
McCarthy et al. Theoretical Biology andMedical Modelling           (2020) 17:11 
https://doi.org/10.1186/s12976-020-00129-4

RESEARCH Open Access

Quantifying the annual incidence and
underestimation of seasonal influenza: A
modelling approach
Zachary McCarthy1,2,3,4, Safia Athar1,2,3,4, Mahnaz Alavinejad1,2,3,4, Christopher Chow1,2,3,4,
Iain Moyles1, Kyeongah Nah1,2,3,4, Jude D. Kong1,2,3,4, Nishant Agrawal5, Ahmed Jaber6, Laura Keane1,
Sam Liu7, Myles Nahirniak6, Danielle St Jean6, Razvan Romanescu8, Jessica Stockdale6,
Bruce T. Seet9,10, Laurent Coudeville11, Edward Thommes2,6,9, Anne-Frieda Taurel9, Jason Lee9,
Thomas Shin9, Julien Arino12, Jane Heffernan1,2,3,4, Ayman Chit13,14 and Jianhong Wu1,2,3,4*

Abstract
Background: Seasonal influenza poses a significant public health and economic burden, associated with the
outcome of infection and resulting complications. The true burden of the disease is difficult to capture due to the
wide range of presentation, from asymptomatic cases to non-respiratory complications such as cardiovascular events,
and its seasonal variability. An understanding of the magnitude of the true annual incidence of influenza is important
to support prevention and control policy development and to evaluate the impact of preventative measures such as
vaccination.
Methods: We use a dynamic disease transmission model, laboratory-confirmed influenza surveillance data, and
randomized-controlled trial (RCT) data to quantify the underestimation factor, expansion factor, and symptomatic
influenza illnesses in the US and Canada during the 2011-2012 and 2012-2013 influenza seasons.
Results: Based on 2 case definitions, we estimate between 0.42 − 3.2% and 0.33 − 1.2% of symptomatic influenza
illnesses were laboratory-confirmed in Canada during the 2011-2012 and 2012-2013 seasons, respectively. In the US,
we estimate between 0.08− 0.61% and 0.07− 0.33% of symptomatic influenza illnesses were laboratory-confirmed in
the 2011-2012 and 2012-2013 seasons, respectively. We estimated the symptomatic influenza illnesses in Canada to
be 0.32 − 2.4 million in 2011-2012 and 1.8 − 8.2 million in 2012-2013. In the US, we estimate the number of
symptomatic influenza illnesses to be 4.4 − 34 million in 2011-2012 and 23 − 102 million in 2012-2013.
Conclusions: We illustrate that monitoring a representative group within a population may aid in effectively
modelling the transmission of infectious diseases such as influenza. In particular, the utilization of RCTs in models may
enhance the accuracy of epidemiological parameter estimation.
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Introduction
The exact number of cases of a disease is complex to
capture. Different methods can be used, from epidemi-
ological studies to disease surveillance systems. While
data collected routinely for surveillance purposes have the
advantage of being readily accessible over a long period
of time, they are subject to underestimation. Underes-
timation is a combination of under-reporting (failure to
capture cases that seek care due to underdiagnoses or
under-notifications) and under-ascertainment (failure to
seek health care) [1]. Symptomatic individuals who seek
medical care but are misdiagnosed due to an atypical pre-
sentation which does not fit the case definition or to the
lack of sensitivity of the laboratory test (under-diagnosis)
and/or for which administrative steps may not be taken
at the physician’s office to report the case contribute to
under-reporting [1]. Also, infected individuals may be
asymptomatic or with a mild form of the disease and
may not seek healthcare, leading to under-ascertainment.
Mathematical modelling may play a role in quantifying
the effects of factors contributing to underestimation to
assess the true number of influenza illnesses, ultimately to
assist in policy development and to evaluate the impact of
influenza vaccination.
Passive influenza surveillance systems are not designed

to capture all illnesses; however, surveillance data has
been utilized to assess under-reporting, underestimation
and incompleteness. Statistical modelling has been uti-
lized to quantify under-reporting and underestimation of
influenza-associated hospitalizations, morbidity andmor-
tality in the United States (US) and Canada [2–12]. How-
ever, assessing the underestimation associated with the
true number of influenza illnesses has received less atten-
tion. Influenza surveillance data has been utilized to assess
underestimation and estimate symptomatic influenza ill-
nesses using mulitiplier methods [13, 14], Bayesian evi-
dence synthesis [15], and dynamic models using ordinary
differential equations [16]. In one study, assessments of
underestimation were shown to be unreliable when uti-
lizing only virologic surveillance data [16]. Similarly, a
noted contributor of error of symptomatic illness esti-
mates was the quality of sentinel influenza-like illness (ILI)
data, which is subject to both overestimation and under-
estimation [15]. A method to assess underestimation of
influenza illnesses utilizing a reliable data source, such as
active surveillance, may enhance the ability to quantify
the true underestimation and the number of influenza ill-
nesses. In the present study, we develop a framework to
utilize data from a closely monitored group whose epi-
demiological status is subject to minimal uncertainty. In
particular, we utilize a randomized-controlled trial (RCT)
designed to minimize the effects of underestimation and
completely capture participant’s illnesses through active
surveillance and systematic testing [17].

A recent vaccine RCT, which assessed the efficacy
of a high-dose (HD) influenza vaccine compared to a
standard-dose (SD) influenza vaccine, presents an oppor-
tunity to explore a new method using mathematical mod-
elling to correct for underestimation in national virologi-
cal influenza surveillance, ultimately to infer the number
of symptomatic influenza illnesses. In particular, we estab-
lish a parameter estimation technique based on a mecha-
nistic disease transmission model to assess the underesti-
mation and symptomatic illnesses in the US and Canada
during the 2011-2012 and 2012-2013 influenza seasons.

Methods
Data sources
The present modelling study integrates multiple sources
of data to generate estimates for the underestima-
tion factor, disease transmission rate, expansion fac-
tor, and symptomatic influenza illnesses (Fig. 1). The
laboratory-confirmed influenza cases during the 2011-
2012 and 2012-2013 seasons are included in the final
seasonal surveillance reports from FluWatch and Flu-
View in Canada and the US, respectively [18, 19].
Additionally, we utilize the US and Canadian census
profiles [20–23].
A recent RCT assessed the efficacy of a HD influenza

vaccine compared to a SD influenza vaccine among 14,500
and 17,489 participants during the 2011-2012 and 2012-
2013 seasons, respectively [17]. We utilize the laboratory-
confirmed influenza counts among participants receiving
SD and HD influenza vaccines in this RCT, which have
been provided in the Supplementary Appendix of a prior
publication [17]. The number of laboratory-confirmed
influenza cases within the RCT are provided for three
different case definitions [17]. In the present study, we
utilize the laboratory-confirmed influenza cases associ-
ated with the least and most restrictive case definitions
in the RCT. We utilize data associated with the least
restrictive case definition, respiratory illness (RI), to pro-
vide estimates representing the true underestimation of
symptomatic influenza illnesses.We utilize amore restric-
tive case definition, modified CDC-defined ILI, which is
closer to the case definition used by surveillance systems
in the US and Canada, to provide estimates representing
underestimation of symptomatic influenza illnesses which
were captured by virologic surveillance. RI was defined as
the occurrence of one or more of the following: sneez-
ing, nasal congestion or rhinorrhea, sore throat, cough,
sputum production, wheezing, or difficulty breathing and
modified CDC-defined ILI was defined as RI with cough
or sore throat, concurrent with a temperature above 37.2°
C [17].
The SD influenza vaccine effectiveness and coverage

over the 2011-2012 and 2012-2013 influenza seasons has
been established in the US and Canada [24–27]. Also, the
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Fig. 1Methodology schematic. Data utilization and parameter estimation method. Quantifying the underestimation factor allows for the
assessment of the expansion factor and symptomatic influenza illnesses

HD influenza vaccine coverage estimates have been made
available in the US [28]. In Canada, the HD influenza vac-
cine was not yet licensed for use during 2011-2012 and
2012-2013 seasons.

Mathematical modelling
We develop two compartmental models consisting of vac-
cinated and infected individuals for the 1) seniors aged
65+ who participated in the RCT and 2) the general
population. Individuals are assumed to be vaccinated by
the beginning of the influenza season, so there is no
in-flow to the vaccinated compartment during the sea-
son. Since we study the dynamics of influenza within one
season, we ignore the demographic dynamics (e.g. birth
and death). As the size of the population for participants

of the RCT is small relative to the total population, we
ignore the influenza transmission from these participants
to the general community; however, we assume the same
transmission rate among the RCT participants. Also, we
assume that the age groups 0-64 and 65+ are homoge-
neously mixed. In addition to homogeneous mixing by
age group, we assume spatial homogeneity in transmis-
sion. We assign units of symptomatic influenza illness to
the infected compartments of the following models for
dimensional consistency with data.

Modelling influenza infections among RCT participants
We develop a compartmental model consisting of vacci-
nated and infected individuals for the seniors aged 65+
who participated in the RCT [17]. We make use of the

Fig. 2 Expansion factor in the US and Canada during the 2011-2012 and 2012-2013 seasons according to case definition. See section “Discussion”
for comparisons with prior estimates and Tables 4 and 5 for the estimate values and ranges
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following notation for model variables and parameters;
the subscript “ + " refers to compartments of individ-
uals aged 65+ and subscript “ − " refers to individuals
aged 0-64. The vaccination status of the compartment
will also appear in the subscript as SD (standard-dose)
or HD (high-dose), if applicable. Lastly, let the super-
script “O" denote individuals outside of the RCT and the
superscript “C" denote participants within the RCT. With
these assumptions and notations set, we formulate the fol-
lowing system of ordinary differential equations, where
VC

+,SD represents RCT participants vaccinated given the
standard-dose vaccine, VC+,HD represents RCT partici-
pants vaccinated given the high-dose vaccine, IC+,HD rep-
resents infected RCT participants with high-dose vac-
cine, and IC+,SD represents the infected RCT participants
given standard-dose vaccine. These model variables are
described in Table 1. Submodel (1) is equipped with
the following initial conditions to replicate the RCT
conditions preceding each season: VC

+,SD(0) = VSD0,
VC+,HD(0) = VHD0, IC+,SD(0) = 0, IC+,HD(0) = 0 [17].

V̇ C
+,SD=−ε+,SDVC

+,SDβ
(
IC+,SD + IC+,HD + J

)

V̇ C+,HD=−ε+,HDVC+,HDβ
(
IC+,SD + IC+,HD + J

)

İC+,SD=ε+,SDVC
+,SDβ

(
IC+,SD + IC+,HD + J

)
− γ IC+,SD

İC+,HD=ε+,HDVC+,HDβ
(
IC+,SD + IC+,HD + J

)
− γ IC+,HD.

(1)

Parameters ε+,SD and ε+,HD denote the vaccine-
modified susceptibilities corresponding to the standard-
dose and high-dose influenza vaccine efficacy among
seniors, respectively, β is the transmission rate and γ is
the influenza recovery rate. Specifically, β = b/N where
b is the daily effective contact rate and N is the total
population size. The vaccine-modified susceptibilities ε

represent a multiplier for the reduced infection rate of
vaccinated individuals who are susceptible to influenza
infection. Lastly, J represents the total infected individuals
in the population from model (2), J = IO− + IO+ .

Country-wide influenza transmissionmodel
We subdivide the general community (i.e., the entire US
or Canada) into two age groups: seniors aged 65+ and

Table 1 Model variables and descriptions for RCT influenza
transmission submodel (1)

Model Variable Description

VC+,SD RCT participants vaccinated with SD

VC+,HD RCT participants vaccinated with HD

IC+,SD Infected RCT participants vaccinated with SD

IC+,HD Infected RCT participants vaccinated with HD

J Total, country-wide infected population

non-seniors aged 0-64, as well as vaccination status (SD or
HD). The model variables and notations for model (2) are
displayed in Table 2 and described in more detail below.

ṠO− = −SO−β
(
IO− + IO+

)

V̇O
−,SD = −ε−,SDVO

−,SDβ
(
IO− + IO+

)

İO− = SO−β(IO− + IO+) + ε−,SDVO
−,SDβ

(
IO− + IO+

)
− γ IO−

ṠO+ = −SO+β
(
IO− + IO+

)

V̇O
+,SD = −ε+,SDVO

+,SDβ
(
IO− + IO+

)

V̇O+,HD = −ε+,HDVO+,HDβ
(
IO− + IO+

)

İO+ = SO+β
(
IO− + IO+

)
+ ε+,HDVO+,HDβ

(
IO− + IO+

)

+ ε+,SDVO
+,SDβ

(
IO− + IO+

)
− γ IO+

(2)

As identical with model (1), β = b/N where b is the
daily effective contact rate and N is the total popula-
tion size. Model (2) is equipped with the following initial
conditions: the influenza season begins with the initial
vaccinated population VO

−,SD(0) = ρO
−,SDN−, VO

+,SD(0) =
ρO

+,SDN+, VO+,HD(0) = ρO+,HDN+, where ρO
−,SD, ρO

+,SD,
ρO+,HD are the vaccine coverages for the population aged 0-
64 and population aged 65 or over (either vaccinated with
standard-dose or high-dose) in each year and country.
Similarly, the initial susceptible populations are: SO−(0) =(
1 − ρO

−,SD

)
N−, SO+(0) =

(
1 − ρO+,HD − ρO

+,SD

)
N+; there

are no infections preceding the epidemic, so IO−(0) =
IO+(0) = 0. The values for these parameters embedded in
the initial conditions are shown in Table 3 and estimated
in “Parameter estimation” section.

Table 2 Model variables and descriptions for the general
community (i.e., individuals outside of the RCT) influenza
transmission model (2)

Model variable Description

SO− Population aged 0-64 susceptible to influenza infection

SO+ Population aged 65+ susceptible to influenza infection

VO−,SD Vaccinated population aged 0-64 (Standard-dose)

VO+,SD Vaccinated population aged 65+ (Standard-dose)

VO+,HD Vaccinated population aged 65+ (High-dose)

IO− Population aged 0-64 infected with influenza

IO+ Population aged 65+ infected with influenza
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Table 3 Parameters used for quantifying the influenza underestimation factor and transmission rate in the US and Canada for years
2011-2012 and 2012-2013, respectively

Parameter Description 2011-12 2012-13 References

Canada

N Total population 34,339,328 34,714,222 [20], [21]

N− Number of community members (those outside RCT) aged 0-64 29,384,093 29,559,285 [20], [21]

N+ Number of seniors in the community aged 65+ 4,955,235 5,154,937 [20], [21]

R̂ Laboratory-confirmed influenza infections 10,279 26,335 [19]

ρO
−,SD Vaccine coverage among non-seniors 0.28 0.37 [29]

ρO
+,SD SD Vaccine coverage among seniors 0.53 0.65 [29]

ρO
+,HD HD Vaccine coverage among seniors 0 0 [30]

ε−,SD Vaccine-modified susceptibility, general community ages 0-64 0.45 0.49 [25], [24]

ε+,SD Vaccine-modified susceptibility for SD, seniors aged 65+ 0.42 0.53 [25], [24]

United States

N Total population 345,288,000 350,333,000 [22], [23]

N− Number of community members 0-64 306,110,000 308,827,000 [22], [23]

N+ Number of seniors in the community 65+ 39,178,000 41,506,000 [22], [23]

R̂ Laboratory-confirmed influenza infections 27,012 75,772 [18]

ρO
−,SD Vaccine coverage among non-seniors 0.28 0.31 [31], [31]

ρO
+,SD SD Vaccine coverage among seniors 0.649 0.662 [32], [31]

ρO
+,HD HD Vaccine coverage among seniors 0.058 0.058 [28]

ε−,SD Vaccine-modified susceptibility, general community ages 0-64 0.53 0.51 [26], [27]

ε+,SD Vaccine-modified susceptibility for SD, seniors aged 65+ 0.57 0.71 [26], [33]

ε+,HD Vaccine-modified susceptibility for HD, seniors aged 65+ 0.29 0.56 Estimated

Comparative vaccine randomized-controlled trial [17] 2011-2012 2012-2013

Ntr Number of RCT participants 14,497 17,486 [17]

VHD0 RCT participants given HD influenza vaccine 7253 8737 [17]

VSD0 RCT participants given SD influenza vaccine 7244 8749 [17]

Modified CDC-defined ILI case definition

VC+,HD(∞) SD-vaccinated RCT participants who avoided infection 7233 8639 [17]

VC+,SD(∞) HD-vaccinated RCT participants who avoided infection 7243 8651 [17]

Respiratory illness case definition

VC+,HD(∞) SD-vaccinated RCT participants who avoided infection 7187 8419 [17]

VC+,SD(∞) HD-vaccinated RCT participants who avoided infection 7196 8468 [17]

Parameter for models (1) and (2)

γ Influenza recovery rate 1
3.8 ( 1

4.6 − 1
3.1 ) 1

3.8 ( 1
4.6 − 1

3.1 ) [34]

Disease transmission and burden estimates
The approach for quantifying the underestimation fac-
tor and transmission rate utilizes the modelling frame-
work developed in “Mathematical modelling” section. The
mathematical details are presented in Appendix A. We
assume that, since the RCT participants were actively
monitored in the community, i.e. instructed to contact
their study site if they had any respiratory symptoms and

were, in addition, contacted weekly or bi-weekly by the
site, that there was no underestimation of influenza infec-
tion within the RCT. The key idea is captured in the
relationship pJ = R; a percent p (which denotes the under-
estimation factor) of symptomatic influenza cases J yields
the laboratory-confirmed influenza cases R. We use this
relationship pJ = R, the final epidemic size relation-
ships for submodel (1) and model (2), and structure of
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the SVIR model to derive a tractable system of nonlinear
equations. The representative equation derived from sub-
model (1) captures information from the RCT, while the
representative equation derived from model (2) captures
information from the general population. Specifically, we
derive a nonlinear system of the form

f (β , p) = 0
g(β , p) = 0,

(3)

where

f (β , p)=VC+,SD(∞)

−VC+,SD(0)e
ε+,SDβ

γ

(
VC+,SD(∞)−VC+,SD(0)+VC+,HD(∞)−VC+,HD(0)−p−1γ R̂

)

and

g(β , p) = e
−

(
βp−1R̂

) (
SO−(0) + SO+(0)

)
+ VO−,SD(0)e

−
(
βε−,SDp−1R̂

)

+ VO+,SD(0)
(
e
−

(
βε+,SDp−1R̂

))
+ VO+,HD(0)e

−
(
βε+,HDp−1R̂

)

−
(
SO−(0) + SO+(0) + VO−,SD(0) + VO+,SD(0) + VO+,HD(0)

)
+ γ p−1R̂,

(4)

and R̂ is the laboratory-confirmed cases in an influenza
season captured in national virological surveillance. To
solve this system of nonlinear equations (4) for p and β ,
we use Matlab’s fsolve function in Matlab R2016a.

Expansion factor and symptomatic illnesses
The expansion factor, E, is defined in this study as
the number of symptomatic influenza illnesses per
laboratory-confirmed infection. In terms of the underes-
timation factor, the expansion factor is its multiplicative
inverse. Hence, we compute the expansion factor by find-
ing the multiplicative inverse of p, that is E = p−1.
The number of estimated symptomatic influenza ill-

nesses is ER̂ where R̂ is the total laboratory-confirmed
influenza cases from national surveillance during an
influenza season.
The basic reproduction number is the average number

of secondary cases produced by one infected individual
introduced into a population of susceptible individuals.
We determine the basic reproduction number of model
(2) using the next generation method [35].

Parameter estimation
We determine estimates for parameters associated with
submodel (1) and model (2) utilizing data in “Data
sources” section. We provide an outline of the meth-
ods in the main text and more complete calculations and
explanations are included in Appendix B.
Estimating vaccine-modified susceptibility ε−,SD, ε+,SD

and ε+,HD: Recall the vaccine-modified susceptibility ε

captures the protection added from vaccination among
vaccinated individuals against influenza infection. Here
we outline the method for estimating parameter values

ε+,SD, ε+,HD and ε−,SD for influenza seasons 2011-2012
and 2012-2013. This process integratesmodel analysis and
prior vaccine effectiveness (VE) studies. We make use of a
relationship between vaccine-modified susceptibility and
VE [36].
To infer ε−,SD and ε+,SD we use prior estimates of vac-

cine effectiveness (VE) against influenza. Specifically, we
relate these VE estimates to vaccine-modified suscepti-
bility ε with the relationship ε = 1 − VE [36]. Remain-
ing is to find ε+,HD, which we use ε+,SD and the ratio
ε+,HD/ε+,SD. We use submodel (1) to determine the ratio
ε+,HD/ε+,SD. Specifically, we find ε+,HD/ε+,SD by divid-
ing the first two equations in submodel (1), which yields
V̇C+,HD
V̇C

+,SD
= ε+,HDVC+,HD

ε+,SDVC
+,SD

. Finally, we use separation of variables
to find the ratio in terms of known RCT outcomes [17]:

ε+,HD
ε+,SD

= log
(
VC+,HD(∞)/VC+,HD(0)

)

log
(
VC

+,SD(∞)/VC
+,SD(0)

) . (5)

The quantities VC
+,SD(∞) and VC+,HD(∞) are the limit

values of the state variables VC
+,SD and VC+,HD, respectively.

Finally, we use estimates of now known quantities; ε+,SD
from VE studies and the ratio ε+,HD

ε+,SD
from the RCT to

estimate ε+,HD [17].
Initial susceptible and vaccinated populations: To

inform the initial conditions for model (2) in the years
2011-2012 and 2012-2013, we use population sizes given
by the US and Canadian census programs [20–23]. The
population size and the estimated vaccine coverage in
each country then gives us the susceptible and vaccinated
population initial conditions. The values and descriptions
of these parameters embedded in the initial conditions;
N−,N+, ρO

−,SD, ρ
O
+,SD, andρ

O+,HD, are listed in Table 3. Sim-
ilarly, the initial conditions for submodel (1) are given in
Table 3.
Influenza recovery rate γ : We inform the recovery rate

γ using the infectious period of influenza, which has been
estimated to be 3.8 days with a 95% confidence interval
(CI) of 3.1 - 4.6 days [34]. The recovery rate γ is then the
inverse of the mean sojourn time in the infectious com-
partment; hence, we consider γ = 1

3.8 day−1 as a baseline.
We utilize the bounds on the CI of the estimated infec-
tious period for sensitivity analysis and vary γ from 1

4.6 to
1
3.1 day−1.
We utilize the laboratory-confirmed influenza counts

reported in the RCT according to two case definitions to
inform VC+,HD(∞) and VC

+,SD(∞). We use 1) laboratory-
confirmed cases associated with modified CDC-defined
ILI and 2) laboratory-confirmed cases associated with res-
piratory illness (RI) [17] (Table 3). Results generated for
each case definition has an interpretation and is left for
the Discussion.
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Well-posedness
To ensure that the parameter estimation process for
obtaining p and β will yield biologically relevant results,
we study the well-posedness of the inverse problem out-
lined in “Disease transmission and burden estimates”
section. The solution p and β to system (4) is unique and
positive, i.e. the problem is well-posed. From f (β , p) = 0,
we note that β is related to p by the following equation

β = − ln
VC+,SD(∞)

VC+,SD(0)

· γ

ε+,SDVC+,SD(0)
(
1− VC+,SD(∞)

VC+,SD(0)

)
+VC+,HD(0)

(
1 − VC+,HD(∞)

VC+,HD(0)

)
+ p−1γ R̂)

.

Substituting this expression for β into g(β , p) yields the
following equation of p
(
SO−(0) + SO+(0) + VO−,SD(0) + VO+,SD(0) + VO+,HD(0)

)
−

(
SO−(0) + SO+(0)

)⎛
⎝VC+,SD(∞)

VC+,SD(0)

⎞
⎠
U(p)

− VO−,SD(0)

⎛
⎝VC+,SD(∞)

VC+,SD(0)

⎞
⎠
U(p)

− VO+,SD(0)

⎛
⎝VC+,SD(∞)

VC+,SD(0)

⎞
⎠

ε+,SDU(p)

− VO+,HD(0)

⎛
⎝VC+,SD(∞)

VC+,SD(0)

⎞
⎠

ε+,HDU(p)

= γ p−1R̂

(6)

where
U(p) =

γ R̂p−1

ε+,SD

((
VC+,SD(0)

(
1 − VC+,SD(∞)

VC+,SD(0)

)
+ VC+,HD(0)

(
1 − VC+,HD(∞)

VC+,HD(0)

)
+ p−1γ R̂

) .

Let �(p) denote the left hand side of equation (6).
Note that � is a monotone-decreasing function of p
with �(0) > 0 and limp→∞ �(p) = 0. On the other
hand, the right hand side of the equation is a monotone-
decreasing function of p with limp→0 γ R̂p−1 = ∞ and
limp→∞ γ R̂p−1 = 0. Therefore, there exists a unique
solution p ∈ (0, 1] if �(1) > γ R̂.
From the parameter sets estimated in “Parameter esti-

mation” section, �(1) > γ R̂, hence we have a unique
solution of System (3) corresponding to each context-
specific parameter set. In other words, according to this
specific US/Canadian demographic information, vaccine-
specific parameters, influenza surveillance reports, and
RCT study results, there is a single underestimation fac-
tors p (which we ensure is logically between 0 and 1) and
transmission rate β which satisfy System (3) [17–19].

Sensitivity analysis
To quantify uncertainty in the underestimation factor,
expansion factor, number of symptomatic influenza ill-
nesses, and basic reproduction number, we utilize vari-
ability in parameter estimates in Table 3. Note that model
parameter estimates appear as point values with the

exception of the recovery rate γ (Table 3). We solve sys-
tem (4) according to each case definition (Modified-CDC
and RI), country (US and Canada) and study year (2011-
2012 and 2012-2013) with the mean value of γ , lower 95%
confidence bound and upper 95% confidence bound on γ .
The estimated value of p and β corresponding to themean
value of γ represent baseline results. The ranges of p and β

obtained using the 95% confidence bounds of γ represent
their sensitivity to an estimated 95% CI of the infec-
tious period of influenza. We obtain baseline estimates of
the expansion factor, number of symptomatic influenza
illnesses and the basic reproduction number using base-
line p and β estimates and methods in “Expansion factor
and symptomatic illnesses” section. To retrieve an inter-
val based on variation of recovery rate γ , we propagate
the variability in p and β to each of the epidemiologi-
cal parameters using methods in “Expansion factor and
symptomatic illnesses” section.

Sensitivity to underestimation in the RCT
We have assumed perfect reporting and ascertainment
of influenza virus infection within the RCT. Participants
were instructed to contact their study site if they had
any respiratory symptoms [17]. In addition, participants
were contacted by a call center twice weekly (between the
beginning of January and the end of February) or weekly
until the end of illness surveillance (April 30 each year)
[17]. In light of these frequent participant follow-ups in
the RCT, we expect this assumption to hold. However,
we consider the possibility of underestimation occurring
within the RCT to be exhaustive in our analysis [17]. For
details regarding the sensitivity of p and β to underesti-
mation in the RCT, see Appendix C.

Results
Disease transmission and burden estimates
The estimates for Canada are displayed in Table 4.
Using the laboratory-confirmed influenza counts associ-
ated with modified CDC-defined ILI within the RCT, we
quantified the underestimation factor p = 2.6% (2.1 −
3.2%) and p = 1.2% (0.98 − 1.2%) in the 2011-2012 and
2012-2013 influenza seasons, respectively. These under-
estimation factors correspond to expansion factors of E
= 37.9 (31 − 46.8) and E = 84.8 (69.1 − 102.6) in
2011-2012 and 2012-2013 influenza seasons, respectively
(Fig. 2a). Equipped with expansion factors in each year, we
estimated symptomatic influenza illnesses to be 390,000
(320, 000− 480, 000) and 2.3 million (1.8− 2.7 million) in
2011-2012 and 2012-2013 influenza seasons, respectively.
Also in Canada, using the laboratory-confirmed influenza
counts associated with RI within the RCT, we quanti-
fied the underestimation factor p = 0.51% (0.42 − 0.63%)

and p = 0.4% (0.33 − 0.49%) in the 2011-2012 and
2012-2013 influenza seasons, respectively. These under-
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Table 4 Summary of estimates in Canada during 2011-2012 and 2012-2013 influenza seasons. Values reported as estimated baseline
value and range from variation of recovery rate γ (see section “Sensitivity analysis” for the details of sensitivity analysis)

Seasonal influenza in Canada: 2011-2012 and 2012-2013 influenza seasons

Laboratory-confirmed infections* 10,271 26,671

Estimates generated from modified CDC-defined influenza in RCT

Season 2011-12 2012-13

Percent of influenza cases captured in surveillance 2.6% (2.1 − 3.2%) 1.2% (0.98 − 1.2%)

Expansion factor 37.9 (31.0 − 46.8) 84.8 (69.1 − 102.6)

Estimated symptomatic influenza illnesses 3.9 × 105 (3.2 × 105 − 4.8 × 105) 2.3 × 106 (1.8 × 106 − 2.7 × 106)

Basic reproduction number 1.22 (1.22 − 1.22) 1.19 (1.19 − 1.19)

Estimates generated from respiratory illness associated influenza in RCT

Season 2011-12 2012-13

Percent of influenza cases captured in surveillance 0.51% (0.42 − 0.63%) 0.4% (0.33 − 0.49%)

Expansion factor 195.1 (159.3 − 236.1) 252.9 (206.3 − 306.1)

Estimated symptomatic influenza illnesses 2.0 × 106 (1.6 × 106 − 2.4 × 106) 6.7 × 106 (5.5 × 106 − 8.2 × 106)

Basic reproduction number 1.22 (1.22 − 1.22) 1.19 (1.19 − 1.19)

*indicates infections recorded in Public Health Agency of Canada’s final seasonal FluWatch report [19]

estimation factors correspond to expansion factors of E
= 200.1 (163.4 − 243.9) and E = 376.1 (306.7 − 455.1)
in 2011-2012 and 2012-2013 influenza seasons, respec-
tively. Equipped with expansion factors in each year, we
estimated symptomatic influenza illnesses to be 2 million
(1.6 − 2.4 million) and 6.7 million (5.5 − 8.2 million) in
2011-2012 and 2012-2013 influenza seasons, respectively.
The estimates for the US are displayed in Table 5. Using

the laboratory-confirmed influenza associated with mod-
ified CDC-defined ILI within the RCT, we estimated p =
0.5% (0.41 − 0.61%) and p = 0.27% (0.2 − 0.33%) in
the 2011-2012 and 2012-2013 seasons, respectively. These
underestimation factors correspond to expansion factors
of E = 200.1 (163.4−243.9) and E = 376.1 (306.7−455.1) in
2011-2012 and 2012-2013 influenza seasons, respectively
(Fig. 2b). Equipped with expansion factors in each year, we
estimated symptomatic influenza illnesses to be 5.4 mil-
lion (4.4− 6.9 million) and 29 million (23− 34 million) in
2011-2012 and 2012-2013 influenza seasons, respectively.
Also in the US, using the laboratory-confirmed influenza
counts associated with RI within the RCT, we estimated
p = 0.1% (0.08 − 0.12%) and p = 0.09% (0.07 − 0.11%)

in the 2011-2012 and 2012-2013 seasons, respectively.
These underestimation factors correspond to expansion
factors of E = 1030.1 (840.5 − 1247) and E = 1111.4
(906.6 − 1345.3) in 2011-2012 and 2012-2013 influenza
seasons, respectively. Equipped with expansion factors in
each year, we estimated symptomatic influenza illnesses
to be 28 million (23−34 million) and 84 million (69−102
million) in 2011-2012 and 2012-2013 influenza seasons,
respectively.
We estimated the disease transmission rate β range to

between 0.25 and 0.39 in each season and country, cor-

responding to basic reproduction numbers R0 ranging
between 1.19 and 1.22 (Tables 4 and 5, RI case definition).

Sensitivity to underestimation in RCT
Recall we have assumed perfect reporting and ascertain-
ment of influenza virus infection among the RCT partici-
pants and proposed to revisit this assumption with a sen-
sitivity analysis. We have conducted a sensitivity analysis
and present the details in Appendix C. Overall, the sensi-
tivity analysis suggests that the results in “Results” section
are robust to underestimation within the RCT [17]. We
find that our estimates for β are weakly dependent on
underestimation within the RCT [17]. Further, the cap-
tured fraction of influenza infections by virologic surveil-
lance p is also robust to underestimation within the RCT
[17], maintaining an order of magnitude while varying
RCT underestimation over its full range. See Appendix C
for a full presentation of this analysis.

Discussion
This study develops and illustrates a method utilizing a
parameter estimation technique based on a mechanis-
tic model and data synthesis to quantify the underesti-
mation factor associated with season influenza and the
number of symptomatic illnesses. These estimates take
into account mechanistic detail of influenza transmission,
vaccine effectiveness, relative vaccine efficacy of SD toHD
from the RCT, and vaccine coverage. While this method
does utilize RCT outcomes, the remaining data required
to generate the estimates become publicly available by the
end of the influenza season. This method can be utilized
for epidemiological parameter estimation for infectious
diseases, provided there is an appropriate form of active
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surveillance (e.g., clinical trial) data available. A coupled
system of differential equations for the actively monitored
population and general community can be developed to
integrate surveillance epidemiological data to quantify key
population-level parameters, including the underestima-
tion factor.
Our estimates generated from the laboratory-confirmed

influenza associated with modified CDC-defined ILI case
definition are representative of the underestimation of
cases which could be captured by the surveillance sys-
tem (Tables 4 and 5, modified CDC-defined ILI case
definition). In this light, our analysis indicates that the
surveillance system in Canada captured 2.6% (2.1 − 3.2%)

and 1.2% (0.98− 1.2%) of symptomatic cases closely asso-
ciated with modified CDC-defined ILI in 2011-2012 and
2012-2013 influenza seasons, respectively. In the US, the
virologic surveillance system was estimated to capture
0.1% (0.08 − 0.12%) and 0.09% (0.07 − 0.11%) of symp-
tomatic influenza cases closely associated with modified
CDC-defined ILI in 2011-2012 and 2012-2013 influenza
seasons, respectively. In each country, the percentage of
captured cases decreases with an increase in laboratory-
confirmed cases from passive surveillance, which may
be due to laboratory testing capacity or changing testing
practices (Tables 4 and 5, modified CDC-defined ILI).
The underestimation factors generated from

laboratory-confirmed influenza associated with RI, i.e., a
broader range of symptoms, provide an underestimation
factor more closely representing the true symptomatic
influenza underestimation factor and are apt to assess
the true number of influenza illnesses (Tables 4 and 5,
respiratory illness case definition). When considering a
range of symptomatic influenza illness from the estimates
using data specified by these two case definitions, we pro-
vide symptomatic influenza illness estimates which are

consistent with US CDC’s in 2011-2012 and 2012-2013
(Fig. 3b). The US CDC estimate in 2012-2013 is near the
low end of the range we estimated, which may be due to
difference in methodology. In particular, this difference
may be due to the nonlinear (exponential) relationship
between the underestimation factor and laboratory-
confirmed illnesses in surveillance data. An explanation
to support this nonlinear relationship and our results
could be that the increased number of influenza illnesses
results in limited availability of laboratory tests, therefore
a fewer proportion of cases were captured in virological
surveillance.
We offer two sources of comparison from studies of

the 2009 influenza pandemic. In an expert opinion from
the 2009 influenza pandemic, the number of expected
influenza infections per laboratory-confirmed infection
ranged from 10 to 500 among experts [37]. For Canada,
our estimates of the expansion factor lie in this range
of 10 to 500 (Table 4). For the US, we estimate expan-
sion factors greater than 500 using respiratory illness
case definition (Table 5). Also, estimates of underesti-
mation factors were between 0.1% and 0.7% during the
2009 influenza pandemic in Mexico [16]. Our estimates
for the true underestimation in Canada and the US lie in
this range (Table 4 and 5, respiratory illness case defini-
tion). In both cases, investigations of the 2009 pandemic
influenza in Canada and Mexico align well with Canada;
however, according to our analysis the underestimation in
laboratory-confirmed surveillance in the US is more sub-
stantial. This is likely due to differences in surveillance
systems, laboratory-testing protocols, or health-seeking
behavior. We also note that epidemiological character-
istics differ from pandemics to seasonal influenza and
the level of awareness may have impacted health seeking
behavior and diagnosis practices.

Fig. 3 Estimated symptomatic influenza illnesses in the Canada and the US during the 2011-2012 and 2012-2013 seasons, by case definition. b In
the US, we compare with US CDC’s estimates of symptomatic influenza illnesses [14]. For data values and ranges see Tables 4 and 5
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Table 5 Summary of estimates in the US during 2011-2012 and 2012-2013 influenza seasons. Values reported as estimated baseline
value and range from variation of recovery rate γ (see section “Sensitivity analysis” for the details of sensitivity analysis)

Seasonal influenza in the US: 2011-2012 and 2012-2013 influenza seasons

Laboratory-confirmed infections* 27,012 75,772

Estimates generated from Modified CDC-defined ILI in RCT

Season 2011-12 2012-13

Percent of influenza cases captured in surveillance 0.5% (0.41 − 0.61%) 0.27% (0.2 − 0.33%)

Expansion factor 200.1 (163.4 − 243.9) 376.1 (306.7 − 455.1)

Estimated symptomatic influenza illnesses 5.4 × 106 (4.4 × 106 − 6.9 × 106) 2.9 × 107 (2.3 × 107 − 3.4 × 107)

Basic reproduction number 1.19 (1.19 − 1.19) 1.16 (1.16 − 1.16)

Estimates generated from respiratory illness associated influenza in RCT

Season 2011-12 2012-13

Percent of influenza cases captured in surveillance 0.1% (0.08 − 0.12%) 0.09% (0.07 − 0.11%)

Expansion factor 1030.1 (840.5 − 1247.0) 1111.4 (906.6 − 1345.3)

Estimated symptomatic influenza illnesses 2.8 × 107 (2.3 × 107 − 3.4 × 107) 8.4 × 107 (6.9 × 107 − 1.02 × 108)

Basic reproduction number 1.20 (1.20 − 1.20) 1.19 (1.19 − 1.19)

US CDC estimated symptomatic influenza illnesses 9.3 × 106 3.4 × 107

*Indicates infections recorded by the US Center for Disease and Control’s FluView reports [18]

The basic reproduction number ranged from 1.19 - 1.22
for estimates associated with RI case definition, which
more closely represent the true R0. While these basic
reproduction numbers align tightly in the US and Canada,
our estimates for R0 are higher in Canada in all influenza
seasons (Tables 4 and 5). A recent systematic review found
an interquartile range of reproduction numbers for sea-
sonal influenza of 1.19–1.37, with median value 1.27 [38].
Our estimates for R0 are in line with typical findings
representative of seasonal influenza [38].
We estimate the symptomatic influenza illnesses in the

US and Canada; however, the number of asymptomatic
influenza illnesses has not been assessed in this work.
A recent review of estimates for the fraction of asymp-
tomatic infections vary widely; however, values from 20%-
50% are typical [39]. These estimates indicate that the
number of asymptomatic influenza illnesses may be sub-
stantial. Even so, based on our scan of the literature, there
is no clear consensus on the contribution of asymptomatic
individuals to influenza transmission. Future studies may
attempt to estimate the total number influenza illnesses,
symptomatic and asymptomatic, to provide a more accu-
rate assessment of influenza illnesses; influenza underes-
timation; and the force of infection. As a result of this
simplification, we may underestimate R0 and hence the
force of infection.
There are several limitations in the current study.

There are differences in symptomatic attack rates, disease
presentation, and health-seeking behaviour between age
groups. As a result, the symptomatic reporting fraction
likely varies from age group to age group. Future study
may be extended to address these age group disparities
by quantifying the underestimation and expansion factors

for each age group. Another limitation to this study is the
assumed homogeneous mixing between age groups; how-
ever, this may also be addressed in a future study. In fact,
the RCT data may allow the contact preference between
age groups (i.e. the contact rate between age groups 0-64
and 65+, and vice-versa) to be estimated. In this light, the
methods presented herein may be used as a method to
validate empirical social contact data obtained from sur-
veys or existing contact mixing patterns. In addition to
age-specific heterogeneity, there may be spatial hetero-
geneity in contact mixing, surveillance systems, and social
behavior which impacts case ascertainment and report-
ing rates. In this light, it may be advantageous to conduct
analysis at more granular scales (e.g. city, state, or provin-
cial levels) to more accurately capture transmission and
underestimation at these sub-national levels. The RCT
was conducted in the US and Canada, and we use aggre-
gate case counts and RCT participant counts from US and
Canada. In other words, the RCT is assumed to take place
in the US or Canada. The underestimation factor could
also be separated into several multipliers, as in prior works
[13]. An improvement could be made to account for labo-
ratory test accuracy; laboratory-confirmed cases from the
RCT and surveillance reports can be preprocessed for the
method to generate more representative estimates. Over-
all, this work lays a functional framework to expand as the
research questions at hand require.

Conclusions
We develop amethod for quantifying the underestimation
factor and disease transmission rate by integrating sev-
eral data sources including RCT outcomes. We use our
method to assess surveillance system capacity, number of



McCarthy et al. Theoretical Biology andMedical Modelling           (2020) 17:11 Page 11 of 16

symptomatic influenza illnesses, and R0 in the US and
Canada during 2011-2012 and 2012-2013 seasons. The
utilization of outcomes from RCTs (in this case a compar-
ative vaccine RCT) may allow for the extraction of addi-
tional information characterizing an epidemic which may
not be possible by limiting data usage to national influenza
surveillance reports. This work illustrates the point that
monitoring a representative group within a population
may aid in effectively modelling the transmission of infec-
tious diseases such as influenza. In general, the utilization
of available surveillance data may increase the capabili-
ties of disease models and broaden their power to draw
inferences. A formal structural and practical identifiability
analysis should be carried out to rigorously address these
details of parameter identification.
It is key to provide more accurate methods to estimate

the annual incidence of influenza to guide evidence-based
immunization policy-making. In this light, it is vital to
develop more accurate mathematical models of influenza
transmission, and to accurately evaluate the impact of
influenza vaccination. These methods may contribute
to and enable the design of optimal vaccination pro-
grams that best reduce the annual incidence of seasonal
influenza as well as associated hospitalizations, medical
visits and deaths.

Appendix A: Mathematical details for estimating p
and β.
Here we present the details for estimating p and β . We
also introduce the following notation for convenience and
readability; let a hat (ˆ) over a variable denote integration
over all nonnegative time. For example, Î = ∫ ∞

0 I(s)ds.
Integrating the first equation of submodel (1) we have

ln
VC

+,SD(∞)

VC
+,SD(0)

= −ε+,SDβ(ÎC+,SD + ÎC+,HD + Ĵ). (7)

Similarly, taking the second equation from submodel (1),
we have:

ln
VC+,HD(∞)

VC+,HD(0)
= −ε+,HDβ(ÎC+,SD + ÎC+,HD + Ĵ). (8)

For finding ÎC+,SD, ÎC+,HD, adding the first and third
equations, & second and fourth of submodel (1) followed
by integrating both sides give us:

ÎC+,SD = −VC
+,SD(∞) − VC

+,SD(0)
γ

,

ÎC+,HD = −VC+,HD(∞) − VC+,HD(0)
γ

,

provided that IC+,SD(0) = IC+,SD(∞) = IC+,HD(0) =
IC+,HD(∞) = 0. This, along with pJ = R (where J =
IO− + IO+), from Eqs. 7 and (8) we have:

VC
+,SD(∞)

VC
+,SD(0)

=e
ε+,SDβ

γ
(VC

+,SD(∞)−VC
+,SD(0)+VC+,HD(∞)−VC+,HD(0)−p−1γ R̂)

and
VC+,HD(∞)

VC+,HD(0)

= e
ε+,HDβ

γ
(VC

+,SD(∞)−VC
+,SD(0)+VC+,HD(∞)−VC+,HD(0)−p−1γ R̂).

Thus, we define the following functions:

f (β , p) = VC+,SD(∞)

−VC+,SD(0)e
ε+,SDβ

γ

(
VC+,SD(∞)−VC+,SD(0)+VC+,HD(∞)−VC+,HD(0)−p−1γ ,R̂

)

(9)

h(β , p) = VC+,HD(∞)

− VC+,HD(0)e
ε+,HDβ

γ (VC+,SD(∞)−VC+,SD(0)+VC+,HD(∞)−VC+,HD(0)−p−1γ R̂) .

(10)

Now, frommodel (2) we have the following five equations:

ṠO−
SO−

= −βJ ,
ṠO+
SO+

= −βJ ,
V̇O

−,SD

VO
−,SD

= −ε−,SDβJ ,

V̇O
+,SD

VO
+,SD

= −ε+,SDβJ ,
V̇O+,HD

VO+,HD
= −ε+,HDβJ .

Recall pJ = R, where p is the underestimation factor. Inte-
grating the equations above yields the respective final size
relations:

SO−(∞) = SO−(0)e−(βp−1R̂),

SO+(∞) = SO+(0)e−(βp−1R̂),

VO
−,SD(∞) = VO

−,SD(0)e−(βε−,SDp−1R̂),

VO
+,SD(∞) = VO

+,SD(0)e−(βε+,SDp−1R̂),

VO+,HD(∞) = VO+,HD(0)e−(βε+,HDp−1R̂).

Further, by summing all the equations of model (2), we
obtain the following equality:

ṠO− + ṠO+ + V̇O
−,SD + İO+ + V̇O

+,SD + V̇O+,HD + İO− = −γ J .

Integrating both sides of the above equations with the
assumption that there are no infections at t0 and t∞ gives:

SO−(∞) − SO−(0) + SO+(∞) − SO+(0)
+(VO

−,SD(∞) − VO
−,SD(0))

+
(
VO

+,SD(∞) − VO
+,SD(0)

)
+

(
VO+,HD(∞) − VO+,HD(0)

)

= −γ p−1R̂. (11)
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Substituting values of final sizes from above relations and
pĴ = R̂ into (11):

SO−(0)e−(βp−1R̂) − SO−(0) +
(
VO

−,SD(0)e−(βε−,SDp−1R̂)

− VO
−,SD(0)) + (VO

+,SD(0)e−(βε+,SDp−1R̂) − VO
+,SD(0)

)

+
(
VO+,HD(0)e−(βε+,HDp−1R̂) − VO+,HD(0)

)
= −γ p−1R̂

Thus we define:

g(β , p) = e−(βp−1R̂)
(
SO−(0) + SO+(0)

)
+ VO

−,SD(0)e−(βε−,SDp−1R̂)

+ VO
+,SD(0)

(
e−(βε+,SDp−1R̂)

)
+ VO+,HD(0)

(
e−

(
βε+,HDp−1R̂

))

−
(
SO−(0) + SO+(0) + VO

−,SD(0) + VO
+,SD(0) + VO+,HD(0)

)
+ γ p−1R̂.

(12)

With this definition, we obtain the following system of
equations, which β and pmust satisfy:

f (β , p) = 0,
g(β , p) = 0.

(13)

Suppose that β and p satisfy f (β , p) = 0, then we have:

β = − ln
VC

+,SD(∞)

VC
+,SD(0)

· γ

ε+,SD(VC
+,SD(∞) − VC

+,SD(0) + VC+,HD(∞) − VC+,HD(0) − p−1γ R̂)

and that β and p also satisfy h(β , p) = 0, that is

β = − ln
VC+,HD(∞)

VC+,HD(0)

· γ

ε+,HD(VC
+,SD(∞) − VC

+,SD(0) + VC+,HD(∞) − VC+,HD(0) − p−1γ R̂)
.

Note that for both of these equalities to hold, it is
required that

1
ε+,SD

ln
VC

+,SD(∞)

VC
+,SD(0)

= 1
ε+,HD

ln
VC+,HD(∞)

VC+,HD(0)
. (14)

Equation (10) does hold since this is precisely the expres-
sion used to estimate ε+,HD from vaccine RCT informa-
tion and ε+,SD.
Since all known variables in f and g have been estimated

except for β and p, we can obtain estimates for β and p by
solving (15) (e.g., numerically).

f (β , p) = 0,
g(β , p) = 0.

(15)

Solving System (15) yields estimates for p and β , which
we provide with numerical methods in Section “Disease
transmission and burden estimates”. Lastly, we note that
Equations (9) and (12) remain intact if a latent compart-
ment were to be added to models (1) and (2) to account
for the incubation period of influenza.

Appendix B: Detailed parameter estimation
Here we present the details for the calculations of param-
eter values ε+,SD, ε+,HD and ε−,SD for influenza seasons
2011-2012 and 2012-2013. For this purpose, we utilize an
approximation which relates vaccine-modified suscepti-
bility to vaccine effectiveness (VE) [36]. We also leverage
influenza vaccine effectiveness (VE) from several studies
in the US and Canada.

2011-2012 Influenza season
Canada
Informing ε−,SD: First, we inform ε+,SD using VE esti-
mates. In Canada, the VE against Real-Time Polymerase
Chain Reaction (Real-time PCR) confirmed influenza in a
test-negative case-control study was estimated to be 55%
among all participants of all ages [25]. We use the approx-
imation ε = 1 − VE to estimate ε−,SD; that is ε−,SD =
1 − 0.55 = 0.45 [36].
Informing ε+,SD: In the same test-negative case-control

study, the VE against Real-time PCR confirmed influenza
among participants aged 50+ was estimated to be 58%
[25].We use this figure to estimate ε+,SD using the approx-
imation ε = 1 − VE to find ε+,SD = 1 − 0.58 = 0.42
[36].

US
Informing ε−,SD: In the US, the VE against medically-
attended influenza among all ages was estimated to be
47% [26]. We now use the approximation ε = 1 − VE to
estimate ε−,SD as follows: ε−,SD = 1 − 0.47 = 0.53.
Informing ε+,SD: The VE against medically-attended

influenza among those aged 65+ was estimated to be 43%
in the US in 2011-2012 [26]. With the relationship ε+,SD =
1 − VE we calculate ε−,SD = 0.57 [36].
Informing ε+,HD: Lastly, to estimate the high-dose

vaccine-modified susceptibility we use Equation (3) in
the main text informed with RCT results to calculate
ε+,HD/ε+,SD [17].

ε+,HD
ε+,SD

= log(7230/7253)
log(7202/7244)

= 0.55.

Note that with the ratio of two vaccine-modified suscep-
tibilities and ε+,SD known, we can calculate ε+,HD. For the
US, we then have ε+,HD = 0.55 × 0.53 = 0.29.

2012-2013
Canada
Informing ε−,SD: We inform ε−,SD using the VE against
PCR-confirmed influenza from a test-negative case con-
trol study in Canada [24]. In this study, the VE against
PCR-confirmed influenza was estimated to be 51% [24].
Now, we use the approximation ε = 1−VE = 1− 0.51 =
0.49 [24].
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Fig. 4 Sensitivity to RCT underestimation, Canada 2011-2012

Informing ε+,SD: In the same test-negative case control
study, VE was estimated to be 47% among participants
aged 50+. As a result, we estimate ε+,SD using the approxi-
mation ε=1−VE to find ε+,SD=1−0.47=0.53 [36].

US
Informing ε−,SD: First, we inform ε−,SD using the estimates
for the VE against medically-attended influenza over all
ages in the US of 49% [27]. We then calculate ε−,SD = 1−

0.49 = 0.51 using the approximation ε+,SD = 1−VE [36].
Informing ε+,SD: In the same US study, VE against

medically-attended influenza was estimated to be 29%
among those aged 65+ [27]. We then calculate ε+,SD =
1−0.29=0.71 using the approximation ε+,SD=1−VE [36].
Informing ε+,HD: Now, to estimate the high-dose

vaccine-modified susceptibility we first use Equation (3)
in the main text informed by RCT results to calculate
ε+,SD/ε+,HD [17].

Fig. 5 Sensitivity to RCT underestimation, Canada 2012-2013
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Fig. 6 Sensitivity to RCT underestimation, US 2011-2012

ε+,HD
ε+,SD

= log(8532/8737)
log(8490/8749)

= 0.79.

We use the known ratio: ε+,SD/ε+,HD to calculate
ε+,HD = 0.79 ∗ 0.71 = 0.56. In the US we have ε+,HD =
0.56.

Appendix C: Accounting for underestimation in the
RCT
In this section, we present the details of the sensitivity
analysis exploring the impact of underestimation in the

RCT on study results. Specifically, we investigate the sen-
sitivity of p and β on underestimation in the RCT [17].
To consider underestimation in the RCT, we introduce
a underestimation factor p1 in the RCT. As before, p
remains the underestimation factor in the general com-
munity. We also assume that RCT participants provided
with standard-dose and high-dose vaccines are equally
underestimated. Lastly, we define δ to be the fraction of
true remaining vaccinated participants at the end of the
RCT.

Fig. 7 Sensitivity to RCT underestimation, US 2012-2013



McCarthy et al. Theoretical Biology andMedical Modelling           (2020) 17:11 Page 15 of 16

Method
The total number of observed infections in the RCT can
be written as:

Ī := VC
+,SD(0) + VC+,HD(0) − VC

+,SD(∞) − VC+,HD(∞). (16)

The above equation can also be formulated in terms of p1
and δ, that is:

Ī = p1[VC
+,SD(0)+VC+,HD(0)−δ(VC

+,SD(∞)+VC+,HD(∞))] .
(17)

The relationship between p1 and δ can be determined
by equating (16) and (17) which yields:

δ = 1
VC

+,SD(∞) + VC+,HD(∞)[
VC

+,SD(0) + VC+,HD(0) − p−1
1

(
VC

+,SD(0) + VC+,HD(0)

−VC
+,SD(∞) − VC+,HD(∞)

)]
.

(18)

Under these conditions, by conducting the same analy-
sis of model (1) as shown in Appendix A, we derive the
condition:

1
ε+,SD

ln
δVC

+,SD(∞)

VC
+,SD(0)

= 1
ε+,HD

ln
δVC+,HD(∞)

VC+,HD(0)
. (19)

Continuing to follow the analysis from Appendix A, we
arrive at the following system of equations:

f̄ (β , p, δ) = δVC+,SD(∞)

− VC+,SD(0)e
ε+,SDβ

γ

(
δVC+,SD(∞)−VC+,SD(0)+δVC+,HD(∞)−VC+,HD(0)−p−1γ R̂

)
,

ḡ(β , p) = e−(βp−1R̂)
(
SO−(0) + SO+(0)

)
+ VO−,SD(0)e−(βε−,SDp−1R̂)

+ VO+,SD(0)e
−

(
βε+,SDp−1R̂

)
+ VO+,HD(0)e

−
(
βε+,HDp−1R̂

)

− (SO−(0) + SO+(0) + VO−,SD(0) + VO+,SD(0) + VO+,HD(0)) + γ p−1R̂.

(20)

We analyze the robustness of the estimates of β and p by
varying δ in the above system of equations. Exploring sen-
sitivity with respect to δ gives insight into how underesti-
mation in the RCT affects our results in Section “Results”.
Specifically, for a given p1, we calculate a corresponding δ

then solve the above system numerically.

Results
The relationship between the RCT underestimation fac-
tor, p1, with β and p estimates is shown in Figs. 4, 5, 6,
and 7. We explore the sensitivity of p1 on p and β for
each context of interest; both regionally in the US and
Canada during 2011-12 and 2012-13 influenza seasons.
We present the sensitivity analysis using the laboratory-
confirmed influenza associated with RI case definition
outcomes in the RCT.

Overall, p and β are robust to underestimation in the
RCT.We see that the effect of underestimation in the RCT
is negligible on the transmission rate β for reasonable val-
ues of p1. On the other hand, p is also weakly dependent
on p1. By varying p1 over its entire range, p remains to be
on the same order of magnitude.
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