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A B S T R A C T

Background: Breast cancers can be divided into HER2-negative and HER2-positive subtypes according to dif-
ferent status of HER2 gene. Despite extensive studies connecting germline mutations with possible risk of
HER2-negative breast cancer, the main category of breast cancer, it remains challenging to obtain accurate
risk assessment and to understand the potential underlying mechanisms.
Methods: We developed a novel framework named Damage Assessment of Genomic Mutations (DAGM), which
projects rare coding mutations and gene expressions into Activity Profiles of Signalling Pathways (APSPs).
Findings: We characterized and validated DAGM framework at multiple levels. Based on an input of germline
rare coding mutations, we obtained the corresponding APSP spectrum to calculate the APSP risk score, which
was capable of distinguish HER2-negative from HER2-positive cases. These findings were validated using
breast cancer data from TCGA (AUC = 0.7). DAGM revealed that HER2 signalling pathway was up-regulated
in germline of HER2-negative patients, and those with high APSP risk scores had exhibited immune suppres-
sion. These findings were validated using RNA sequencing, phosphoproteome analysis, and CyTOF. Moreover,
using germline mutations, DAGM could evaluate the risk for HER2-negative breast cancer, not only in women
carrying BRCA1/2 mutations, but also in those without known disease-associated mutations.
Interpretation: The DAGM can facilitate the screening of subjects at high risk of HER2-negative breast cancer
for primary prevention. This study also provides new insights into the potential mechanisms of developing
HER2-negative breast cancer. The DAGM has the potential to be applied in the prevention, diagnosis, and
treatment of HER2-negative breast cancer.
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1. Introduction

Breast cancer is themost commonmalignancy and the second leading
cause of cancer death in women worldwide [1,2]. Breast cancer can be
classified into two types: human epidermal growth factor 2 (HER2)-posi-
tive and HER2-negative. HER2-positive breast cancer is characterized by
HER2 amplification in tumour tissues, whereas the HER2-nengative
breast cancer is not [3-7]. The majority (80%) of breast cancers cases are
HER2-negative, including triple-negative breast cancer (TNBC), luminal A,
and luminal B (HER2-negative) [3-5]. Although germline mutations in
genes such as BRCA1/2 are known to be associated with breast cancer,
they are detected in only 5.3% of breast cancer patients and 11.2% of
TNBC patients in China [8]. Signalling pathways such as STING pathway
and immunosuppressive pathways have been linked to the development
and progression of breast cancers [9-11]. However, the ability to accu-
rately assess the risk and understand the underlying mechanisms of
developing sporadic HER2-negative breast cancer remains elusive.

To address these issues, extensive studies have been carried out in
the past decade, leading to various methods such as Gene Set Enrich-
ment Analysis (GSEA) [12] and Polygenic risk score (PRS) [13]. The
PRS has been widely used to stratify individuals according to their
risk for complex diseases including breast cancer [14-16]. The PRS
relies on SNPs from genome-wide association studies (GWAS) but
does not include gene expressions or pathway activities. Thus, it does
not allude to the underlying pathogenic mechanism although
describes the risk in terms of the association between genomic muta-
tions and the disease. In predicting breast cancer risk, the perfor-
mance of PRS models demonstrated an area under receiver-operator
curve (AUC) of around 0.6 [14-17]. Due to the ancestry-dependence
of GWAS, PRS is only suitable for risk stratification of individuals
from the same cohort rather than across populations. Therefore, there
is an urgent need for a comprehensive, population-independent
method, which can integrate genome mutations, gene expressions,
and pathway activities to accurately assess the risk of breast cancer
and to gain insights into the pathogenesis.

2. Methods

2.1. Overview

To accurately assess the risk of breast cancer and to understand the
underlying mechanisms and pathogenesis, we developed the new
DAGM (Damage Assessment of Genomic Mutations) framework to
mine genomic information including rare coding mutations, gene
expression, and signalling pathway activities. Instead of looking for cer-
tain genes that possibly determine cell fate, we assume the unique fate
of a cell is determined by a set of genes through regulating the activities
of functional modules such as signalling pathways. Therefore, we first
constructed a framework based on public data from the COSMIC cell
line project. Then we validated its reliability and applied the framework
to whole-exome data from breast cancer patients and controls. Eventu-
ally, we validated our findings by applying experimental data from
RNA-Seq, phosphoproteome analysis, CyTOF analysis, and using breast
cancer data from TCGA.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Study population characteristics.

Characteristic Luminal A Luminal B HER2- Luminal B HER2+ ERBB2-positive TNBC

Age, Mean (range, years) 50(38-71) 47(22-80) 48(25-63) 51(22-72) 50(23-82)
Histological grade, n (%)
1 1/24 (4.2) 1/77(1.3) 0/43 (0) 0/77 (0) 5/213 (2.3)
2 14/24 (58.3) 36/77(46.8) 23/43(53.5) 28/77(36.4) 78/213(36.6)
3 7/24 (29.2) 31/77(40.3) 16/43(37.2) 40/77(51.9) 109/213(51.2)
Unknown 2/24 (8.3) 9/77 (11.7) 4/43(9.3) 9/77(11.7) 21/213(9.9)
Tumour size, n (%)
�2cm 6/24(25.0) 24/77(31.2) 10/43(23.3) 11/77(14.3) 51/213(23.9)
>2cm 15/24 (62.5) 50/77 (64.9) 31/43(72.1) 57/77(74.0) 157/213(73.7)
Unknown 3/24 (12.5) 3/77 (3.9) 2/43(4.7) 9/77(11.7) 5/213(2.3)
Nodal status, n (%)
LN- 13/24 (54.2) 37/77 (48.1) 24/43(55.8) 31/77(40.3) 126/213(59.2)
LN+ 8/24(33.3) 36/77(46.8) 17/43(39.5) 38/77(49.4) 82/213(38.5)
Unknown 3/24 (12.5) 4/77(5.2) 2/43(4.7) 8/77(10.4) 5/213(2.3)
Ki 67 status, n (%)
�10 2/24 (8.3) 11/77(14.3) 8/43(18.6) 5/77(6.5) 20/213(9.4)
10-30 7/24 (29.2) 23/77(29.9) 13/43(30.2) 23/77(29.9) 47/213(22.1)
>30 14/24 (58.3) 40/77(51.9) 21/43(48.8) 48/77(62.3) 136/213(63.8)
unknown 1/24 (4.2) 3/77(3.9) 1/43(2.3) 1/77(1.3) 10/213(4.7)
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2.2. Study participants

This study recruited 721 subjects including 434 breast cancer
patients and 287 controls. The average age of the controls was 81 years.
Patients with breast cancer were recruited from two independently
operated hospitals in Guangdong province in southern China (Table 1),
including 316 patients in the Guangdong Provincial People’s Hospital
(GZ cohort: 62 ERBB2-positive and 43 Luminal B (HER2-positive), 77
Luminal B (HER2-negative), 24 Luminal A, and 110 TNBC) and 118
patients from the Shantou Affiliated Hospital (ST cohort: 15 ERBB2-
positive and 103 TNBC). A total of 246 AD cases and 173 age- and eth-
nicity- matched cognitively normal individuals that do not carry APOE
e4 were sent for whole exome sequencing in a previous study [18]. A
total of 419 Chinese samples were from Hong Kong and no sample
was diagnosed with breast cancer. The 287 females among them were
used as controls in this study.

2.3. Ethics

The study protocol was approved by the Research Ethics Commit-
tee at Guangdong General Hospital, Guangdong Academy of Medicals
Sciences. Written informed consent was obtained from all partici-
pants for the use of banked tissue (including white blood cells and
buccal cells) and for the collection of pathological data and clinical
follow-up data.

2.4. Whole-exome sequencing and variant calling

Peripheral blood mononuclear cell (PBMC) samples were collected
from breast cancer patients. DNA was extracted using QIAamp DNA
mini kit (Qiagen) according to the blood and body fluid protocol in the
user manual. Paired-end multiplex sequencing of case samples was
performed on an Illumina HiSeq X Ten sequencing platform to a
median depth of 150-250X. The whole blood genomic DNA samples
from the control cohort were enriched using the TruSeq Kit (Illumina�,
California, USA) and were sequenced on an Illumina HiSeq 2000 sys-
tem to a median depth >60X. Paired-end raw sequence reads were
mapped to the human reference genome (UCSC hg19) using the Bur-
rows-Wheeler Aligner [19] with default settings. Variant calling was
carried out using the Genome Analysis Toolkit (GATK) with the Haplo-
typeCaller module [20] according to GATK Best Practices. Briefly, the
aligned BAM files were first marked for duplicate reads by Picard. Local
realignment around indels and base quality score recalibration were
performed using GATK. The processed BAM files were then used to call
SNPs and indels. Variant filtering of SNPs and indels were performed
separately by variant quality score recalibration using GATK. The fil-
tered variants were then annotated by ANNOVAR [21].

2.5. Transcriptomics

A total of 3 mg of RNA per sample was used as the input material
for RNA sample preparation. Sequencing libraries were generated
using NEBNext� UltraTM RNA Library Prep Kit for Illumina� (NEB,
USA) following the manufacturer’s instructions. Index codes were
added to attribute the sequences to each sample. Sequencing was
performed on an Illumina HiSeq platform. Raw data (raw reads) in
FASTQ format were processed through our in-house Perl scripts to
clean the data (clean reads), which removed reads containing adapt-
ers, reads containing poly-N, and low quality reads. All downstream
analyses were based on high-quality clean data. Paired-end clean
reads were aligned to the reference genome using Hisat2 v2.2.1 [22].
FeatureCounts v2.0.1 [23] was used to count the numbers of reads
mapped to each gene. Only genes with at least one count per million
in at least two samples were kept for the following analysis. Read
counts were normalized using the TMM normalization method per-
formed in the edgeR package v3.26.8 [24]. The RPKM values of the
genes were calculated based on the length of the gene and read
counts mapped to the gene.

2.6. Phosphoproteome analysis

Samples were minced individually in liquid nitrogen. The enrich-
ment was carried out using PHOS-Select iron affinity gel (Sigma,
P9740) following the manufacturer’s instructions. Shotgun proteomics
analyses were performed using an EASY-nLCTM 1200 UHPLC system
(Thermo Fisher) coupled with an Orbitrap Q Exactive HF-X mass spec-
trometer (Thermo Fisher) operating in a data-dependent acquisition
(DDA) mode. The resulting spectra from each fraction were searched
separately against the UniProt database [25]. For protein identification,
proteins with at least one unique peptide were identified at an FDR
less than 1.0% at the peptide and protein level, respectively.

2.7. CyTOF

Antibodies were either purchased pre-conjugated (Fluidigm, DVS
Sciences) or purchased and conjugated in-house using MaxPar X8
Polymer Kits (Fluidigm) according to the manufacturer’s instructions
(Suppl. Table 1). Scans were acquired on a Helios 2.0 (Fluidigm) at an
event rate of 300 events/s. After normalizing and randomizing values
to near zero using the Helios software, FCS files were then generated



Fig. 1. Workflow of the DAGM framework.
The DAGM framework mainly composed of three steps. In the first step (grey colour), driving force (DF) and global driving force (GDF) are established for future analysis based

on the rare coding mutations and gene expression from the COSMIC Cell Lines project. When obtaining the germline rare coding mutations of a subject, we calculated the combined
effect of all these mutations (Step 2). In the last step, the activity profile of signalling pathways (APSPs) is evaluated for this subject.
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for the analysis. Mass cytometry data was de-barcoded using a dou-
blet filtering scheme with mass-tagged barcodes, and then manually
gated to retain live, singlet, and valid immune cells. Data generated
from different batches were normalized through the bead normaliza-
tion method. All cell events in each individual sample were pooled
and included in the analysis.

2.8. The Damage Assessment of Genomic Mutations (DAGM) framework

We developed a novel framework called Damage Assessment of
Genomic Mutations (DAGM), which integrates genome-wide informa-
tion of rare coding mutations and gene expression from the COSMIC cell
line project to calculate the activity profile of signalling pathways
(APSPs). DAGM consists of three sequential steps (Fig. 1, see supplemen-
tarymethod for details). The first step takes themutated genes and gene
expressions as the inputs to determine the driving force of each
mutated gene on the expression of all genes as the output. The global
driving force (GDF) is then calculated and the global driving genes are
identified. The second step calculates the combined effects of all muta-
tions that one individual carries. The third step evaluates the activity
profiles of signalling pathways (APSPs). To identify the global driver
genes regardless of different extrinsic/intrinsic cellular conditions, we
assessed the driving force based on the genome-wide data of rare cod-
ing mutations and gene expression in 970 cancer cell lines (COSMIC Cell
Line project), considering cancer cell lines exhibit high tumour purity
and low expression heterogeneity. To validate this framework, we used
another dataset from Cancer Cell Line Encyclopaedia (CCLE) [26] to build
a ‘driving force’matrix.

Similar to the eQTL method that uses gene expression as an inde-
pendent trait to determine its linkage site in the genome, we can cor-
relate the gene expression in cell lines to ‘traits’ and associate them
with a variety of different genes with rare coding mutations (RCMs).
However, rather than examining how all genes with rare mutations
change the gene expression traits, DAGM screens out genes defined
as global driver genes, whose mutations deterministically cause
almost the same alterations in the global gene expression across dif-
ferent cellular or tissue contexts. For example, the well-known driver
gene TP53 drives similar altered gene expressions in tumour cells
from different origins. We are continuously collecting RCM data and
gene expression traits from cancer cell lines or primary cells to
improve the database and to provide more accurate global driver
genes. Based on a sample with only RCM data, DAGM was able to
determine candidate genes based on the RCM distribution, in which
the effects of driver genes were combined to give the altered gene
expression, representing the mutations as an overall impact on gene
expression. The DAGM can then determine the activity profiles of sig-
nalling pathways (APSP) in three sequential steps (see supplemen-
tary method for full details). The first step takes the mutated genes
and gene expressions as the input and calculates the effect of the rare
mutations on gene expression changes within the cell lines, which
will generate a n x n matrix. In this matrix each row represents a
mutated gene, and each column denotes the expression of a gene,
and the value in the cell was defined a driving force and the global
driving force (GDF) is calculated to select global driving genes. The
second step is to calculate the combined effect of all the mutations
one individual carries. If one individual carries m mutated genes, this
step converts the m x n matrices of different dimensions into 1 x n
matrices in the same dimension, which can be compared between
different samples. The third step is to evaluate the activity profiles of
signalling pathways (APSPs). In this study, we included 60 pathways
(Table 2), so DAGMwill output a 1 £ 60 matrix for each sample.
2.9. Classification

Binary classifiers were built using the support vector machine
(SVM) and logistic regression implemented in the caret R package
[27]. Support vector machine (SVM), aims to create a decision bound-
ary (known as the hyperplane) between two classes that enables the
prediction of labels from one or more feature vectors, is a powerful
supervised learning method for building a classifier. The radial basis
function (RBF) kernel that is commonly used in SVM classification was
used in this study [28]. Logistic regression is an extremely robust and
flexible method for dichotomous classification prediction. It is simple
and efficient for binary and linear classification problems and is widely
used in biological studies [29]. All data were randomly split into the
training dataset (60% or 75%) and the testing dataset (40% or 25%),
while preserving the overall class distribution of the data. The five-fold
cross-validation procedure was used to optimize the hyperparameters
of a classifier on the training dataset. The criteria of the area under the
receiver operating characteristics curve (AUC) were used to measure
the performance of the classifiers on the testing dataset.
2.10. Activity profiles of signalling pathway (APSP) risk score

Three pathway panels including growth factor, pro-tumour, and
immune function pathways were significantly downregulated in
HER2-negative breast cancers and were selected to calculate the APSP
risk score. The APSP risk score was calculated as the weighted mean of
the APSPs of the three selected pathway panels in each person. The



Table 2
Signalling pathways for DAGM framework.

Index Pathway Pathway Panel
1 CDK5 Development
2 Hedgehog Development
3 NOTCH Development
4 Hypoxia Response to stress
5 ROS Response to stress
6 Unfolded protein response Response to stress
7 UVB induced MAPK Response to stress
8 UV response Response to stress
9 Adipogenesis Energy & metabolism
10 AMPK Energy & metabolism
11 mTORC1 Energy & metabolism
12 mTOR Energy & metabolism
13 Beta Cells Energy & metabolism
14 PI3K-AKT-mTOR Energy & metabolism
15 PI3K-AKT Energy & metabolism
16 PPARA-RXRA Energy & metabolism
17 PKA Energy & metabolism
18 VDR-RXR Energy & metabolism
19 4-1BB Immune system
20 BCR Immune system
21 CD40 Immune system
22 IL2-Stat5 Immune system
23 INF alpha Immune system
24 INF gamma Immune system
25 Jak-Stat Immune system
26 LBC Immune system
27 Nf-kappaB Immune system
28 Toll like receptor Immune system
29 AML Pro-tumour
30 Angiogenesis Pro-tumour
31 Angiopoietin Pro-tumour
32 Colorectal cancer Metastasis Pro-tumour
33 Estrogen-dependent BRCA Pro-tumour
34 Glioblastoma Pro-tumour
35 Glioma invasiveness Pro-tumour
36 Glioma Pro-tumour
37 NSCLC Pro-tumour
38 Pancreatic adenocarcinoma Pro-tumour
39 Renal cell carcinoma Pro-tumour
40 Renin angiotensin Pro-tumour
41 Apoptosis Anti-tumuor
42 Ceramide Anti-tumour
43 TP53 Anti-tumour
44 PTEN Anti-tumour
45 DNA synthetic checkpoint Cell cycle & proliferation
46 DNA damage checkpoint Cell cycle & proliferation
47 Erk/Mapk Cell cycle & proliferation
48 KRAS Cell cycle & proliferation
49 Telomerase Cell cycle & proliferation
50 EGF Growth factors
51 Her2 Growth factors
52 Erbb4 Growth factors
53 FGF Growth factors
54 HGF Growth factors
55 IGF-1 Growth factors
56 PDGF Growth factors
57 TGF-beta Growth factors
58 VEGF Growth factors
59 Wnt beta-catenin Growth factors
60 Wnt calcium Growth factors
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weights were -1/n and 1/n for the HER2 signalling pathway and for
other pathways, respectively.

2.11. Statistical analysis

The pheatmap R package was used to plot the clustered heatmaps
using Ward’s criteria [30]. The ggpubr R package was used to draw
the scatter plots, boxplots, bar plots, histograms, and linear regres-
sion lines with 95% confidence interval. The plotROC R package was
used to draw ROC. Pearson correlation coefficients (PCC) and P-values
were also labelled on the plots. The difference between two groups
was analysed by Student’s t test. A P-value < 0.05 was considered
statistically significant. To test the significance of the differences of
APSP between different groups of individuals, P-values were calcu-
lated by permutation (1,000,000 times). P-values were adjusted for
multiple testing since multiple hypotheses were tested simulta-
neously. The false discovery rate (FDR) was computed using Benja-
mini and Hochberg procedure [31] to correct for multiple hypothesis
testing since FDR is often more appropriate and useful in high-
throughput biological experiments [32]. FDRs passing cut-off of 5%
were accepted as significant. All statistical analyses and plots were
conducted using in-house scripts developed in Python, Perl, and R.

2.12. Data sharing statement

The raw exome sequencing data reported in this paper have been
deposited in the Genome Sequence Archive (GSA) in National Geno-
mics Data Centre, Beijing Institute of Genomics, Chinese Academy of
Sciences, under accession number HRA000285, which is publicly
accessible at https://bigd.big.ac.cn/gsa. All other data and materials
are available upon request.

3. Results

3.1. Characterization and validation of the DAGM framework

We developed a novel framework called Damage Assessment of
Genomic Mutations (DAGM), which consists of three sequential steps.
To validate this framework, we used another dataset from Cancer Cell
Line Encyclopaedia (CCLE) [26] to build a ‘driving force’ matrix. The
GDFs calculated from the two different datasets were significantly
correlated (coefficient of determination: R2 = 0.99, P-value <

1.0 £ 10-16, Suppl. Fig. 1a), suggesting the first step of DAGM is
robust across different datasets. Next, we selected the top 10 genes
with highest GDF in the DAGM and searched public databases of can-
cer driver genes. We found six of these genes, KRAS, TP53, MYC,
BCL2, BRAF, and RPL22, were listed in COSMIC Cancer Gene Census
[33], whereas all 10 were listed in DriverDBv3 [34], which confirmed
the potential ability of using GDF to identify essential genes for
tumourigenesis, including cancer driver genes.

To test whether the APSP calculated from DAGM reflects signal-
ling pathway activities, we applied DAGM to somatic mutations from
tumour samples from 16 ERBB2-positive patients and 42 TNBC
patients (Suppl. Fig. 1b). Interestingly, although HER2 amplification
was not included in the input mutation information, the resultant
APSP showed significantly higher HER2 signalling pathway activity
(T-test, P-value = 0.00095) in ERBB2-positive breast tumours com-
pared to TNBC (Suppl. Fig. 1c). This result was consistent with the
upregulation of the HER2 signalling pathway in HER2-positive breast
cancer samples, which was also demonstrated by fluorescence in situ
hybridization (FISH) [3].

3.2. APSP spectrum based on germline mutations distinguishes between
HER2-negative and HER2-positive breast cancers

As is well known, it is of great importance to distinguish HER2-
negative from HER2-positive breast cancer, but this currently relies
on HER2 FISH of tumour tissues. To test whether the APSP from
DAGM can be used to identify breast cancer subtypes, we collected
germline rare coding variants from 721 subjects, which included 434
breast cancer patients of different subtypes and 287 cancer-free
female subjects in the control group. The DAGM analysis using these
input germline mutations (Suppl. Fig. 2) revealed the APSP spectrums
for HER2-negative patients were remarkably lower than that for
HER2-positive patients or controls (Fig. 2a). Further hierarchical clus-
tering using Euclidean distance showed that Luminal A, Luminal B
(HER2-nagetive), and TNBC were grouped together, whereas ERBB2-
positive and Luminal B (HER2-positive) were clustered into another

https://bigd.big.ac.cn/gsa


Fig. 2. Germline APSP spectrum distinguishes HER2-negative breast cancer patients from HER2-positive patients.
(a) Heatmap of the germline APSPs of 60 pathways for 721 subjects. Each row represents one pathway and each column represents one subject. (b) Hierarchical clustering den-

drogram. HER2-negative subtype (Luminal B (HER2-negative), Luminal A, and TNBC) and HER2-positive subtype (ERBB2-positive and Luminal B (HER2-positive)) were well sepa-
rated by hierarchical clustering with Euclidean distance as the distance measure. (c) Receiver operating characteristic (ROC) curve for distinguishing HER2-negative breast cancer
patients from HER2-positive patients by APSPs. Area under the curve (AUC) was 0.77. (d) Receiver operating characteristic (ROC) curve for distinguishing HER2-negative breast can-
cer patients from controls by APSPs. Area under the curve (AUC) was 0.76.
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group (Fig. 2b), suggesting the germline APSP spectrum can distin-
guish HER2-negative breast cancer from HER2-positive breast cancer
subtypes. To quantitatively evaluate the performance of APSP in iden-
tifying breast cancer subtypes, we built a binary classifier based on
the APSP of all 60 pathways using the support vector machine (SVM)
with a radial basis function kernel with five-fold cross validation. The
results showed an average value of the area under the receiver oper-
ating characteristic curve (AUC) of 0.77 for the classifiers between
Her2-negative and Her2-positive patients (Fig. 2c), and 0.76 between
Her2-negative and controls (Fig. 2d). Similar AUCs were obtained
from different classifiers that were built using logistic regression
with five-fold cross validation (Suppl. Table 2). Therefore, the APSP
spectrum based on germline mutations can distinguish HER2-nega-
tive from HER2-positive breast cancer subtypes.

3.3. APSP reveals up-regulation of the HER2 signalling pathway in the
germlines of HER2-negative breast cancer

Although BRCA1/2 mutations are currently used in breast cancer
screening [35-37], carriers of these mutations represent only a small
number of HER2-negative breast cancer patients. To find potential
signalling features that are characteristic of HER2-negative breast
cancer, we further examined the APSPs in more depth. Interestingly,
most cellular signalling pathways were drastically down-regulated in
HER2-negative patients compared to control subjects, whereas
almost no significant changes in HER2-positive patients were
observed (Fig. 3a). Next, we used TCGA data to crosscheck the activity
differences in the 60 pathways between HER2-positive and HER2-
negative patients, which showed significant correlations with our
results (Pearson's correlation coefficient = 0.93, P-value = 3.8e-27,
Suppl. Fig. 3a). Furthermore, the Z-scores of the APSPs of 60 signalling
pathways were strongly correlated between HER2-negative subtypes
(Luminal B (HER2-negative) and TNBC) (Pearson's correlation coeffi-
cient = 0.86, P-value = 1.14e-18, Fig. 3b) but not for HER2-positive
subtypes (Luminal B (HER2-positive) vs. ERBB2-positive) (Pearson's
correlation coefficient = 0.56, P-value = 3.92e-6, Fig. 3c). These
findings suggest that HER2-negative breast cancer can be character-
ized by germline APSP features.

Among the significantly altered pathways according to APSP, we
found significant up-regulation of the HER2 signalling pathway in
germlines of HER2-negative breast cancer patients, even though
HER2 gene was not amplified in the tumour tissues. To validate this
finding, we performed RNA-Seq and phosphoproteome analysis
using breast cancer and paracancerous (normal breast) tissues from
both ERBB2-positive and TNBC patients. The expression of signature
genes of the HER2 signalling pathway in paracancerous tissues were
systematically lower in TNBC patients than in ERBB2-positive
patients (Fig. 3d, left panel), despite high expression of these genes in
TNBC tumour tissues (Fig. 3d, right panel). These observations indi-
cated upregulation of the HER2 signalling pathway in TNBC paracan-
cerous tissues and supported the conclusion inferred from APSP.
Furthermore, the results from phosphoproteome analysis confirmed
activation of the HER2 signalling pathway in paracancerous tissues of
TNBC compared to ERBB2-positive patients (Fig. 3e). Therefore, the
upregulation of HER2 signalling pathway in germlines revealed by
APSP are a specific feature of HER2-negative patients, as validated by
RNA-Seq and phosphoproteome data.

3.4. APSP risk score based on germline mutations is able to identify
HER2-negative breast cancer

We demonstrated APSP spectrum could distinguish HER2-nega-
tive breast cancer from controls and HER2-positive breast cancer.
Next, we classified the APSPs of the 60 signalling pathways into eight
panels according to their functions. The pathways associated with
the immune system, growth factor and pro-tumour pathways were
significantly down-regulated in HER2-negative breast cancers
(Fig. 4a), indicating these three panels are characteristic of HER2-neg-
ative breast cancer. Based on these three panels, we calculated the
APSP risk score for each individual and found the risk scores were sig-
nificantly higher in HER2-negative breast cancer patients than in con-
trols (T-test, P-value = 3.96e-27) or in HER2-positive breast cancer



Fig. 3. Upregulated HER2 signalling pathway in germlines of Her2-negative breast cancer patients.
(a) Difference of activity profiles of signalling pathways (APSPs) between breast cancer patients and controls. To test the significance of the difference, P-values were calculated

by permutation (1,000,000 times). The FDR corrected P-values were also calculated to correct the multiple comparisons. The asterisk denotes FDR corrected P-value<0.05. Most
pathways activities were significantly down-regulated in HER2-negative breast cancer germlines (upper panel), whereas the HER2 signalling pathway activity was significantly up-
regulated (rectangle, upper panel). However, only a few pathway activities were significantly altered in HER2-positive breast cancer patients (lower panel). (b) Correlation of APSPs
between TNBC and Luminal B (HER2-negative). For HER2-negative breast cancer, germline pathway APSPs between TNBC and Luminal B (HER2-negative) subtype were strongly
positively correlated. The black triangle represents the HER2 signalling pathway. (c) Correlation of APSP between ERBB2-positive and Luminal B (HER2-positive). For HER2-positive
breast cancer, germline pathway APSPs between ERBB2-positive and Luminal B (HER2-positive) subtype were weakly positively correlated. (d) RNA-Seq validation of the upregu-
lated HER2 signalling pathway. We performed RNA-Seq on both cancerous and paracancerous tissues from TNBC and ERBB2-positive breast cancer patients, the expression level of
HER2 pathway signature genes in paracancerous tissue were significantly lower in the TNBC compared to ERBB2-positive patients, which validated the upregulated HER2 signalling
pathway in HER2-negative breast cancer germlines. (e) The phosphoproteome validation the upregulated of the HER2 signalling pathway. Phosphoproteome analysis of both
cancerous and paracancerous tissues from TNBC and ERBB2-positive breast cancer patients validated the upregulated HER2 signalling pathway in HER2-negative breast cancer
germlines.
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Fig. 4. Identification of HER2-negative breast cancer using germline APSP risk score.
(a) The boxplot of APSPs for eight pathway panels. The panel of immune system is at the top of three significantly down-regulated panels (labelled by a star) that were then used

to calculate APSP risk scores. (b) The distribution of APSP risk scores of HER2-negative breast cancer patients (upper panel), controls (middle panel) and HER2-positive breast cancer
patients (bottom panel). The APSP risk scores in HER2-negative breast cancer patients were significantly higher than those in the controls (T-test, P-value = 3.96e-27) and HER2-pos-
itive breast cancer patients (T-test, P-value = 4.88e-22). (c) The APSP risk scores were significantly higher in HER2-negative breast cancer patients with or without BRCA1/2 muta-
tions than the control subjects. (d) Receiver operating characteristic (ROC) curve for APSP risk score in distinguishing HER2-negative breast cancer patients from HER2-positive
patients. Area under the curve (AUC) was 0.79. (e) Receiver operating characteristic (ROC) curve for APSP risk score in distinguishing HER2-negative breast cancer patients from con-
trols. Area under the curve (AUC) was 0.74.
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patients (T-test, P-value = 4.88e-22) (Fig. 4b). A similar difference
in the APSP risk scores was observed using the TCGA data (P-
value = 5.4e-11, Suppl. Fig. 3b), suggesting the APSP risk score
can be used to identify HER2-negative breast cancer. Given that
women carrying BRCA1/2 mutations have significantly increased
risk for breast cancer [35-37], we compared the APSP risk scores
for HER2-negative patients with or without BRCA1/2 mutations.
We found all HER2-negative patients had higher APSP risk scores,
than control subjects regardless of BRCA1/2 mutations (Fig. 4c
T-test, P-value=9.5e-8 and P-value=3.1e-24 for BRCA1/2 carriers
and non-carriers, respectively). These findings imply that APSP
risk score can be used to recognize not only HER2-negative
patients with BRCA1/2 mutations, but also those without any
known biomarkers.

To quantitatively evaluate the use of APSP risk score in identifying
HER2-negative breast cancer, we built a binary classifier based on the
APSP risk score using the logistic regression with five-fold cross vali-
dation. The results showed an AUC of 0.79 for the classifiers between
HER2-negative and HER2-positive cases (Fig. 4d), and 0.74 for the
classifier between HER2-negative and controls (Fig. 4e). Similar AUCs
were obtained from different classifiers that were built using support
vector machine (SVM) with a radial basis function kernel with five-
fold cross validation (Suppl. Table 2). Using data from TCGA, the logis-
tic regression binary classifier could distinguish between HER2-



Fig. 5. Enhanced immune suppression and risk stratification of HER2-negative breast cancer.
Mass cytometry analysis revealed percentage of exhausted CD8+ T cells in female subjects of low and high APSP risk scores. (b) Mass cytometry analysis revealed percentage of

exhausted CD8+ T cells in TNBC patients and control subjects. (c) Stratification of HER2-negative patients (red dots) as well as control subjects (green dots) into six groups, G1 to G6,
according to the different standard deviations of APSP risk scores from their mean value. G1 and G6 included subject with APSP risk score two standard deviations lower and higher
than the mean value, respectively. G2 and G5 included subject with APSP risk score between one and two standard deviations lower and higher than the mean value, respectively.
G3 and G4 included subject with APSP risk score within one standard deviation lower and higher than the mean value, respectively. (d) Odds ratios for HER2 negative breast cancer
display exponential distribution when the subjects were stratified into six groups (G1 to G6) as in (c). The grey circles represent the sample sizes of each group.
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negative and HER2-positive breast cancer patients with an average
AUC value of 0.70 (Suppl. Fig. 3c). Taken together, germline APSP risk
score can be used to identify HER2-negative breast cancer patients.

3.5. Enhanced immune suppression in subjects with high APSP risk
scores

The APSP risk score was determined using three significantly
downregulated pathway panels, including the immune system
panel. Therefore, we reasoned that subjects with higher APSP risk
scores would exhibit different altered immune states. To this end,
we performed single-cell mass cytometry to count the number of
different types of T cell types. Strikingly, we observed significantly
increased exhausted CD8+ T lymphocytes in those with a high
APSP risk score compared to those with a low risk score group
(Fig. 5a, T-test, P-value = 0.0028), indicating an association
between APSP risk score and immune suppression. Consistently,
we also found significantly increased levels of exhausted CD8+ T
lymphocytes in TNBC patients compared to controls (Fig. 5b, T-
test, P-value = 0.00038), indicating enhanced immune suppression
in TNBC patients with high APSP risk scores. These results revealed
that subjects with higher APSP risk score also have suppressed
immunity, which possibly contributes to an increased risk of
HER2-negative breast cancer.
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3.6. APSP risk score based on germline mutations stratifies risk of HER2-
negative breast cancer

As the APSP risk score could identify HER2-negative breast cancer
subtype, we wondered if it could be used to quantitatively used to
evaluate the risk of HER2-negative breast cancer. We divided the sub-
jects into six groups (G1 to G6) and calculated their corresponding
odds ratio for HER2-negative breast cancer. The odds ratio increased
with increasing APSP risk score from G1 to G6 (Fig. 5c) and followed
exponential distributions (Fig. 5d). There was only one patient in the
highest risk group G6 and no controls. The odds ratio in group G5
reached 7.7, indicating these individuals have a high risk for HER2-
negative breast cancer, whereas the odds ratio in G1 was 0.08, indi-
cating these individuals have a much lower risk for HER2-negative
breast cancer. In summary, DAGM can identify HER2-negative breast
cancer based on germline mutations and the calculated APSP risk
score can be used to stratify the risk.

4. Discussion

HER2-negative breast cancer is the main category of breast cancer,
the most common malignancy worldwide and the second leading
cause of cancer death in women. It remains challenging to evaluate
the risk for HER2-negative breast cancer in healthy female, despite
extensive studies [14-17,38]. Here, we developed a new framework,
DAGM (Damage Assessment of Genomic Mutations). Different to
other approaches [12,14-17,38,39], DAGM integrates gene mutations
and gene expressions data to assess the risk and potential pathogene-
sis of a disease. DAGM can use this information to calculate the activ-
ity profiles of signalling pathways (APSPs) and then derive the APSP
risk score to assess the disease risk in an individual subject. Using
germline mutations, DAGM was able to distinguish HER2-negative
breast cancer patients from HER2-positive patients. The derived
germline APSP risk score was able to predict the risk of developing
HER2-negative breast cancer, not only in those with BRCA1/2 muta-
tions, but also in those without any known disease-associated muta-
tions. Furthermore, DAGM revealed that the HER2 signalling
pathway was upregulated in the germline of HER2-negative patients,
and those with high APSP risk scores also had enhanced immune sup-
pression. The findings were validated by RNA-Seq, phosphoproteome
analysis, and single-cell mass cytometry.

To test whether the APSP can distinguish different breast cancer
subtypes or recognize HER2-negative breast cancer patients from
healthy subjects, we collected germline rare coding variants from
breast cancer patients and cancer-free control subjects. When plan-
ning the research design, two candidate cohorts of healthy female
subjects without breast cancer could be used as controls: the 81-year
old group that we chose and the alternative group of around 50-
year-old. As this study aims to determine the potential contribution
of germline rare coding mutations on the risk of HER2-negative
breast cancer, we need gender-matched healthy subjects whose
germline genome does not include breast cancer-associated informa-
tion. As is already known, around one eighth of the general female
population is diagnosed with breast cancer in their lifetime. Likewise,
more than 10% of ~50-year-old “healthy” females in the alternative
cohort will be diagnosed with breast cancer in their future lifetime,
which makes them unsuitable for a best choice as healthy controls
containing no disease-associated germline mutations. Meanwhile,
the female cohort with an average age of 81 could be regarded as
“winners” free from HER2-negative breast cancer and will likely
“never” be diagnosed with breast cancer. This cohort will be more
qualified as healthy control subjects, given that the current study is
focused on the contribution of germline rare coding mutations rather
than somatic mutations on the risk of HER2-negative breast cancer.
Furthermore, germline mutations are inherited from parents, present
in virtually every cell in the body throughout a person’s whole life,
and are not expected to change with increasing age. To validate this
point, we counted the number of germline rare coding mutations car-
ried by the subjects. The mean number of germline rare coding muta-
tions were 310.96 (95% CI: 309.15, 312.77) in the around 50-year-old
cases and 317.58 (95% CI: 302.76, 332.41) in the around 81-year-old
controls. The difference between the two means was not statistically
significant (Student’s T-Test, P-value=0.08), confirming that age dif-
ference between disease cases and controls should not affect the risk
assessment results.

Notably, we observed an upregulation of the HER2 signalling
pathway in the germlines of HER2-negative breast cancer patients,
suggesting that HER2 signalling pathway activity is an important
characteristic of HER2-negative breast cancer that can distinguish it
from HER2-positive breast cancer. As the germline HER2 signalling
pathway was activated in a receptor-independent manner, we pre-
sented different models for the activation of the HER2 signalling
pathway and its contribution to the pathogenesis of the two breast
cancer subtypes (Suppl. Fig. 4). In HER2-positive breast cancer
patients, the HER2 signalling pathway is activated in tumour tissue
due to the amplification of the HER2 genes [40-42], but remains
unchanged in the germlines. Meanwhile, in HER2-negative breast
cancer patients, the HER2 signalling pathway is upregulated by the
germline mutations, but there is no amplification of HER2 genes in
the tumour tissue. According to a previous study, the upregulation of
HER2 signalling pathway may lead to immune suppression via AKT1-
mediated disruption of STING signalling [9], which supports our
DAGM findings.

Although the APSP risk score from DAGM and PRS both provide
disease risk assessment based on the DNA mutations in the germline
genome, they are different in the following respects (Suppl. Table 3).
First, DAGM uses rare coding variants (minor allele frequency,
MAF<1%) from whole-exome sequencing to derive the APSP risk
score, whereas PRS generally uses common variants (MAF>5%) from
large genome-wide association studies (GWAS), of which nearly 90%
lie within non-coding regions of the genome [43]. As GWAS results
are ancestry-dependent, it is difficult for PRS to be applied across
populations, whereas DAGM was validated using data from a differ-
ent population (Suppl. Fig. 3). Second, DAGM projects DNA mutations
and gene expression onto signalling pathway activities, whereas PRS
assesses only SNPs. As a result, DAGM could reveal not only genetic
mutations, but also functional signalling pathways, which are biologi-
cally relevant to disease. In the future, DAGM could be improved by
adding more cell lines and signalling pathways data. Third, PRS is
suitable for the risk assessment of complex diseases such as breast
cancer with an AUC ranging from 0.63 to 0.69 [14,17], whereas
DAGM was used to assess breast cancer risk with an AUC ranging
from 0.74 to 0.79. A broader investigation of the application of DAGM
in different cancers besides breast cancer is currently underway.

Overall, the DAGM framework provides an effective risk assess-
ment for HER2-negative breast cancer using information encoded in
the germline genome, which can facilitate screening of those at high
risk of HER2-negative breast cancer for primary prevention. The
results from DAGM also provide new insight into the pathogenesis
mechanism of breast cancer.
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