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Abstract
Background: The aim of the current study was to investigate the distribution and extent of lung
involvement in patients with COVID-19 with AI-supported, automated computer analysis and to assess
the relationship between lung involvement and the need for intensive care unit (ICU) admission. A
secondary aim was to compare the performance of computer analysis with the judgment of radiological
experts.

Methods: A total of 81 patients from an open-source COVID database with con�rmed COVID-19 infection
were included in the study. Three patients were excluded. Lung involvement was assessed in 78 patients
using computed tomography (CT) scans, and the extent of in�ltration and collapse was quanti�ed across
various lung lobes and regions. The associations between lung involvement and ICU admission were
analyzed. Additionally, the computer analysis of COVID-19 involvement was compared against a human
rating provided by radiological experts.

Results: The results showed a higher degree of in�ltration and collapse in the lower lobes compared to
the upper lobes (p < 0.05) No signi�cant difference was detected in the COVID-19-related involvement of
the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the
right lower lobes (p < 0.05). When examining the regions, signi�cantly more COVID-19 involvement was
found when comparing the posterior vs. the anterior halves of the lungs and the lower vs. the upper half
of the lungs. Patients, who required ICU admission during their treatment exhibited signi�cantly higher
COVID-19 involvement in their lung parenchyma according to computer analysis, compared to patients
who remained in general wards. Patients with more than 40% COVID-19 involvement were almost
exclusively treated in intensive care. A high correlation was observed between computer detection of
COVID-19 affections and expert rating by radiological experts.

Conclusion: The �ndings suggest that the extent of lung involvement, particularly in the lower lobes,
dorsal lungs, and lower half of the lungs, may be associated with the need for ICU admission in patients
with COVID-19. Computer analysis showed a high correlation with expert rating, highlighting its potential
utility in clinical settings for assessing lung involvement. This information may help guide clinical
decision-making and resource allocation during ongoing or future pandemics. Further studies with larger
sample sizes are warranted to validate these �ndings.

Introduction
The COVID-19 pandemic is caused by the novel coronavirus 2 (SARS-CoV-2), which was �rst identi�ed in
December 2019 in Wuhan, China (1). The virus quickly became a global pandemic, with hundreds of
millions of cases and almost seven million deaths worldwide (2), (3).

Chest CT imaging plays an important role in the diagnosis and management of COVID-19, particularly in
cases where RT-PCR testing is not available or inconclusive (4), (5).  CT imaging reveals characteristic
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features of the disease, provides information for diagnosis and staging, and can also help to monitor
disease progression and assess the response to treatment (6).

Automated analysis of COVID-19-related chest CT scans would be very desirable for a number of
reasons. Most importantly, the in�ltrations and consolidations could be expressed as affected volume
and directly quanti�ed. The distribution of affected tissue in the sides of the lungs, lobes, and lung
regions could be analyzed.  Automatic processing could help to reduce the workload of radiologists and
other healthcare professionals, enabling them to focus on patient care and other important tasks.
Automation also has the potential to be more consistent than manual review, if it can be shown to be
robust to differences across multiple clinical sites. Open-source availability of all software components
would enable identical computations on computer hardware around the world which would support
future pandemic preparedness.    

 

We recently developed a free and open-source software  - LungCTAnalyzer (7)  - for the medical imaging
software 3D Slicer (8), (9). The software is using AI-tools for lung and lobe segmentation. It is designed
speci�cally for the analysis of lung CT scans, offering a comprehensive set of tools for the segmentation,
quanti�cation, and visualization of lung structures. By leveraging the power of 3D Slicer and building
upon its functionalities, LungCTAnalyzer provides a user-friendly interface and a robust set of features
that streamline the process of lung image analysis for the detection of emphysema, normal lung tissue,
in�ltrated and collapsed parenchyma.

 

As an open-source COVID dataset with radiologist scores has been published (10), the present study aims
to quantitatively analyze the data to determine the accordance of computer vs. human analysis in order
to demonstrate the feasibility of computer analysis with LungCTAnalyzer and to elaborate on the existing
differences in lung involvement between the severity-scored groups, to evaluate whether tissue affection
in severe cases could be attributed to the side of lungs, lung regions or lung lobes and to predict patients
requiring ICU-treatment.

Methods
Ethical statement 

 

All ethical statements have been included in the dataset paper (10).

 

Patient Population and Open Source Dataset  

https://www.zotero.org/google-docs/?artJZY
https://www.zotero.org/google-docs/?N4CiM7
https://www.zotero.org/google-docs/?1sCLd6
https://www.zotero.org/google-docs/?1eSaVF
https://www.zotero.org/google-docs/?3sz9HX
https://www.zotero.org/google-docs/?gj3xIA
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The dataset used in this study has been recently published and expanded (10). In short, it includes data
from 81 COVID-19 patients (diagnoses con�rmed by positive RT-PCR tests), 50 during the �rst phase of
COVID-pandemic between April 2020 and May 2021 and 31 during the second between December 2020
and May 2021. They underwent non-contrast chest CT scans at Azienda Ospedaliera Pugliese-Ciaccio
(Catanzaro, Italy). These scans feature volume reconstructions with 0.3 to 1 mm slice thickness. The
average age of the patients was 56 years, ranging from 20 to 83, and the male-to-female ratio was 42:39.
Two distinct scanners were utilized at the clinical facility:  Siemens Somatom Go. now (Siemens
Healthineers GmbH, Erlangen, Germany) and  Toshiba Aquilion ONE (Canon Medical System Europe B.V.,
Zoetermeer, The Netherlands). Among the patients, 81 underwent a single CT scan for diagnostic
purposes, while 12 received additional scans for follow-up, resulting in a total of 93 CT volumes in the
database. To facilitate data sharing and processing, the DICOM �les were anonymized and converted into
NRRD format (http://teem.sourceforge.net/nrrd/ (accessed on 15 February 2021)) using 3D Slicer (8).
The image collection was conducted with approval from the Hospital Ethics Committee, "Prot. 308."

 

Visual Assessment

 

Primary �ndings regarding COVID-19 in CT images involve atypical pneumonia and encompass two
macroscopic lung tissue abnormalities: ground-glass opacity (GGO), which is an area of increased X-ray
attenuation in the lung with preserved bronchial and vascular markings, and consolidation, referring to
the �lling of the pulmonary tree with material that attenuates X-rays more than the surrounding lung
parenchyma.
An expert radiologist, (A.M, one of the authors of the dataset paper (10)), (with over 20 years of
experience) was tasked with visually evaluating the CT images and assigning a clinical score, based on
the extent of lung involvement with the aforementioned manifestations. The radiologist navigated
through the volume on his radiological workstation in axial, sagittal, and coronal planes, assigning a lung
involvement classi�cation scale ranging from 0, indicating no lung involvement (0%), to 5, representing
severe lung involvement (greater than 75%), with intermediate levels covering minimal (less than 5%),
mild (5% to 25%), moderate (26% to 50%), and signi�cant (51% to 75%) involvement. This took about two
to three minutes per case.  These scores are included in the open dataset alongside each image volume.

 

In an effort to appraise the potential for interobserver bias through a comparison between human
evaluators, a second radiological specialist (N.K.B, a co-author of this study) undertook an independent
visual assessment using an identical scoring system. Intriguingly, out of the 81 patients evaluated, she

https://www.zotero.org/google-docs/?E0hTys
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deemed three as "not classi�able" (one patient with incomplete CT and two patients with pneumothorax).
In addition, she noted three patients with possible preexisting lung disease.

 

We made a deliberate decision to exclude the three unclassi�ably patients from the study and to retain
the other three patients with possible lung disease in the dataset for the sake of providing a
comprehensive reference.

 

Automated Segmentation of the Lungs and Lung Pathologies 

 

This study employed an automated approach for the segmentation of the lungs and lung pathologies
using the free and open-source medical imaging software 3D Slicer (8), for which we wrote a special
extension in the programming language Python: LungCTAnalyzer (7) using the same software license.
The program can be run in batch processing mode, without manual interaction. CT data were imported
into 3D Slicer as NRRD �les.

 

Data calibration

 

During a preliminary scan of all datasets, it became evident that the CT scans exhibited some
heterogeneity in HU range, quality, windowing, and the presence of artifacts. Utilizing the
TotalSegmentator (nnU-Net) (11) for segmentation, we were able to automatically generate segments
corresponding to the trachea and the left erector spinae muscle in the CT datasets. We then evaluated the
median Houns�eld units (HU) of both segmented structures in both scanners (Toshiba: Trachea: -931.6
 Muscle: 22.68 [mean HU], Siemens: Trachea: -958.2   Muscle: 24.25 [mean HU] ). A Python function then
standardized CT scans by calibrating Houns�eld unit (HU) values for air and muscle. It takes a 3D numpy
array (12), mean HU values for air and muscle, and returns a standardized CT scan. The function
calculates a linear transformation to map input HU values to desired output values (-1000 HU for air, 30
HU for muscle, Figure 6). For the Toshiba scanner, we found a mean slope of 1.08 (Std Dev 0.06) and a
mean intercept of 5.72 (Std Dev 16.46). For the Siemens scanner, we found a mean slope of 1.06 (Std
Dev 0.06) and a mean intercept of 5.12 (Std Dev 16.98). The transformation is applied, and the adjusted
CT scan is returned for further analysis. This calibration is intended to ensure consistency across
datasets and facilitate further analysis.

 

https://www.zotero.org/google-docs/?cdqhEZ
https://www.zotero.org/google-docs/?C7oNSm
https://www.zotero.org/google-docs/?Q5uWJ1
https://www.zotero.org/google-docs/?MqKRxb
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Lung and lobe segmentation

 

Next, the segmentation process began using the Lung CT Segmenter (LCTS) module. Trachea, left
iliopsoas muscle, lungs, and lobes were segmented involving the 3D Slicer TotalSegmentator (11) 
extension (13), which involves a tool for robust segmentation of 104 important anatomical structures in
CT images with a well-trained neural network: nnU-Net (14). Mean radiodensity in Houns�eld Units (HU)
of the trachea and iliopsoas muscle was automatically calculated (see above) for radiodensity
evaluation. Each lung and lobe segmentation took about 114 s on the computer system described below.

 

Lung analysis segmentation

 

The calibrated scalar volume was then loaded into LungCTAnalyzer and lung analysis segments were
generated for emphysema (-2000 to -950 HU), normal lung (-950 to -750 HU), in�ltrated lung/GGO (-750 to
-400 HU), collapsed lung (-400 to 0 HU), and vessels (> 0 HU). The volume of each of these segments was
expressed in mm3.  These segments were created for each lung, lobe, and the upper and lower half of
each lung, as well as the anterior and posterior halves of each lung. To accomplish that, we calculated
the centroid for each segmented lung and constructed a matching quadrant of markups which was then
used to crop away the posterior half of the lung if the anterior half was to be preserved (and vice versa).
The same technique was used for isolating the upper and lower half of each lung.

 

 Thresholds were not changed throughout the complete study. Each lung analysis segmentation took 187
s.

The complete analysis of 78 datasets takes ((114 + 187) * 78) / 60  = 391.3 minutes ~ 5 minutes per
case. This includes data loading and saving.    

 

Percentage of COVID-affected Lung

 

The 3D Slicer Segment Statistics tool was employed to analyze all generated lung structures and
pathologies. The percentage of affected areas within both lungs, individual lungs, all lobes, and regions
of interest were evaluated using the following formula:

https://www.zotero.org/google-docs/?utKrIe
https://www.zotero.org/google-docs/?2yomWk
https://www.zotero.org/google-docs/?udD7C4
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PercentAffected = ((In�ltratedVolume_ml + CollapsedVolume_ml) * 100) / OrganVolume_ml

 

Vessel volumes were excluded from the total volumes, while airways were not considered. Ultimately, the
�ndings were recorded in a CSV text �le for further analysis and interpretation.

 

 

All processing was performed on the following system:

 

Device: DESKTOP Windows 11

Processor: 11th Gen Intel(R) Core(TM) i7-11700F @ 2.50GHz, 2.50 GHZ

Installed RAM: 32.0 GB

System type: 64-bit operating system, x64-based processor

GPU: NVIDIA GeForce RTX 3070 Ti, Driver version: 527.37, 8 GB dedicated video RAM

3D Slicer 5.2.2

LungCTAnalyzer 2.65

TotalSegmentator 1.5.3

Pytorch 2.0.0+cu118

 

The automated approach facilitated e�cient and accurate segmentation of the lungs and lung
pathologies, providing valuable insights into the disease progression and aiding in diagnosis and
treatment planning.

 

Statistics

 

The statistical analysis was conducted using R version 4.2.3 and RStudio version 2023.03.0 Build 386.
 The ggplot2 package was used to generate �gures.

The Shapiro-Wilk normality test showed that the % COVID affection was not normally distributed between
lungs and lobes (p-value = 0.02375).  
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Thus, for group comparisons of COVID severity the Kruskal-Wallis test for group comparisons was used
and the Wilcoxon rank sum test with Benjamini-Hochberg adjustment was added.

The reliability of the computed volume was evaluated using the intraclass correlation coe�cient in the
two-way random-effects model for intra- and inter-reader/retest assessments. Statistical signi�cance was
de�ned as a P value less than 0.05.

Results
Figure 1 illustrates a representative case of moderate COVID-19 manifestations, showcasing the
automatic segmentation of lungs, lobes, and trachea without user intervention, using 3D Slicer's
LungCTSegmenter. Figure 2 demonstrates the automatic volumetric analysis of the same patient,
applying the previously described thresholds through the 3D Slicer LungCTAnalyzer.

 

Within the 78 patients, a strong correlation was observed between the analysis of Expert 1 and computer
analysis (R=0.86, p < 2.2e-16, Figure 4)). Consequently, the median percentage of COVID-19-affected
areas in each expert evaluation score exhibited signi�cant differences (p < 0.05) from other scores, except
for score classes 1 and 2, which were similar (Figure 5).

 

The correlation between expert and machine improved when using self-calibrated data (AIC Model 2, BIC
Model 2), as evidenced by the AIC and BIC values (AIC 1 vs 2: 602.5 vs 586.4, BIC 1 vs 2: 609.5 vs. 593.5).
The impact of data calibration is depicted in Figure 6.

 

With the participation of Expert 2, we observed a notable, statistically signi�cant interobserver bias
(Figure 8, stronger than anticipated), as evidenced by the Wilcoxon signed-rank test with continuity
correction (p < 0.05).  

 

No signi�cant difference was found between the biological sexes (Figure 3).

 

Total lung affection is shown in Table 1, and there were no signi�cant differences between the right and
left lungs.
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In regard to the lobes (Table 1), a higher degree of in�ltration and collapse was observed in the left lower
lobe compared to the upper lobe (p < 0.05). A similar pattern was found in the right lower lobes, with
increased in�ltration or collapse relative to the upper lobes (p < 0.05). No signi�cant difference was
detected in the COVID-19-related involvement when comparing the left and right lower lobes to each other.
The right middle lobes demonstrated lower involvement compared to the right lower lobes (p < 0.05).

 

Upon examining the lung regions, signi�cant differences in COVID-19 involvement were found when
comparing the anterior and posterior halves of the lungs as the posterior regions showed higher COVID-
19 involvement (Table 1). Comparing the upper and lower halves of both lungs, the lower halves of the
lungs exhibited signi�cantly greater COVID-19 involvement than the upper halves (Table 1).

 

It was particularly interesting that, according to computer analysis, patients who required admission to
the intensive care unit during their inpatient treatment demonstrated signi�cantly higher COVID-19 lung
involvement (Figure 7), as compared to patients who could remain in general wards. Patients with >= 40%
COVID-19 involvement (n=31) were predominantly treated in intensive care (n=24, 77%).

Discussion
The present study demonstrated the potential of 3D Slicer computer analysis as a reliable and
reproducible tool for assessing lung involvement in patients with COVID-19. Our validation of computer
analysis against expert radiological judgment revealed a high correlation between the two approaches in
detecting COVID-19 affections. This �nding is supported by a recent study [(15)] that suggests that
computer analysis can effectively complement expert evaluation and contribute to more accurate and
objective assessments of lung involvement.

 

In this study, the LungCTAnalyzer module uses a nnU-Net TotalSegmentator AI tool (11), which allowed
autonomous computer analysis including lung lobes without human intervention. The use of AI-powered
tools like the nnU-Net TotalSegmentator can provide several bene�ts, including reduced time spent on
image analysis, increased consistency in assessments, and potentially improved patient outcomes due to
faster and more accurate diagnosis. Furthermore, autonomous computer analysis could alleviate the
workload of radiologists and healthcare professionals, especially during times of increased demand,
such as the COVID-19 pandemic.

 

However, there are also potential dangers associated with relying solely on autonomous computer
analysis, but the design of this study included AI only for the segmentation of lung masks and lung lobes.

https://www.zotero.org/google-docs/?FXA15H
https://www.zotero.org/google-docs/?KZjRfb
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The present study employs a two-way strategy for computer analysis of lung CT: First, anatomical
structures are segmented using AI, and then the results are re�ned with conventional image processing
methods, such as thresholding, smoothing, and volumetry. This approach is especially sound because
autonomous deep-learning computer systems for detecting COVID-19 alone are on the horizon, but still
have limitations (16), (17).

 

Our results have shown that automatic calibration of CT data is an elegant, e�cient and feasible solution
that may be particularly valuable for analyzing heterogeneous or artifact-laden datasets. The time
required to perform a complete segmentation using 3D Slicer compared to manual delineation times (5
min vs. 2-3 min) still favors the human observer, however, it has to be noted that LungCTAnalyzer as well
as its AI tool has not been optimized for speed yet.  This, in combination with better hardware, will
certainly reduce program execution times. In addition, the automated analysis could seamlessly be
integrated into the data transfer process from the scanner, ensuring that it will have been automatically
processed by the time the radiologist is ready to review the case.  Thus in a practical setting, any potential
delay becomes negligible.  

 

Our results also highlighted the anatomical and regional differences in COVID-19 lung affections. We
found a higher degree of in�ltration and collapse in the lower lobes, the lower halves of the lungs, and the
posterior lungs. These differences provide valuable insights into the distribution and extent of lung
involvement in advanced COVID-19.

 

An important �nding of our study is the potential of the 3D Slicer computer analysis method to predict the
necessity for ICU treatment. The results indicated that patients with higher lung involvement (>40%) were
almost exclusively treated in intensive care. This �nding underscores the importance of understanding
the extent of lung involvement to optimize resource allocation, particularly during a pandemic, when ICU
resources may be limited.

 

However, it is important to note that there were seven patients with high pulmonary affections who did
not require ICU admission. This phenomenon has been a common observation during the COVID-19
pandemic and highlights the multifactorial nature of the disease, in which deterioration of lung function
may occur very late despite already signi�cant pulmonary radiological affections (18), (19). This
observation emphasizes the need for further investigation to better understand the factors that may

https://www.zotero.org/google-docs/?Tfq0NE
https://www.zotero.org/google-docs/?l98Q17
https://www.zotero.org/google-docs/?rrFBEj
https://www.zotero.org/google-docs/?pS7jpg
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in�uence ICU admission requirements, such as comorbidities (20), patient age (21), and overall clinical
presentation (22).

 

The limitations of the study should also be acknowledged. Our sample size was relatively small, which
may limit the generalizability of our �ndings. Moreover, the study design was retrospective, and
prospective studies with larger sample sizes are needed to con�rm and expand upon these observations.
Additionally, while the high correlation between expert and computer analysis is promising, further
research is required to re�ne and optimize the 3D Slicer computer analysis tool, including the nnU-Net
TotalSegmentator AI component, and validate its utility in different clinical settings.  In addition, our
method for calibration of the CT HU values could be improved, ideally through the use of calibration
phantoms as part of the scanning protocol for any future prospective study.  Similarly, our use of hard
threshold values to de�ne the areas of emphysema and otherwise characterize features could potentially
be improved through the use of a soft threshold technique that might better quantify the volume of
tissues in each class.  We note though that in spite of these opportunities to improve the analysis we
were able to �nd statistically signi�cant correlates of disease severity in a relatively small sample size
gives us con�dence that the underlying approach shows promise.

 

A particular constraint of the initial study is that it included only a single radiological expert as a human
control. Nevertheless, this limitation was an inherent component of the design in the preceding study. To
address this, we introduced an additional reviewer who utilized the same scoring system (refer to Fig. 8).
With the participation of two radiological experts, a notable, statistically signi�cant interobserver bias
was detected. This �nding underscores the necessity for an automated, reproducible computer evaluation
to mitigate such biases.

 Another limitation of our study pertains to the variable "affected lung involvement", whose role as an
independent predictor for ICU admission remains to be proven. In a more comprehensive study, this
variable would ideally be incorporated into a multivariate regression analysis. This analysis would assess
if "affected lung involvement" can hold its signi�cance against well-established confounders, such as age
and comorbidities. Unfortunately, the dataset used in our study does not include these variables,
preventing us from performing this analysis at this time. Future prospective studies incorporating these
data points will be necessary to conduct a more robust assessment.

 

Lastly, patterns, GGO, or “tinted signs” (23) may not be correctly detected by the threshold-based
computer algorithms yet and would require further development of AI detection methods.  

 

https://www.zotero.org/google-docs/?uyVIHC
https://www.zotero.org/google-docs/?YiZaSM
https://www.zotero.org/google-docs/?nCbcCS
https://www.zotero.org/google-docs/?Gcjw6h
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Despite these limitations, our study contributes valuable insights to the existing literature on lung
involvement in COVID-19 and highlights the potential of 3D Slicer computer analysis as a reliable,
reproducible, and complementary tool for expert radiological evaluation. The anatomical and regional
differences in lung affections, as well as the potential to predict ICU treatment requirements, have
important implications for clinical practice and resource allocation during a pandemic.

The availability of automatic volumetry of COVID-affections could also be extremely helpful during
follow-up.

 

In this discussion of a science paper, it is important to emphasize that the methodology employed, using
the 3D Slicer computer analysis, has broader applications beyond just COVID-19. This work demonstrates
that a previously challenging image analysis problem, detailed segmentation of lung anatomy in patients
with severe disease, is now routinely solvable using freely available software with reliability suitable to
explore novel anatomical correlates of disease severity. The paper has effectively showcased how this
approach can be used for the quantitative assessment of lung pathologies in the context of COVID-19.
However, its utility extends to a wide range of pulmonary conditions, including �brosis, emphysema, and
other infectious lung diseases.

 

The versatility and potential of the 3D Slicer-based LungCTAnalyzer,  alongside the nnU-Net
TotalSegmentator AI component, make it a promising tool for future research and clinical practice. The
fact that the software is open-source and freely available to researchers worldwide further bolsters its
potential impact, as it encourages collaboration and continuous improvement within the scienti�c
community.

 

As our methodology has proven effective in the present case study of COVID-19 and has also been used
in the quanti�cation of lung changes in chest CT of patients with mutations of the novel coronavirus 2
with success (24), future research should explore its applications in the context of other lung pathologies,
both infectious and non-infectious. This would not only provide additional insights into the value and
limitations of this approach but also help optimize patient care and outcomes across a variety of
pulmonary conditions. By doing so, the scienti�c community can work together to re�ne and expand the
use of AI-powered tools, ensuring that they complement and enhance expert human judgment in the
assessment and management of lung diseases.

Conclusion
In conclusion, our study demonstrates the distribution and extent of lung involvement in patients with
COVID-19 and highlights the potential association between the degree of lung involvement and the need

https://www.zotero.org/google-docs/?S5bQu2
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for ICU admission. A high correlation was observed between computer detection of COVID-19 affections
and expert rating by a radiological expert, suggesting that computer analysis may be a valuable tool for
evaluating lung involvement in clinical practice. This information can contribute to more informed clinical
decision-making and resource allocation during current and future pandemics. Our �ndings provide a
foundation for further research with larger sample sizes to validate and expand upon these observations.
Ultimately, enhancing our understanding of lung involvement in COVID-19 and re�ning the tools used to
assess this involvement can improve patient care and outcomes during global health crises.
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Tables
Structure Mean Median SD q1 q3 iqr comparison p 
Total lungs 35.2 35 18.8 18 49 30    
Right lung 35.5 34 19.0 19 48 29 RL vs LL n.s.
Left lung 35.9 36 19.0 18 49 31 LL vs RL n.s.
                 
Right upper lobe 30.6 26 19.7 12.5 42 29 RUL vs ML n.s.
Right middle lobe 28.1 21 19.5 11 44 32 ML vs RUL n.s.

Right lower lobe 44.8 47 22.4 27 60 33
RLL vs RUL
RLL vs ML

p = 0.00012
p = 2.8e-05

Left upper lobe 29.7 28 18.2 13 41 28 LUL vs LLL p = 0.00011

Left lower lobe 44.4 43 23.0 23 62 39 LLL vs LUL p = 0.00011
                 
Anterior 36.0 35 19.9 19 51 32 A vs P p = 0.00019
Posterior 41.2 42 21.2 21 58 37 P vs A p = 0.00019
Upper half 31.4 29.5 18.6 14.2 44 13 UH vs LH p = 0.02001
Lower half 39.2 39.5 20.2 20.2 54 34 LH vs UH p = 0.02001

 

Table 1 Percentage of COVID-affected lung tissue according to anatomical structures and regions. Differences were evaluated with
the Kruskal-Wallis test for group comparisons and the Wilcoxon rank sum test with Benjamini-Hochberg adjustment. RL = right
lung, LL = left lung, RUL = right upper lobe, ML = right middle lobe, RLL = right lower lobe. Taking into account both lungs:  A =
anterior half, P = posterior half, UH = upper half, LH = lower half 
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Figure 1

Case example: Patient #78 Lung CT Segmentation of trachea, lungs, and lobes in calibrated scalar
volume
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Figure 2

Case example: Same Patient #78 after Lung CT Analysis of calibrated scalar volume with signs of severe
SARS-CoV-2 affection (> 50 % in both lungs). Green: Emphysema. Blue: normal lung. Orange: In�ltration.
Pink: Collapse. Orange + Pink = Affected. Red: Vessels.
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Figure 3

This Box and Whisker plot shows the even distribution of COVID affecting lung CT with no difference
between biological sexes.
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Figure 4

Correlation between baseline clinical score (by an expert radiologist) and percentage of COVID-affected
lung derived by f automatic computer analysis (R = 0.86, p < 2.2e-16)
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Figure 5

This box-and-whisker Plot was created to visualize the distribution of percentages of COVID-affection in
each expert score group. All scores showed signi�cantly different values with the exception of score 1 vs.
2 (* = p < 0.05)
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Figure 6

This scatter plot shows the percentage of COVID-affected samples under two conditions: uncalibrated
and calibrated. The data points are color-coded based on their respective conditions, with green
representing the calibrated condition and orange representing the uncalibrated condition. Additionally,
lines connect the data points within each pairing, illustrating the change in affected percentage between
the two conditions. The plot employs a white background theme, with the x-axis labeled "Condition" and
the y-axis labeled "Affected (%)". The x-axis displays the two conditions in a discrete manner, with the
order of the categories set manually. The color legend is omitted from the plot for clarity.
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Figure 7

This box-and-whisker plot shows the distribution of the percentage of affected samples among patients
needing or not to be admitted to the ICU. This is represented on the x-axis, while the y-axis displays the
percentage of COVID-affected lung volume. Within each ICU category, a boxplot summarizes the median,
quartiles, and outliers of the affected percentage. Jittered individual data points are overlaid on the
boxplots, visually representing the underlying data distribution. Patients who needed ICU support had
signi�cantly higher percentages of COVID alterations in both lungs. (p < 0.05)
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Figure 8

This scatter plot shows the distribution of scores between the two reviewers. Jittered individual data
points are above each reviewer and identical scores are represented by green, diverging scores by orange
lines (31 of 81, 38%). The second reviewer felt unable to score and excluded 3 CT scans (“NA”: 1
pneumothorax, 2 preexistent lung diseases) In the Wilcoxon signed rank test with continuity correction
there was a statistically signi�cant interobserver bias (V = 356, p-value = 0.0001666).


