features is essential to ensure the reliable performance of radiomics models for clinical
diagnostics [4]. For example, robust image features can be identified using test-retest
analyses in phantoms, which are repeatedly examined with the same acquisition protocol.
As a result, similar but not identical sets of images generate radiomics features that should
yield similar results.

One approach towards reproducible radiomics analyses is the Image Biomarker Stan-
dardization Initiative (IBSI) [5]. IBSI provides mathematical definitions for radiomics
features that have already been integrated into the most commonly applied radiomics soft-
ware packages, such as LIFEx [6] or the open-source PyRadiomics package in Python [7].
Adhering to the IBSI recommendations may improve the reproducibility and provide the
basis for clinical implementation of the generated models.

Currently, radiomics is attracting increasing attention in medical imaging and also
in neurooncology [8]. In particular, the majority of studies demonstrated the potential
of radiomics based on magnetic resonance imaging (MRI) for clinical applications in
patients with primary and secondary brain tumors, e.g., the prediction of an isocitrate
dehydrogenase (IDH) mutation in glioma patients or the differentiation of radiation-
induced changes from local tumor recurrence in patients with brain metastases [9-14].
Furthermore, efforts in terms of the evaluation of MRI feature robustness and repeatability
in brain tumor patients are ongoing [15].

Due to an increasing body of literature, particularly the acceptance and application of
amino acid positron emission tomography (PET) in brain tumor patients has steadily in-
creased over the past few years [16,17]. Its value has been demonstrated for various impor-
tant neurooncological applications [17-21]. Moreover, the Response Assessment in Neuro-
Oncology (RANO) Working Group and the European Association of Neuro-Oncology
(EANO) recommend amino acid PET as a complementary tool to contrast-enhanced MRI in
all disease stages [19,22]. Recently, initial studies have investigated the potential of amino
acid PET radiomics using the frequently applied tracer O-(2-['8F]fluoroethyl)-L-tyrosine
(FET), either alone or in combination with MRI [11,14,23,24]. For radiotherapy planning,
FET PET has been confirmed to be valuable for improved target volume definition by
delineating the non-enhancing tumor parts, which is of considerable interest especially in
glioma patients [25-28].

Due to the present lack of data, our study’s goal was to evaluate the robustness
and repeatability of FET PET radiomics features using a novel dual image reconstruction
approach that allows for a test-retest analysis based on clinical FET PET. Furthermore,
we evaluated the ability of robust FET PET radiomics features for the differentiation of
IDH-wildtype from IDH-mutant gliomas.
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2. Patients and Methods
2.1. Patients

Fifty patients (mean age, 50 £ 15 years; age range, 21-82 years; 17 females, 33 males)
with newly diagnosed glioma were retrospectively identified and histomolecularly charac-
terized according to the World Health Organization (WHO) classification of Tumors of the
Central Nervous System of 2016 [29]. The glioma diagnoses were distributed as follows:
WHO grade IV glioblastoma, IDH-wildtype (1 = 24); WHO grade IV glioblastoma, IDH-
mutant (n = 2); WHO grade III anaplastic astrocytoma, IDH-wildtype (n = 4); WHO grade
III anaplastic astrocytoma, IDH-mutant (n = 11); WHO III anaplastic oligodendroglioma,
IDH-mutant (n = 5); WHO grade Il diffuse astrocytoma, IDH-wildtype (1 = 2); WHO grade
II diffuse astrocytoma, IDH-mutant (n = 2). In addition to structural MRI, all patients had
undergone FET PET. Table 1 presents further details of the patient cohort.

Table 1. Patients characteristics.

Patients (Total) 50
Gender
Female 17
Male 33
Age
Mean = standard deviation 50 + 15 years
Range 21-82 years
Tumor type
Glioblastoma (IDH wt/mut) 24/2
AA TII (IDH wt/mut) 4/11
A I (IDH wt/mut) 2/2
AO I 5
IDH genotype
Wildtype 30
Mutant 20
Tumor volume
Median 16.2 mL
Mean 12.5 mL
Range 1.4-85.2 mL

A II = WHO grade II diffuse astrocytoma; AA III = WHO grade III anaplastic astrocytoma; AO III = WHO grade
III anaplastic oligodendroglioma; IDH = isocitrate dehydrogenase; mut = mutant; wt = wildtype.

2.2. Determination of the IDH Genotype and 1p/19q Co-Deletion

For assessment of the IDH genotype, the IDHIR132H protein expression level was
evaluated by immunohistochemistry [30,31]. In the case of negative immunostaining, IDH
was directly sequenced. The 1p/19q co-deletion status was analyzed by fluorescence in
situ hybridization [32].

2.3. FET PET Imaging

The amino acid FET was produced and applied, as described previously [33,34]. All
patients underwent a dynamic FET PET scan from 0 to 50 min post-injection of 3 MBq
of FET per kg body weight on a high-resolution 3 T hybrid PET/MR scanner (BrainPET,
Siemens Medical Systems, Inc., Erlangen, Germany) [35]. Image data were corrected for
random and scatter coincidences, as well as dead time and isotope decay, before ordinary
Poisson ordered subset expectation maximization (OSEM) reconstruction using software
provided by the manufacturer (2 subsets, 32 iterations). The reconstructed dynamic dataset
consisted of 16 time frames (5 X 1 min, 5 x 3 min, 6 X 5 min). Since the hybrid PET/MR
scanner did not provide a transmission source, attenuation correction was performed by a
template-based MRI approach [36].
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2.4. Dual FET PET Image Reconstruction for Test—Retest Analysis

PET data can be stored in list-mode data format containing information about all
detected coincidence events in terms of detector numbers in which the photon pair was
detected, as well as time stamps. Usually, all coincidence events within a particular time
window (frame) are used for image reconstruction. Here, within 20 to 40 min post-injection,
only events with odd time stamps were used to reconstruct the test image and only
events with even time stamps to reconstruct the retest image. By this dual reconstruction,
equivalent but statistically independent subsamples of PET images were created, which
are suitable for test-retest analysis (Figure 1).

A Frame 1

Frame 2

| | | | | »

25 30 35 40...60
Time (min)

Figure 1. Dual O-(2-['8F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) image reconstruction for

test-retest analysis. Valid events within 20 to 40 min post-injection of FET were separated in two time windows (frames)

and further used for reconstructing the test and retest images. The schematic represents the standardized uptake value

(SUV) over time for a single patient. Frame 1 is reconstructed from odd frame events (blue triangles), Frame 2 from even

frame events (orange squares), resulting in similar but statistically independent subsamples of PET images (right).

2.5. Image Segmentation for Test—Retest Analysis

The standardized uptake value (SUV) was used to normalize the FET uptake by
dividing the radioactivity in the tissue by the radioactivity injected per kilogram of body
weight. A spherical VOI of constant size (diameter, 30 mm; volume, 14 mL) was positioned
in normal-appearing brain tissue, including gray and white matter, in the contralateral
hemisphere. A three-dimensional auto-contouring process using a tumor-to-brain ratio
(TBR) of 1.6 or more was used for segmenting the tumor VOI. This threshold is based
on a biopsy-controlled study in which this value separated best between vital tumor and
healthy brain parenchyma in FET PET [37]. Furthermore, to account for the influence of
the limited spatial resolution of PET on the repeatability of radiomics features, spherical
VOlIs with different sizes (range of volumes, 0.5-33.0 mL; range of diameters, 1040 mm)
were positioned both in the healthy background and centered on the maximum FET uptake
in the tumor VOI. All VOIs were defined in the conventionally reconstructed summed
PET images from 20—40 min post-injection according to current clinical guidelines [20] and
transferred to the test-retest images for further analysis.

2.6. Feature Extraction for Test—Retest Analysis

Radiomics features were calculated on the test and retest images for each VOI using
the open-source package PyRadiomics (version 3.0) in Python [7]. As recommended
for PET radiomics analyses, 64 bins with a fixed bin width of 0.15 were used for image
discretization [5,38]. No voxel resampling was performed. All features were calculated
on the original images and after applying wavelet and Laplacian of Gaussian (LoG) filter
methods. In total, 1,302 radiomics features (93 original, 744 wavelet, 465 LoG features)
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were extracted. From the 93 original features, 18 features are first-order or intensity-based
features calculated from image histograms. First-order features represent characteristics
of the signal intensity values and do not provide spatial information. The remaining
75 features are texture features, or second-order features calculated from the gray level
co-occurrence matrix (GLCM), gray level dependence matrix (GLDM), gray level run
length matrix (GLRLM), gray level size zone matrix (GLSZM), and neighboring gray
tone difference matrix (NGTDM). Texture features quantify image patterns and structures,
considering spatial information (Figure 2). Shape features could not be evaluated as the
shape of the VOIs was identical in the test and the retest images.
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Figure 2. The calculation of textural features based on gray level matrices. Textural features are usually calculated on

a previously segmented tumor and grouped based on the gray level matrices from which they are extracted. Features

calculated from the gray level size zone matrix (GLSZM) represent connected gray level values and their associated zones

or areas. The gray level run length matrix (GLRLM) represents consecutive voxels with the same intensity. The gray level

co-occurrence matrix (GLCM) represents voxel pairs’ frequency of occurrences of the same intensity.

2.7. Statistical Analysis

FET PET feature repeatability was evaluated by the intraclass correlation coefficient
(ICC) [39,40]. The ICC assesses the reliability of ratings or measurements by comparing the
variability of individual ratings for the same subject to the total variation across all ratings
and subjects. The ICC can range from 1 to —1, wherein 1 indicates perfect repeatability
and —1 no repeatability. For the selection of the ICC type, we adhered to the guidelines
provided by Koo and Li [41]. The “two-way mixed-effects model” was chosen, as the raters
were not randomly selected from a wider group, and each rater individually evaluated
each subject. We chose a “single measure type” because single raters’ values were used as
the basis for the assessment and were not averaged. Additionally, an “absolute agreement
definition” was chosen as differences in ratings for the same subject from two different
raters were compared. Hence, we used the “two-way mixed-effects absolute agreement
single measure” ICC, defined as,

MSg — MSEg

ICC - k 7
MSg + (k—1) MSg + E(MSC — MSg)

)
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where MSg represents mean square for rows, MSc mean square for columns, MSg mean
square for errors, k number of raters/measurements, and n number of subjects. Features
were considered repeatable if the lower and upper limits of the ICC 95% confidence interval
were in the range of 0.91 to 1.00, not repeatable if between 0.01 and 0.90, and moderately
repeatable if the upper limit was between 0.91 and 1.00 and the lower limit was in the
range of 0.75 to 1.00 [3]. The ICC analysis was implemented in Python (Pingouin 0.3.6) [42].

Initially, to check the usefulness of the analysis, feature repeatability between the
background VOIs and the tumor VOIs was calculated. Since the regions differ strongly in
terms of tracer uptake, no reproducible features should be identified.

A hierarchical cluster analysis was performed to investigate the effect of different tu-
mor genotypes on repeatability and assess the discriminative ability of the most repeatable
features. Hierarchical clustering identifies relations in data by comparing and reordering
(clustering) samples based on their similarity. The squared Euclidean distance determined
the similarity between clusters and the Ward’s variance minimization algorithm was used
to build individual clusters. Feature values were z-score normalized. The hierarchical
cluster analysis was implemented in Python (SciPy 1.4.1) [43].

3. Results

Between tumor and background VOIs, no repeatable features were identified. The
highest repeatability was found for the feature wavelet HHH_firstorder_Skewness (ICC,
0.52; 95% confidence interval, 0.01-0.77).

In the tumor VOIs, 50% of features were repeatable, whereas only 13% in the back-
ground VOIs. In the largest spherical tumor VOI (volume, 33 mL), 67% of features were
repeatable, whereas less than 26% were repeatable in tumor VOIs with a volume smaller
than 4 mL (Figure 3).

To reduce the influence of tumor volume on repeatability, all following results refer to
spherical tumor VOIs with a volume similar to the average tumor volume in our patient
cohort (volume of spherical tumor VOI, 13.9 mL; average tumor volume, 12.5 mL). The
highest fraction of repeatable features (73%) was identified for the first-order features. For
textural or second-order features, the underlying gray level matrices influenced feature re-
peatability (GLCM, 71% repeatable features; GLRLM, 68% repeatable features; GLDM, 57%
repeatable features; GLSZM, 48% repeatable features; NGTDM, 38% repeatable features).

Features calculated on unfiltered images resulted in higher repeatability (repeatable
features, 87%) than on images filtered with LoG (repeatable features, 74%) or wavelet
decompositions (repeatable features, 57%) (Figure 4).

The ten most and least repeatable features for the unfiltered and filtered images are
summarized in Figure 5.
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Figure 3. Comparison of feature repeatability for background and tumor regions. Left: Spherical tumor volumes-of-interest
(VOIs) were positioned in the healthy background (yellow spherical background VOI) and the tumor volume centered on
the maximum uptake (blue spherical tumor VOI). The average tumor VOI, used for most of the experiments, is presented in
red. Right: Upper panels represent feature repeatability for the background region. The lower panels represent feature
repeatability for the tumor region. Left panels show the percentage of feature repeatability for individual volumes. Right
panels present the percentage of feature repeatability of individual feature groups for the 14 mL volume only. Features were
considered repeatable if the lower and upper limits of the intraclass correlation coefficient 95% confidence interval were in
the range of 0.91 to 1.00 (+, dark gray), not repeatable if between 0.01 and 0.90 (—, light gray), and moderately repeatable if
the upper limit was between 0.91 and 1.00 and the lower limit was in the range of 0.75 to 1.00 (o, medium gray). glem =
gray level co-occurrence matrix; gldm = gray level dependence matrix; glrlm = gray level run length matrix; glszm = gray
level size zone matrix; ngtdm = neighboring gray tone difference matrix.
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Figure 4. Influence of filter methods on feature repeatability. (A) Upper panels: Representation of tumor region as original
image (left) and after Laplacian of Gaussian filtering with different sigma settings (range of sigma, 1-5 mm). Lower panels:
Representation of the tumor region after wavelet filtering with individual combinations of wavelet low- (L) and high-pass
(H) decompositions. (B) Feature repeatability in percent of individual feature groups for each image presentation. Features
were considered repeatable if the lower and upper limits of the intraclass correlation coefficient 95% confidence interval
were in the range of 0.91 to 1.00 (+, dark gray), not repeatable if between 0.01 and 0.90 (—, light gray), and moderately
repeatable if the upper limit was between 0.91 and 1.00 and the lower limit was in the range of 0.75 to 1.00 (o, medium gray).
glem = gray level co-occurrence matrix; gldm = gray level dependence matrix; glrlm = gray level run length matrix; glszm =
gray level size zone matrix; ngtdm = neighboring gray tone difference matrix.
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Original Wavelet
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gldm_GraylevelVariance 0.999 LLL_glrim_GrayLevelVariance 0.998
glrlm_GrayLevelVariance 0.999 LLL_glcm_SumSquares 0.998
firstorder_90Percentile 0.998 LLL_glcm_ClusterTendency 0.998
glem_SumSquares 0.997 LLL_gldm_GrayLevelVariance 0.997
firstorder_Kurtosis 0.862 HLL_gldm_SmallDependenceLowGrayLevelEmphasis  0.065
glrim_ShortRunLowGrayLevelEmphasis 0.841 HHH_firstorder_Mean 0.054
glrlm_LowGrayLevelRunEmphasis 0.839 HLH_gldm_SmallDependenceLowGrayLevelEmphasis 0.026
glszm_LongRunLowGrayLevelEmphasis 0.834 LLH_glcm_ldn 0.018
glszm_SmallAreaLlowGrayLevelEmphasis 0.827 HHL_gldm_SmallDependenceLowGrayLevelEmphasis 0.003
gldm_LowGrayLevelZoneEmphasis 0.827 HLL_glcm_Idmn -0.020
gldm_LargeDependenceLowGrayLevelEmphasis 0.806 LLH_gldm_SmallDependencelLowGraylLevelEmphasis  -0.067
gldm_SmallDependenceLowGrayLevelEmphasis 0.659 LLH_glcm_ldmn -0.102
glem_ldn 0.634 HHL_firstorder_Mean -0.123
glem_ldmn 0.619 LHH_firstorder_Mean -0.142
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Figure 5. Visualization of the ten most and least repeatable FET PET radiomics features for the original (unfiltered) images,
after wavelet and Laplacian of Gaussian (LoG) filtering. Feature names are shown next to the intraclass correlation coefficient
(ICC) values. Calculations have been performed on the 14 mL volume spherical tumor volume-of-interest representing the

average tumor volume in our study:.

Patients with IDH-wildtype gliomas showed higher feature repeatability compared to
IDH-mutant gliomas (repeatable features, 28% vs. 16%) (Figure 6).

However, this effect could be due to smaller volumes of IDH-mutant gliomas in
comparison with IDH-wildtype tumors in our patient cohort (mean volume, 16.7 vs.
21.4 mL) (Figure 7).
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IDH-wildtype -

IDH-mutant -

0 20 40 60 80

Tumor Volume (mL)

Figure 6. Distribution of tumor volumes in our patient cohort. Boxplots representing tumor volumes
of the patient cohort. Patients with isocitrate dehydrogenase (IDH)-wildtype gliomas (blue) presented
larger volumes than patients with IDH-mutant gliomas (orange).

Repeatability
All tumor VOIs ey
IDH wt and mut IDH wt IDH mut
firstorder firstorder firstorder
glem glcm glem
gldm gldm gldm
glrim glrim glrim
glszm glszm glszm
ngtdm ngtdm ngtdm
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
14 mL spherical tumor VOI
IDH wt and mut IDH wt IDH mut
firstorder firstorder firstorder
glcm glcm glcm
gldm gldm gldm
glrim glrim glrim
glszm glszm glszm
ngtdm ngtdm ngtdm
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

% of Features

% of Features

% of Features

Figure 7. Influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability. Feature repeatability of
individual feature groups in percentage shown for IDH-wildtype and IDH-mutant gliomas. Features were calculated
for every sample on the complete tumor region (upper panels), or for the 14 mL spherical tumor volume-of-interest
(VOI) representing the average tumor volume in our study (lower panels). Features were considered repeatable if the
lower and upper limits of the intraclass correlation coefficient 95% confidence interval were in the range of 0.91 to 1.00
(+, dark gray), not repeatable if between 0.01 and 0.90 (—, light gray), and moderately repeatable if the upper limit
was between 0.91 and 1.00 and the lower limit was in the range of 0.75 to 1.00 (0, medium gray). glem = gray level
co-occurrence matrix; gldm = gray level dependence matrix; glrlm: gray level run length matrix; glszm = gray level
size zone matrix; IDH = isocitrate dehydrogenase; MUT = mutant; ngtdm = neighboring gray tone difference matrix;
VOI = volume-of-interest, WT = wildtype.

Repetition of the analysis with a fixed, representative volume in both groups yielded
comparable repeatability between IDH-wildtype and IDH-mutant gliomas (repeatable
features, 63% vs. 52%) (Figure 6).

The hierarchical cluster analysis using a subset of 297 repeatable features identified
two distinct patient clusters according to the two different IDH genotypes. In cluster 1,
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90% of patients had IDH-wildtype gliomas (1 = 19/21) whereas 63% of patients in cluster 2
had IDH-mutant gliomas (19/30) (Figure 8).

Al

WWWWWWMWWWMWWWWW\NWWWWWWMMWMMMWWMMMWMMMWWWMMMMWWMWM

] high values

-8 l low values

Repeatable
Radiomics
Features

Patients (subdivided by IDH genotype)

Homogeneous Heterogeneous

Figure 8. Hierarchical cluster analysis using repeatable FET PET radiomics features. Heatmap represents the absolute
radiomics feature values, with higher feature values shown in red and lower values in blue. Each row represents a single
feature (n = 297). Each column represents a single patient (n = 50) with a known IDH genotype (W = IDH-wildtype (red);
M = IDH-mutant (green)). Features were calculated for the tumor regions. The dendrogram represents the cluster distance
indicating the order in which clusters were joined.

4. Discussion

The acceptance of radiomics models and their translation into clinical routine depends
on their performance in improving diagnostic accuracy, especially when conventional
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image evaluation leads to equivocal results. In this context, generating radiomics models
and identifying reliable, repeatable, and generalizable features is essential [4].

Several studies have evaluated radiomics feature repeatability based on MRI, com-
puted tomography (CT), and PET [44—48]. In this context, most studies require additional
and costly patient scans prone to errors due to patient’s movements between measure-
ments. Alternatively, various image perturbations can be used for the assessment of feature
robustness [3]. Nevertheless, phantoms are often used in test-retest studies, which are not
widely available, are expensive, and require special preparation. In the present study, we
applied a novel dual image reconstruction method combined with a test-retest analysis
that automatically enables the evaluation of feature repeatability based on routine FET
PET scans with little effort. Furthermore, radiomics features with the highest repeata-
bility can be individually determined for every study and clinical environment, which
facilitates a tailored optimization of the performance and robustness of the developed
radiomics models.

One main finding of the study is that robust radiomics features can be obtained
from routinely acquired FET PET scans of glioma patients, which are valuable for further
standardization of radiomics analyses in neurooncology. In particular, first-order features
extracted from the image histogram showed the highest repeatability. This is in line with
the results from an extensive systematic review on the repeatability and reproducibility
of radiomics features in clinical studies [46]. Among first-order features, mean, 10th-
and 90th-percentile, and energy showed the highest repeatability. Importantly, energy
strongly depends on the tumor volume and might represent a difficult measure for datasets
comprising strongly heterogeneous tumor volumes.

Among textural or second-order features, the parameter gray level variance (GLV),
a measure of heterogeneity calculated from the GLSZM and the GLRLM, showed high
repeatability (ICC 95% confidence interval, 0.91-1.00). Interestingly, also the features
short zone high gray level emphasis (SZHGE) and long run high gray level emphasis
(LRHGE) were found to be highly repeatable. These two parameters were also identified in
a previously reported FET PET radiomics model for predicting the IDH genotype [14].

An earlier study has suggested that the frequently used textural features coarseness
and contrast based on the GLCM appeared to be least stable in radiomics analyses based
on [18F]—2—ﬂuoro—2—deoxy-D-glucose (FDG) PET radiomics [48]. In our study, coarseness
and contrast were repeatable only for FET PET tumor volumes larger than 14 mL, which
could also be attributed to the use of different tracers.

Another main finding is that our results suggest a dependency of feature repeatability
on tumor volume. In particular, FET PET radiomics feature repeatability increased with
a higher tumor volume, which is in line with the results from a previous study using
FDG PET [47]. For tumor volumes larger than 4 mL, more than 50% of features showed
high repeatability. Consequently, this may be considered a threshold for reproducible
results in our study and for subsequent studies. Furthermore, the lower spatial resolution
in PET imaging may affect also the repeatability, especially in combination with smaller
tumor VOlIs.

Besides the lower spatial resolution, PET images are affected by statistical image
noise caused by the random nature of radioactive decay [49]. Other sources of noise
in PET include, but are not limited to, scattered and random coincidences, modes of
attenuation correction, scanner electronics, and reconstruction algorithms [50]. Therefore,
a reduction in statistical image noise by applying image filters may result in increased
feature repeatability [47,51]. Even though it has been suggested that image filtering has
only a small effect on the repeatability of FDG PET textural features [48], we observed a
definite link between repeatability and image filtering. For the average tumor volume
in our study, some filter settings resulted in a higher repeatability whereas other settings
reduced feature repeatability compared to features calculated on unfiltered images. Thus,
the influence of image filters on feature repeatability strongly depends on the type of filter
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and the filter kernel. Additionally, image filters bear the general risk of losing or altering
the image information.

Finally, we observed in our study that the repeatability between IDH-wildtype and
IDH-mutant gliomas seems to be comparable (repeatable features, 63% vs. 52%). Since
radiomics features may be related to the underlying disease [2,3], feature repeatability
could also be affected by different brain tumor subtypes. Here, the IDH genotype, one of
the key molecular alterations in gliomas, does not influence feature repeatability in our
study. Moreover, the identified robust FET PET radiomics features (n = 297) in our study
were able to differentiate between IDH-mutant and IDH-wildtype glioma patients. This
finding is in line with an earlier study demonstrating the non-invasive prediction of the
IDH genotype using FET PET radiomics with high accuracy [14]. While IDH-wildtype
gliomas were correctly classified with a high accuracy of 90%, the identification of IDH-
mutant gliomas was inferior, with an accuracy of 63%. This could be related to the smaller
tumor volumes in this group of patients compared to the IDH-wildtype gliomas.

Several limitations of the study need to be addressed. Our study investigated FET
PET radiomics feature repeatability using data from a high-resolution BrainPET scanner
that is not widely available. Thus, the robust features identified in our study might not
necessarily be transferable to other PET scanners. However, since the developed test-retest
reconstruction allows for the investigation of feature repeatability based on routine clinical
scans, further studies using other PET scanners are warranted. Furthermore, the placement
of large spherical VOIs onto small volumes of increased FET might affect the repeatability
due to the background activity included in the analysis. Nevertheless, since the repeatability
is limited in the background region, the reported repeatability may be underestimated.
Importantly, although the investigated patient cohort includes a heterogenous distribution
of tumor volumes, it reflects a clinically representative group of glioma patients.

5. Conclusions

The presented dual image reconstruction method allows the investigation of PET
radiomics feature repeatability based on routinely acquired clinical PET scans. A large
number of robust FET PET radiomics features could be identified, which may be useful
for further standardization of radiomics analysis in neurooncology. Differences in tumor
volumes affected feature repeatability, whereas the IDH genotype did not influence the
results. The identified subset of robust features showed its potential for the differentiation
of IDH-wildtype from IDH-mutant gliomas. Therefore, multi-center studies on FET PET
radiomics feature reproducibility are warranted to improve standardization and increase
the acceptance of radiomics studies.
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