@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Dai B, Wu X, Bu W (2016) Retinal
Microaneurysms Detection Using Gradient Vector
Analysis and Class Imbalance Classification. PLoS
ONE 11(8): €0161556. doi:10.1371/journal.
pone.0161556

Editor: Gayle E. Woloschak, Northwestern University
Feinberg School of Medicine, UNITED STATES

Received: October 1, 2015
Accepted: July 9, 2016
Published: August 26, 2016

Copyright: © 2016 Dai et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available from the Retinopathy Online Challenge and
the DiaRetDB1 V2.1 database (doi:10.1109/TMI.
2009.2033909, doi:10.1155/2013/368514).

Funding: This work was supported by the National
Natural Science Foundation of China (http://www.
nsfc.gov.cn/) under Grants 61472102 (Received by
WB).

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Retinal Microaneurysms Detection Using
Gradient Vector Analysis and Class
Imbalance Classification

Baisheng Dai', Xianggian Wu'*, Wei Bu?

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China, 2 Department
of New Media Technologies and Arts, Harbin Institute of Technology, Harbin, China

* xqwu @hit.edu.cn

Abstract

Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic reti-
nopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic ret-
inopathy. This paper proposes a novel method for the automated MAs detection in color
fundus images based on gradient vector analysis and class imbalance classification, which
is composed of two stages, i.e. candidate MAs extraction and classification. In the first
stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the
image, in which a multi-scale log condition number map is computed based on the gradient
vectors for vessel removal, and then the candidate MAs are localized according to the sec-
ond order directional derivatives computed in different directions. Due to the complexity of
fundus image, besides a small number of true MAs, there are also a large amount of non-
MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely
class imbalanced classification problem. Therefore, in the second stage, several types of
features including geometry, contrast, intensity, edge, texture, region descriptors and other
features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUS-
Boost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC)
criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4,1/2, 1, 2,
4 and 8 false positives per image on the ROC database, which is comparable with the state-
of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the
state-of-the-art approaches.

Introduction

Diabetic retinopathy (DR) is the commonest complication of diabetes and one of the major
causes of blindness. The early diagnosis and treatment of DR are very important to prevent
vision impairment. The microaneurysms (MAs) on retina are the small saccular bulges in the
walls of retinal capillary vessels [1] and generally appear near to the macula [2]. MAs are the
first sign of DR [3]. According to the Early Treatment Diabetic Retinopathy Study (ETDRS)
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[4], the presence of only even 1 or 2 MAs shows the symptom of the mild non-proliferative dia-
betic retinopathy (i.e., ETDRS level 20). The more MAs, the higher risk of the progression of
retinopathy [5, 6].

However, screening of MAs is usually performed manually by ophthalmologist through
visual inspection of the color fundus image [5-7], which is a time-consuming, repetitive, tiring,
subjective and error-prone process. Therefore, it is necessary to investigate automated MAs
detection in color fundus image.

MAs always appear as dark red and small round spots in color fundus image. Fig 1 shows a
color fundus image containing MAs and a corresponding enlarged part in green channel with
some MAs indicated by yellow markers. As shown in Fig 1B, some of MAs are difficult to be
found out and separated from the background noises (e.g., the subtle one indicated by the cir-
cle). In addition, some MAs may have an irregular shape (e.g., the pedunculated one indicated
by the triangle), cluster together (e.g., the clustered ones indicated by the square) or close to
vessels (e.g., the one indicated by the pentagon). Thus, automated MAs detection in the color
fundus image is a challenging task. In general, there are two stages for automated MAs detec-
tion, i.e. candidate MAs extraction and classification. In the first stage, the candidate MAs are
extracted, and in the second stage, the true MAs are identified from candidates by a classifier
with a set of extracted features.

For candidate MAs extraction, most of the existing works could be roughly categorized into
the matched filter based, the morphology based and the other approaches. In the matched filter
based approaches, some special filters were designed to discriminate the MAs from other struc-
tures. Quellec et al. [9] and Zhang et al. [10] modeled the MAs with 2D Gaussian functions,
and detected the MAs by using template matching [9] or multi-scale correlation filtering [10].
Giancardo et al. [11] used Radon transformation to extract the Gaussian-like circular MAs.
Hatanaka et al. [12] proposed a double-ring filter to detect MAs by comparing the intensities
between different circular regions. Matched filter based approaches [9-12] worked well when
the shapes of MAs are similar with the shape of the filters, but failed to extract some irregular
MAs (e.g., MAs with saccular, fusiform, or pedunculated shape [13]), clustered MAs or MAs
close to vessels. In morphology based approaches, some morphology characteristics of MAs
were used to extract the candidate MAs. Fleming et al. [14] and Ram et al. [15] detected MAs
based on the morphological top-hat operation with different linear structural elements. Walter

A

Fig 1. An example of color fundus image containing MAs. (A) The color fundus image. (B) The
corresponding enlarged part of (A) in green channel with indicated MAs (diamond: regular MA, circle: subtle
MA, triangle: irregular MA, square: clustered MAs, pentagon: MA close to vessel). Reprinted from [8] under a
CC BY license, with permission from Dr. Yalin Zheng, original copyright 2012.

doi:10.1371/journal.pone.0161556.g001
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etal. [16] assumed that the diameters of MAs are always smaller than a threshold and proposed
a morphological diameter closing operation to extract MAs. Rosas-Romero et al. [17] extracted
MAs by using the bottom-hat and hit-or-miss transformations. Morphology based approaches
can effectively extract the MAs whose shapes and sizes are similar with those of the structural
elements. However, since the shapes and the sizes of different MAs vary largely in fundus
images, it is very difficult to define a set of morphological features to characterize and detect all
MAs. In the other approaches, such as in [18], a pixel classification followed the morphological
operation was used to determine the candidate MAs. In [19], a moat operator was first applied
to enhance the edge of candidate MAs, and a recursive region growing was then extracted the
area of candidate MAs. It is noted that any true MA lost in this stage cannot be retrieved in the
next stage. Hence, to improve the sensitivity of automated MAs detection, it is important to
extract as many true MAs as possible in this stage.

Due to the complexity of fundus image, besides the true MAs, the extracted candidate MAs
also include a large amount of non-MAs. In candidate MAs classification stage, Fleming et al.
[14] defined three types of features for each candidate, i.e., size, intensity and vesselness Bool-
ean features, and then trained a kNN classifier to identify true MAs. A sensitivity of 0.54 at the
level of 10 false positives per image (FPs/I) was reported on a private dataset. Niemeijer et al.
[18] exploited shape, intensity and texture features for each candidate and also trained a kNN
classifier to recognize the true MAs. A CPM score of 0.395 (competition performance metric,
i.e., an average sensitivity at a set of particular false positives per image 1/8, 1/4, 1/2, 1,2, 4 and
8 FPs/I) was achieved on the ROC database [3]. Giancardo et al. [20] trained a SVM classifier
to identify true MAs with a set of features extracted from Radon space and obtained a CPM
score of 0.375 on the ROC database. Hatanaka et al. [12] utilized shape, color, statistic and
some filter response features to train an ANN for identifying true MAs from non-MAs and
obtained a sensitivity of 0.68 at the level of 15 FPs/I on 25 images of ROC training dataset.
Lazar et al. [21] proposed a set of intensity profile features and applied a naive Bayes classifier
in candidate MAs classification. A CPM score of 0.423 was achieved on the ROC database. In
[22], Fegyver applied a set of features based on gradient directions and lengths and trained a
naive Bayes classifier to identify true MAs. The CPM score of this method is 0.422 on the ROC
database. These traditional classifiers work well when the samples of different classes are bal-
anced. However, in the extracted candidate MAs, the number of non-MAs is always more tre-
mendous than the number of true ones. The ratio between the non-MAs and the true MAs is
very high, e.g., this ratio reported in [18] was close to 50:1 (14591 non-MAs and 315 true
MAs). That is, the true and the non-MAs are extremely imbalanced and those traditional clas-
sifiers may not work well for this extremely class imbalanced problem. Class-imbalanced classi-
fication should be introduced for MA classification.

Hatanaka et al. [12] limited the maximum number of the candidate MAs in each image, and
Lazar et al. [21] manually selected the negative samples (non-MAs) to construct a training set,
in which the true MAs and the non-MAs classes are not too class-imbalanced. However, limit-
ing the number of candidates may reduce the sensitivity of MAs detection, and the manually
selection of samples from about ten thousand non-MAss is very time consuming and subjective,
and lose much information of training samples. In [16], Walter et al. used a Bayesian risk mini-
mization rule to classify the true MAs, where a misclassification cost parameter was introduced
to alleviate the problem of class imbalance. But the specific cost information is rarely available,
and the method obtained similar results with the kNN classifier as reported by the authors
[16]. Séoud et al. [23] utilized a Random Forest classifier to overcome the problem of imbal-
anced training data. However, this classifier may not work well with highly imbalanced data as
reported in [24].
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Recently, Antal et al. [25] presented an ensemble approach to detect MAs, which selected
five image preprocessing operations and five candidate extractors [10, 16, 26-28], to form 25
(preprocessing operation, candidate extractor) pairs with 2> possible combinations. The final
MAs were detected by the fusion of the MA candidates which were extracted by the individual
pairs in the optimal ensemble. This ensemble strategy has outperformed most existing individ-
ual approaches on ROC database [3], in which almost all of the small dark spots in the images
are MAs. Actually, in fundus images, besides MAs, there are other objects which are also
shown as small dark spots, e.g. the small hemorrhages and scars left after PRP (Pan-Retinal
Photocoagulation) treatment, etc. These small dark spots cannot be further discriminated by
this approach since all candidate extractors used in [25] were designed for roughly extracting
small dark spot objects. Therefore, if fundus images contains more complicated small dark
spots, the performance of this approach will be deteriorated, as indicated by the results on Dia-
RetDB1 V2.1 database [29] reported in [25].

This paper proposes a novel automated method for MAs detection. The key idea is that, to
preserve the MAs with different appearance, intensity and size as many as possible, we only
reject the obvious non-MA objects, e.g., vessels and some background noises, with the gradient
vector analysis, and all the remained small dark objects are taken as MA candidates which are
further classified with a class imbalance classifier.

There are four main contributions in this work. Firstly, a new vessel removal algorithm is
proposed based on the multi-scale log condition number computed from gradient vectors,
which can remove most of the vessels and preserve most of the true MAs. Secondly, a candidate
MAs localization algorithm is presented based on the second order directional derivatives in
different directions, which can accurately localize the MAs’ centers. Thirdly, a new set of fea-
tures are extracted for candidate MA classification, which can effectively discriminate the true
MAs and the non-MAs. In addition, class-imbalance classification is introduced and analyzed
in candidate MAs classification, which can effectively identify the true MAs from a large num-
ber of non-MAs.

The remainder of this paper is organized as follows. The proposed candidate MAs extrac-
tion and classification are described in detail in Section Methods. The two public available
databases and the evaluation metrics used in this work are introduced in Section Databases
and Evaluation Metrics. The experimental results are provided and analyzed in Section Results
and Analysis. Finally, this paper is concluded in Section Conclusions.

Methods

As shown in Fig 2, the proposed MAs detection consists of two main steps, i.e., candidate MAs
extraction and classification. In the candidate MAs extraction step, the main interferences, i.e.,
retinal vessels, are first suppressed, and then the candidate MAs are localized and segmented.
In the candidate MAs classification step, a set of discriminative features are extracted and a
class-imbalanced classifier is trained and used to identify the true MAs from amount of non-
MAs.

Candidate MAs Extraction

The proposed candidate MAs extraction includes vessel removal, candidate MAs localization
and segmentation, and is described in detail as follows. As suggested in [18], the green channel
of the color fundus image, where MAs have the highest contrast with the background, is used
as the input image in this work. Before extracting candidate MAs, to smooth the image noises
while preserving the boundary of MAs, an edge-preserving smoothing method [30] is first
applied, which have been proved to be effective and can avoid introducing artifacts (e.g.
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Fig 2. Schema of the proposed method. The solid line path summarizes the training process of MAs detection, and the dashed line path summarizes the
test process.

doi:10.1371/journal.pone.0161556.g002

ringing) that can deteriorate the performance of MAs detection. Next, a shade-correction
method [26], which has been successfully employed in fluorescein image, is then used to reduce
the uneven illumination of the smoothed input image. The final preprocessed image is denoted
as I,

Vessel Removal. Because MAs are situated on capillaries and capillaries are not visible in
color fundus images, they generally appear disconnected from the retinal vessel network [16].
Considering the vessels may affect MAs detection, we should remove vessels before extracting
MA candidates. However, many existing vessel removal strategies may mistakenly remove
some true MAs [18]. In this paper, we intend to remove vessels while preserving MAs with the
gradient information. By observing the fundus images, we can find that retinal vessels always
appear as piecewise linear structures, while the MAs generally appear as small round spots.

Fig 3 shows the examples of these two structures and the distribution of their gradient vectors,
where Fig 3A and 3C illustrate a linear structure and a round spot with their gradient vectors,
and Fig 3B and 3D plot the distributions of the gradient vectors in Fig 3A and 3C. Let S denote
alocal support region, (x;, y;)(i=1, ..., N) denote all points in S, and (Ax;,Ay;) denote the gradi-
ent vector of the point (x;, y;). If S is a part of a vessel segment, which always can be regarded as
a linear structure, the intensities always gradually increase from the centerline to the boundary
along the perpendicular directions of this vessel (see Fig 3A), and the gradient vector directions
(GVD) of most points on this vessel segment are perpendicular to the vessel segment (see Fig
3A). That is, the perpendicular direction of the vessel segment is the dominant principle direc-
tion of the distribution of (Ax;Ay;) (see Fig 3B). While, if S located at the center of a true MA,
which is always a blob-like structure, the intensities gradually increase from the center point to
the boundary along the radial directions of this MA (see Fig 3C), and the GVD of the points in
this MA are always similar with their corresponding radial directions. Since the radial direc-
tions of a blob can be arbitrary, no principle direction of the distribution of (Ax;Ay;) is domi-
nant (see Fig 3D). Therefore, we can determine if S is part of the retinal vessel or not by
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Fig 3. Different distributions of gradient vectors of the vessel-like and the MA-like objects. (A) The gradient field of a vessel-like object. (B) The
distribution of gradient vectors in (A). (C) The gradient field of a MA-like object. (D) The distribution of gradient vectors in (C).

doi:10.1371/journal.pone.0161556.9003

analyzing the principle direction of the distribution of (Ax;Ay;). In this work, the covariance
matrix of (Ax;Ay;) are constructed and then the corresponding eigenvalues are computed to
analyze the principle directions. For the vessel, there should be one dominant eigenvalue of the
covariance matrix. While for the MAs, the two eigenvalues should be approximately equal.

More specifically, for each pixel (x, y) in the preprocessed image image I,,, a circular support
region with radius r centered at (x, y) is denoted as S,, and the covariance matrix of the gradient
vectors in S, is denoted as C(x, y, r). The eigenvalues of C(x, y, r) denotes as A; and 4,, and
A > s

The above-mentioned eigenvalue relations now can be reflected by the ratio A,/4,, i.e., the
condition number of C(x, y, r), which is denoted as x(C(x, y, r)). The condition number is
closer to 1, the object is more circular, while the higher the value, the more elongated the object.
This number thus gives a high discriminability between vessel-like and MA-like objects.

To deal with the size variation of both vessels and MAs in fundus image, we compute the
condition number in a multi-scale manner by changing the radius of support region. A multi-
scale log condition number /C at (x, y) is defined by

rmux ’mux

IC(X,)/) =In H K(C(xvya T)) = Z In (K(C(xvya T))), (1)

"=Tmin "=Tmin

where the logarithm function is used to prevent overflow. For our experimental data, the radius
of most vessels and MAs is both generally varied from 1 to 6 pixels in the image with the small-
est image width (768 pixels). We thus choose 7,,;,, = 2p, 7'1qx = 7p, where p = (image width)/
768.

Fig 4 shows the process of X' map computation of the preprocessed image (Fig 4A). Fig 4B
and 4C are the log condition number maps with respect to the support regions with different
radius, and Fig 4D shows the final X map. As can be seen, most of the vessels, including the
small and the large ones, have higher value of K. Fig 4E is a patch of the preprocessed image
containing 5 true MAs marked with ‘0, and Fig 4F is the corresponding patch of & map, from
which we can see that all five true MAs of different size have lower responses than most of ves-
sels. According to this figure, in K map, the vessel structures have been enhanced, while the
MAs-like objects have been suppressed. We will separate vessels from MA-like objects accord-
ing to the K map.
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Fig 4. The process of C map computation. (A) The preprocessed input image. (B)-(C) The log condition
number maps with different support regions. (D) The final K map. (E) An image patch of preprocessed image
contains 5 true MAs marked with ‘0. (F) The corresponding patch of I map.

doi:10.1371/journal.pone.0161556.g004

A similar principle for distinguishing the vessels and MAs was presented in [31], where the
production and mean of the eigenvalues of Hessian matrix was exploited. Compared with the
covariance matrix of a region centered at a pixel used in this work, the Hessian matrix of a
pixel is more sensitive to noises. Unlike the proposed covariance matrix based method, the
Hessian matrix based approach in [31] cannot use the information of a pixel’s surrounding pix-
els, which are very important to judge the pixel as a MA or vessel pixel. The estimation of Hes-
sian with multi-scale Gaussian smoothing in [31] also easily impair the extraction of faint MAs
and MAs near vessels. Additionally, the production and the mean of eigenvalues may not effec-
tively distinguish the faint MAs (low contrast and small variety of intensity) with two small
eigenvalues and the vessels with one large eigenvalue and one small eigenvalue.

From Fig 4F and 4F, since the MA marked with the yellow ‘0" has an irregular shape, its
response is slightly higher than the response of other MAs. And some vessel segments, e.g., the
one indicated with the cyan arrow, also have lower KC responses. Therefore it is difficult, if not
impossible, to obtain the vessels map without MAs by directly applying threshold segmentation
on K map.

In this work, we remove vessels based on the morphological grayscale reconstruction algo-
rithm [32] with the C map. Fig 5 shows the process of vessel removal. An empirical threshold
is firstly applied to /C map to get a binary image, denoted as I,,, which includes the most ves-
sel-like objects. The threshold value is set to 14.5 in this work according to the preliminary
experiments on the training set. Then I, serves as a marker to reconstruct vessel map from the
complement of the preprocessed image I, denoted as I, (Fig 5A). Since the marker Iy,, only
contains the rough vessel structures, only the vessel map can be morphologically reconstructed.
Since MAs are not connected with vessels and not appeared in the marker I,,,,, MAs cannot be
reconstructed. Thus, by algebraic subtracting I, from I, most vessel structures are removed
efficiently, while the MAs-like objects with a variety of appearance, intensity and size are pre-
served, as shown in Fig 5B. Fig 5C is an enlarged part of the marked region in Fig 5B, which is
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B C

Fig 5. The process of vessel removal. (A) The image morphologically reconstructed by using a binary K
map. (B) The vessel removed image by subtracting (A) from Fig 4A. (C) The enlarged part of marked region in
(B).

doi:10.1371/journal.pone.0161556.9g005

also the corresponding vessel removed result of Fig 4E with the K map in Fig 4F. As shown in
this figure, the vessel segments with low value of K are also removed, while the MAs with irreg-
ular shape are preserved successfully. Fig 6 also shows some results of vessel removal, in which
the MAs, including the subtle ones (Fig 6A) and the one near vessel (Fig 6C), are successfully
preserved.

In [17], the bottom-hat and hit-or-miss transformations were used to identify the MAs and
vessels by considering the sizes of different structures in the fundus image. However, due to the
size variety of both MAs and vessels, this approach may not work effectively. To extract candi-
date MAs, Séoud et al. [23] used the morphological gray reconstruction based on only the con-
trast information without considering the shape criterion, which may mistakenly extract many
false MAs and miss some ture MAs.

Candidate MAs Localization. Besides the MAs, there also exists some tiny vessel seg-
ments, many dark background noises or other dark round objects in the vessel removed image.
We need to localize the candidate MAs and, at the same time, suppress these non-MAs as
many as possible. Considering that the intensities of some non-MAs may be similar to the
intensities of some subtle MAs, it is not feasible to localize candidates only based on their
intensities.

In general, MAs exhibit a Gaussian like intensity distribution in all directions [9, 10, 21].
According to this prior, Pereira et al. [33] used the gradient patterns and Gaussian fitting
parameter in different directions to exclude the false MAs. In this work, we compute the second
derivatives of grayscale profiles in different directions for MA localization, which can preserve
the true MAs and exclude the false ones as many as possible, and at the same time, obtain more
accurate MAs’ positions. Since MAs centers have the minimum intensity along 1-D grayscale

A B C D

Fig 6. Some results of vessel removal in special cases. (A) The image patch containing subtle MAs with
different size. (B) The corresponding result after vessel removed. (C) The image patch containing a MA near
vessel. (D) The corresponding result after vessel removed.

doi:10.1371/journal.pone.0161556.9g006
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Fig 7. The illustration of 17,’ at different position with different direction 6. (A)-(B) The different positions
of the same MA. (C)-(D) The positions centered at one subtle MA and one non-MA. (E)-(H) are the polar

coordinate plots of the direction 6 versus the value of / in the direction 6 at these positions.
doi:10.1371/journal.pone.0161556.g007

profile in different directions, the center of MAs will have the positive local maximum of sec-
ond derivatives of the grayscale profiles in all directions. While for the other positions of MAs
or the positions of some non-MAs, the second derivatives in some directions will decrease or
even be close to or less than zero. Fig 7 shows the distribution of second derivatives at different
positions with different direction varied from 0° to 360° (all negative second derivatives are set
to zero), where Fig 7A and 7B shows the different positions of the same MA, and Fig 7E and 7F
are the polar coordinate plots of the direction versus the value of second derivative in the direc-
tion at these positions; Fig 7C and 7D shows the positions centered at one subtle MA and one
non-MAs with the similar intensity as the subtle MA, and Fig 7G and 7H are the corresponding
polar coordinate plots. From this figure, we can see that only the centers of MAs have high pos-
itive value of second derivatives in all directions, while other positions have low value of second
derivatives close or equal to zero in some directions. Based on this observation, we localize the
centers of the candidate MAs in vessel removed image with the second derivatives in multiple
directions, i.e., the second directional derivatives [34], which can be computed by using gradi-
ent vectors.

Given a discrete image I, for each point (x, y), a continuous surface is first fitted using a facet
model [34, 35] over the intensity values in a local window with a size of 7 x 7 centered at that
point. The partial derivatives of the discrete intensity surface at (x, y) are then approximated by
the corresponding partial derivatives of the continuous surface at that point [35]. Let’s consider
1"

a direction 6 and the corresponding unit vector u = [cos 0, sin 0] . The gradient vector of I here

T
is denoted by VI = [?’I dfﬂ , and the directional derivative of I at the point (x, y) in the direc-

0x° 0

tion 6, denoted by I (x, y), is given by

Ol(x,y) ol(x,y) . r
I =77 0+ ——=sinf =u VI . 2
o(x, ) P cos O + oy sin u (x,9) (2)
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The second directional derivative of I at the point (x, y) in the direction 0, denoted by
I)(x,y), is then computed as

I/ I
I = % C080+g—; sin0
o'l o'l o'I (3)
= o2 cos?0 + 28x3y cos0sin 0 +3T/2 sin 20

= u'VI[=u"V(u'VI).

For exploiting the intensity distribution of MAs efficiently, we analyzed the intensity distri-
bution by computing the directional derivatives from 0° to 360°. Considering that a negative I,
representing the intensity value along the direction 8 is monotonically decreasing, which is not
consistent with the intensity distribution along the MA center to the boundary in that direc-
tion, we set the negative I, value to zero in the computation of second order directional deriva-
tives in direction 6, and define a modification of I/, denoted as I, as follows:

o) oL
0
o cost + dy

[
I() -

sin =u'V|I)| =u'V(u"VI)), (4)

where | -] denotes that the enclosed quantity is equal to itself when its value is positive, and
zero otherwise. These multiple second directional derivatives in different direction 6 are then
integrated by the following equation:

P = =11 wrin) ) = [T vw v, (5)

all 0 all 0 T

Obviously, the center of MA-like objects can get much higher P values than other positions. In
this work, we considered 36 directions from 0° to 360° with 10° step for P map computation.
Finally, we find all local maxima on the P map, and consider those whose P values are
greater than a threshold as the final locations of candidates. The threshold here is empirically
chose as the 0.1 times of the maximal P value. Fig 8 shows the results of candidate MAs locali-
zation of Fig 4A, in which Fig 8A is the P map, and Fig 8B is the final location of candidate
MAs, indicated with the green X’. As shown in this figure, the proposed technique can localize

A

Fig 8. The result of candidate MAs localization. (A) The P map. (B) The final location of candidates MAs,
where all candidates indicated with ‘x’ and the true MAs provided by medical expert marked with ‘0’.

doi:10.1371/journal.pone.0161556.g008
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Fig 9. Segmentation results of candidate MAs. (A), (C) and (E) The image patches containing MAs. (B),
(D) and (F) The segmentation results.

F

doi:10.1371/journal.pone.0161556.g009

almost all of the true MAs (marked with ‘0’) annotated by medical experts. It should be noted
that the MAs clustered together have also been localized separately, as shown in the enlarged
patch of Fig 8, which often be treated as one candidate by other algorithms.

Candidate MAs Segmentation. After localizing all the MA candidates, the whole regions
of these candidates should be segmented for following candidate MAs classification. To be
robust to the variability of intensity across the fundus image, we adopt a localized-based level
set model [36] to segment the whole regions of these candidates, in which a localized based
Chan-Vese energy [36] is applied to drive the evolution of the level set. The localized based
Chan-Vese energy is formed by replacing global means (of interior and exterior regions) in the
original Chan-Vese energy with the means of the local regions of each active point. To improve
the efficiency of the segmentation, we compute and update the values of level set in abovemen-
tioned model based on the sparse field technique [37], with which an efficient representation of
level set can be maintained. The sparse field technique uses the linked-lists of the active points
of the zero level set and their neighbor points to efficiently represent the level set, in which only
the varying active points and their neighbors are updated.

Fig 9 shows some results of segmentation, in which candidates with different size and vari-
ous local contrast are successfully segmented.

Candidate MAs Classification

Feature Extraction. To distinguish the true MAs and the non-MAs, this work extracts
seven types of features for each candidate MA, i.e. geometric, contrast, intensity, edge, texture,
region descriptors and other features. Excepting the region descriptors, the remaining extracted
features (called common features) are commonly used to recognize the true MAs from the
non-MAs based on the round shape and the color prior of true MAs, and most of them are
adjusted from [10, 18, 22]. Region descriptors are introduced to exploit the local information
of the candidate MA and its surrounding area for MAs classification.

1. Geometric features: The ratio r; between the minor and the major axis length of the candi-
date region Q. The ratio r, between the diameter of a circle with the same area as Q and its
major axis length. The area g, the circularity c, the eccentricity e and the compactness v
of Q[18].

2. Contrast features: The intensity difference & between the maximum intensity value of the
inside pixels and the minimum intensity value of the outside pixels of Q in the preprocessed
image I, and each channel of the RGB, LUV, and HSI color spaces of the original color fun-
dus image I,. Notice that the outer region of Q here is the region obtained by removing Q
from its morphological dilated version.
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3. Intensity features: The total intensity X of Q, the normalized intensity ni and the normalized
mean intensity nm in I, and the green channel of I, [18]. The mean intensities p;,, o, and
their corresponding standard deviations 0;,, 0, of the inside pixels and the outside pixels
of Q in each channel of the RGB, LUV, HSI color spaces of I,.

4. Edge features: The mean value p, of the gradient magnitude of pixels on the boundary of Q
in I,
.

5. Texture features: The mean value p, (47) and the standard deviation g, (7) of €2 in the Gauss-
ian (LoG) filter responses of I, with o =1, 2, 4, and 8 [10].

6. Region descriptors: The region descriptors, i.e. HOG [38], SURF [39] and GIST [40] descrip-
tors, of the local image patch centered at Q in I,. Since the radius of the manually labeled
MA mask is commonly between 5 ~ 10 pixels, to include the information of both the candi-
date MA region and its surrounding region in the region descriptors, the patch size is set to
31 x 31 pixels (about a radius of 15 pixels). The HOG descriptor computes locally normal-
ized histograms of gradient orientation in 5 x 5 grids for the local patch, in which each cell
have 31 features. The SURF descriptor computes 8 features about Haar wavelet responses
for each cell of the 4 x 4 grids of the patch. The GIST descriptor utilizes the Gabor filter
responses in 3 scales and 8 orientations in 3 x 3 grids to provide a rough representation of
the patch. The total amount of HOG, SURF and GIST features are 775, 128 and 216
respectively.

7. Other features: The mean value y; and the standard deviation o of the angle differences
between the gradient vector and the unit vector along the different sampling directions
within Q computed in I,, [22]. The mean values ., y; and y4;, and the standard deviation
0, 0. and g, of the inside pixels and the outside pixels of Q in the condition number map,
the convergence index map [41] and the divergence map [42] computed in I,. The mean
value y;; and the standard deviation ¢;; of Q in the isolated index map, which is the ratio of
the mean intensity to the standard deviation in a ring region with width of 3 pixels outside a
circular support region with radius of 7 computed in I,,. The mean value y,,; of candidate
pixels in the product image of condition number, convergence index, isolated index and
divergence maps.

In summary, the total feature set contains 1247 features. Since those region descriptors are
seldom applied in candidate MAs classification, we will investigate their contributions for iden-
tifying MAs in Section Results and Analysis.

MAs Recognition. After extracting features for candidates, the true MAs should be identi-
fied in these candidates. However, as mentioned previously, in the extracted candidate MAs,
the non-MAs are much more than the true MAs. In this work, since we intend to preserve
more MAs in the extraction stage, the ratio is much higher, which can be close to 500:1, as
shown in Section Introduction.

To address this issue, a simple exclusion criterion is firstly used to remove some obvious
false positives according to the discrimination table in [10] and our preliminary experiments,
such as the candidates whose area a are out of the range from 2 to 150 or whose ratio r; are less
than 0.3. And then a class-imbalance classifier is trained to recognize the true MAs.

The RUSBoost learning algorithm [43], which embedded the technique of random under-
sampling into the AdaBoost.M2 algorithm [44], has been previously shown to be very effective
at alleviating the problem of class imbalance. Hence a RUSBoost classifier is trained to recog-
nize the true MAs from a large number of non-MAs in this work.
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Given the minority training set R and the majority training set S, where |R| < |S|, the RUS-
Boost randomly undersamples a subset S’ from S in each iteration of AdaBoost.M2, and con-
struct the temporary class-balanced training set R U §' to train weak learners, where |§'| < [S],
and usually, |§'| = |R|. The final strong classifier H(x) is a weighted combination of T weak clas-
sifier h; (t=1, 2, ..., T), which are trained with class-balanced subset R U S/ instead of RU S in
round t.

Databases and Evaluation Metrics

The proposed method is evaluated on two public database, i.e., the Retinopathy Online Chal-
lenge (ROC) competition [3] and DiaRetDB1 V2.1 database [29].

The ROC database

The ROC database consists of 100 images with different resolutions [3], which are randomly
split into a training and a test set, each containing 50 images. ROC only provide the ground
truth of training set, which contains the location and the radius of each manually labeled MA.
The proposed method is trained on the training set, and the ROC organizer evaluates it on the
test set.

The DiaRetDB1 V2.1 database

The DiaRetDB1 V2.1 (denoted as DRDB) database contains 89 color fundus images with the
fixed 1500 x 1152 resolution [29]. Among these fundus images, 28 images are given for training
and the remaining 61 images are for testing. For each image in both the training and the test
set, four ground truths annotated by different experts are provided, which include the location,
the radius, and the confidence level of each marked MA.

Evaluation Metrics

In this work, a finding is defined as a “hit” of a manually labeled MA if the MA is the closest
one to the finding and the distance between the center of the finding and the center of the MA
is smaller than the provided radius. A finding is defined as a “hit-miss” if the distance between
the center of the finding and the center of any manually labeled MA is larger than the provided
radius. One marked MA may have multiple “hits”, but we only count a single “hit” of each MA
as a true positive (TP), and count the other “hit” of the same MA as a false positive (FP), as
defined in the ROC competition [3]. All “hit-miss” are also counted as the false positives. The
sensitivity is then computed as #TPs/#T},,,., where #TPs is the number of the true positives,
and #T,,,. is the number of the manually labeled MAs. An average number of false positives
per image (FPs/I) is also used to analyze the sensitivity in the evaluation.

For fairly evaluating different methods, the ROC competition organizer do not provide the
ground truth of the ROC test dataset to avoid training parameters on this dataset. Therefore,
we cannot compare our output results with the ground truth images to get the sensitivity and
specificity on this dataset. The detected MAs of different methods are submitted to the ROC
organizer, and the organizer computes and returns the sensitivities at some levels of FPs/I and
the competition performance metric (CPM, an average sensitivity at a set of particular false
positives per image 1/8, 1/4, 1/2, 1, 2, 4 and 8 FPs/I) [3], which are used as the evaluation of dif-
ferent methods on the ROC test dataset. We thus evaluate the performance of the proposed
method with these metrics on both ROC and DRDB database. Besides these metrics, we also
evaluate our method with the free-response receiver operating characteristic (FROC) curve [3]
and the partial area under the curve (AUC) of the FROC curve [25]. The FROC curve plots the
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Table 1. Comparison of different candidate extractors on ROC training set.

Method FPs/I Sen. Ours Sen.
Spencer et al. [26] 20.30 0.12 0.29
Lazar et al. [28] 73.94 0.48 0.47
Walter et al. [16] 154.42 0.36 0.55
Zhangetal. [10] 328.30 0.33 0.62
Abdelazeem [27] 505.85 0.28 0.68
Lazar et al. [28] 569.39 0.598 0.691

doi:10.1371/journal.pone.0161556.t001

sensitivity against the number of FPs/I. The partial AUC is the partial area under the FROC
curve between 1/8 and 8 FPs/I.

Results and Analysis
Evaluation of Candidate MAs Extraction

Table 1 compares the sensitivities of the proposed candidate extractor and the state-of-the-art
candidate extractor algorithms [10, 16, 26-28] with the same level of FPs/I on the ROC training
set, where our results are listed in the columns titled “Our Sen.”. The results of state-of-the-art
approaches are reported in [25] and [45]. As Table 1 demonstrated, the proposed method nota-
bly improves the sensitivities of candidate MAs extraction. Although sensitivity is slightly
lower than Lazar et al. [28] at the level of 73.94 FPs/I, our method achieves much higher sensi-
tivity at the level of 569.39 FPs/I. Therefore, the proposed candidate extractor can characterize
MAs better than other approaches.

After filtering out some obvious non-MAs from the candidate MAs, the remaining candi-
dates form the final candidates set for the following classification. When a manually labeled
MA has multiple “hits”, we cannot tell apart which one is true. To avoid losing the positive
samples in the candidate M As classification stage, we take all of the “hits” as positive ones
(called positive candidates) and all of the “hit-miss” as negative ones (called negative candi-
dates) when training the classifier. Table 2 lists the number of positive candidates (#PCs), the
number of negative candidates (#NCs), and the ratio between #NCs and #PCs (Ratio; referred
to the level of imbalance) of the final candidates sets extracted from the training set of different
databases. In particular, we list all results of DRDB database with different ground truths in
this table. Since the experts have different clinical experiences, the ground truths annotated
based on their experiences in DRDB database vary largely, which result in the large variance of
the statistic results in Table 2. Especially, for the ground truth annotated by the Expert 2, the
marked areas are much larger than those marked by other experts, therefore much more

Table 2. The statistical results of final candidate sets extracted from training set of different databases.

Training set
ROC
DRDB w/ Exp. 1
DRDB w/ Exp. 2
DRDB w/ Exp. 3
DRDB w/ Exp. 4

doi:10.1371/journal.pone.0161556.1002

#lmages #PCs #NCs Ratio
50 284 123042 433:1
28 317 81734 258:1
28 4424 77627 18:1
28 162 81889 505:1
28 314 81737 260:1
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candidates fall into these areas. It is the reason that the #PCs with Expert 2 are much larger and
the Ratio is much smaller than those with other experts. According to this Table, the ratios
between the negative candidates and the positive candidates are very high, the candidate MAs
classification is thus an extremely class imbalanced problem in this work.

Evaluation of Class Imbalanced Candidates Classification

In our experiments, we use the decision trees as the weak learners in the RUSBoost model. To
get the optimal number of weak learners T used in RUSBoost, we randomly split the ROC
training set into two subsets, and perform 8 times two-folds cross validation for different T.
Fig 10 shows the performance of each round of twofold cross validation on the ROC training
set with the different number T in the RUSBoost. The classifier achieves a relatively stable sen-
sitivity of 0.24 + 0.01 when T is about 500 to 3000, and the overfitting occurs when T > 3000.
We set T'= 500 trees in this work to test the proposed method on both ROC and DRDB
database.

To evaluate the performance of class imbalance classifier in MAs detection, we choose three
ensemble classifiers, i.e., RUSBoost [43], EasyEnsemble [24] and AdaBoost [44], where the first
two classifiers are especially designed for class-imbalance learning. We also test the kNN classi-
fier, which has been successfully used for MAs classification in [14, 18, 46]. The performance
of a Random Forest classifier is also tested, which has been used in [23] to recognize true MAs
from class-imbalanced data. The FROC curves of these classifiers on ROC training set are plot-
ted in Fig 11. Since the samples are extremely imbalanced, it is not surprised that the class
imbalance classifiers notably outperform the other classifiers in MAs classification. Although
the Random Forest has slightly improved the performance of kNN and AdaBoost for class-
imbalanced problem, the RUSBoost, which integrated a under-sampling and boosting tech-
niques, obtained the best result and improved the classification performance significantly.
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Fig 10. The sensitivities of cross validation on ROC training set with different T in RUSBoost
classifier.

doi:10.1371/journal.pone.0161556.g010
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Fig 11. FROC curves produced by different classifiers.
doi:10.1371/journal.pone.0161556.g011

Evaluation of the Overall MAs Detection

We next test the overall performance of MAs detection with the proposed method on both
ROC and DRDB database.

Table 3 lists the sensitivities at the predefined FPs/I, the ranked CPM evaluated by ROC
organizer, and the partial AUC of 15 participating teams of ROC. The proposed method was
ranked in the second place among these approaches with the score of 0.433, which is very close
to the score of 0.434 of the first placed ensemble approach DRSCREEN [25]. And the proposed
method obtains the highest partial AUC (0.553) among all of these approaches. The FROC of
these approaches are plotted in Fig 12, from which, we can see that the proposed method per-
forms very well especially after the level of 2 FPs/I. According to Table 3 and Fig 12, the pro-
posed method can get a comparable performance with the DRSCREEN approach.

Table 3. Quantitative results of the ROC competition for each participating team.

Team Name 1/8 1/4 1/2 1 2 4 8 CPM AUC
DRSCREEN [25] 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434 0.551
Our method 0.219 0.257 0.338 0.429 0.528 0.598 0.662 0.433 0.553
Lazar[21] 0.251 0.312 0.350 0.417 0.472 0.542 0.615 0.423 0.510
Fegyver [22] 0.248 0.309 0.341 0.417 0.487 0.554 0.601 0.422 0.514
Niemeijer [18] 0.243 0.297 0.336 0.397 0.454 0.498 0.542 0.395 0.469
LaTIM[9] 0.166 0.230 0.318 0.385 0.434 0.534 0.598 0.381 0.489
ISMV [20] 0.217 0.270 0.366 0.407 0.440 0.459 0.468 0.375 0.435
OKmedical Il [47] 0.175 0.242 0.297 0.370 0.437 0.493 0.569 0.369 0.465
Adal et al. [46] 0.204 0.255 0.297 0.364 0.417 0.478 0.532 0.364 0.446
OKmedical [10] 0.198 0.265 0.315 0.356 0.394 0.466 0.501 0.357 0.430
GIB Valladolid [48] 0.190 0.216 0.254 0.300 0.364 0.411 0.519 0.322 0.399
Fujita Lab [49] 0.181 0.224 0.259 0.289 0.347 0.402 0.466 0.310 0.378
IRIA Group [15] 0.041 0.160 0.192 0.242 0.321 0.397 0.493 0.264 0.368
Pereira et al. [33] 0.053 0.083 0.135 0.187 0.276 0.407 0.540 0.240 0.366
Waikato [50] 0.055 0.111 0.184 0.213 0.251 0.300 0.329 0.206 0.273

doi:10.1371/journal.pone.0161556.1003
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doi:10.1371/journal.pone.0161556.g012

Recently, Soares et al. [23] reported a sensitivity of 0.47 at 37.8 FPs/I on the training set of
ROC database, while our method achieved a sensitivity of 0.49 at the same FPs/I on the same
set.

DRDB database provides four ground truths annotated by different experts, respectively
denoted as GT1, GT2, GT3 and GT4. Since there are disagreements among four experts’ anno-
tations, we take a consensus of 75% agreement as the fusion ground truth, denoted as FGT.
The proposed method is evaluated by using these ground truths. For comparison, a fused
ground truth used by the DRSCREEN approach [25] (denoted as DFGT), provided by the
authors, is also employed for evaluation. The FROCs of the proposed method with different
ground truths and the FROC of DRSCREEN with DFGT, reproduced from the original work
in [25] with the kind support from the authors, are plotted in Fig 13 and the sensitivities at the
predefined FPs/I, the CPM scores and the partial AUC of the proposed method with different
ground truths, and the results of DRSCREEN [25] with DFGT are listed in Table 4. According
to this figure and table, the proposed method outperforms the DRSCREEN approach at all pre-
defined FPs/I with all ground truths. Particularly, the CPM and partial AUC of the proposed
method (0.180 and 0.270) are much higher than the those of DRSCREEN (0.070 and 0.130)
with DFGT. The possible reason is that the small dark objects in DRDB database are more
complicated, which contains not only MAs but also some small hemorrhages and scars left
after PRP treatment. However, DRSCREEN only selects the optimal combination of several dif-
ferent preprocessing operations and several different candidate extractors, which are designed
to extract small dark objects from fundus images, without further discriminating them. There-
fore, DRSCREEN cannot discriminate these different small dark objects. While in this work,
after extracting candidates, we have trained a classifier with a set of features for classifying
these different small dark objects. Therefore, the proposed method can outperform the
DRSCREEN approach [25] on DRDB database.
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Fig 13. FROC curves of the proposed method and the DRSCREEN approach on the DRDB database.
The FROC curve reproduced from the original work of DRSCREEN [25] on the same database.
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Table 4. The results of the proposed method and the DRSCREEN approach on the DRDB database.

Method
Ours w/ DFGT
DRSCREEN
Ours w/ GT1
Ours w/ GT2
Ours w/ GT3
Ours w/ GT4
Ours w/ FGT

1/8
0.043
0.001
0.042
0.018
0.075
0.031
0.035

doi:10.1371/journal.pone.0161556.t004

1/4
0.071
0.003
0.061
0.053
0.116
0.066
0.058

1/2
0.092
0.009
0.100
0.094
0.209
0.119
0.112

1
0.155
0.020
0.191
0.137
0.288
0.179
0.254

2
0.198
0.059
0.296
0.213
0.408
0.268
0.427

4
0.301
0.140
0.390
0.274
0.526
0.372
0.607

0.398
0.257
0.504
0.331
0.671
0.490
0.755

CPM
0.180
0.070
0.226
0.160
0.328
0.218
0.321

AUC
0.270
0.130
0.352
0.244
0.482
0.336
0.527

Please note that the results of the proposed method evaluated with GT2 are much worse
than those of the other ground truths (See Table 4). The reason is that the regions annotated by

Expert 2 are too large and hence the label information of samples are too ambiguous, which

result in much noise samples in classification and degenerate the performance.
Zhang et al. [10] reported an average sensitivities of 0.713 at three levels of FPs/I (i.e. 1/2, 1,
2) on the DRDB database with the FGT. It is much higher than the value of 0.264 of our
method at those levels, but that approach only used 11 images randomly selected from the
database for both training and testing purpose. Noted that our method was trained with the
training set of 28 images and tested on the whole test set of 61 images. Recently, Adal et al. [46]
achieved a sensitivity of 0.6462 at 10 FPs/I on the DRDB database with the FGT, while our
method have achieved a higher sensitivity of 0.7753 at the same FPs/I. Rosas-Romero et al. [17]
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Table 5. Classification results of different feature combinations on ROC training set.

Features 1/8
w/o H+S+G 0.044
only H+S+G 0.078

w/H 0.079
w/ S 0.043
w/ G 0.064
w/ H+S 0.093
w/ H+G 0.087
w/ S+G 0.087
w/ H+S+G 0.088

doi:10.1371/journal.pone.0161556.t005

1/4 1/2 1 2 4 8 CPM
0.079 0.180 0.252 0.298 0.365 0.428 0.235
0.107 0.139 0.226 0.240 0.296 0.356 0.206
0.111 0.184 0.255 0.349 0.404 0.445 0.261
0.076 0.174 0.245 0.338 0.399 0.438 0.245
0.092 0.164 0.243 0.346 0.392 0.434 0.248
0.121 0.181 0.259 0.349 0.397 0.440 0.263
0.110 0.170 0.264 0.353 0.405 0.444 0.262
0.088 0.154 0.278 0.345 0.398 0.435 0.255
0.122 0.189 0.287 0.343 0.370 0.450 0.264

reported a sensitivity of 0.9232 at the specificity of 0.9387 on the DRDB database, which is
tested on the both training and test set with a selected subset of 88 images. Noted that there is
no description of the selection of the ground truth and the training set in [17]. We here trained
our classifier with the training set of 28 images, and tested it on the subset of 88 images as used
in [17] with the FGT. We achieved a sensitivity of 0.9337 at the same specificity. These
improvements also demonstrates the effectiveness of our method in MAs detection.

Evaluation of Region Descriptors in Classification

To investigate the contribution of region descriptors for candidates classification, we test the
performances of different combinations of region descriptors and the common features.

Table 5 shows the classification results on ROC training set with different feature combina-
tions, i.e., without (w/0), only, or with (w/) the HOG (H), SURF (S) and GIST (G) features.
According to this table, the common features achieve a CPM score of 0.235, while only the
region descriptors can also achieve a score of 0.206. Although the score of the region descrip-
tors is inferior to that of the common features, the region descriptors can achieve higher sensi-
tivities than the common ones at the low FPs/I of 1/8 and 1/4, and the feature sets combined
common features and region descriptors have improved the overall performance of candidate
classification. More specially, the combination included common features and all three region
descriptors have achieved the highest CPM score of 0.264. It is also noteworthy that the
improvement of the combinations with HOG features are more significant than those without
HOG, such as the score of ‘w/ H’, ‘w/ H+S” and ‘w/H+G’ is 0.261, 0.263 and 0.262 respectively.
The possible reason is that the HOG features are extracted in dense overlapping grids, such
that they may provide more supplementary information than other descriptors for common
features in MAs classification.

Analysis

There are some errors of MAs detection with the proposed method in the experiments.

Some true MAs with low contrast are not detected, as shown in Fig 14A and 14B. It is
mainly because that the images in the databases are provided with a compressed format, by
which these subtle MAs are heavily blurred and cannot be found out even by the naked eyes.

Some non-MAs were mistakenly detected as MAs, as shown in Fig 14C-14E. Fig 14Cis a
vessel crossing remained after vessel removal which is misclassified as MAs in classification
stage. This is due to that these non-MAs have similar distribution of gradient vectors with the
true MAs and have been extracted as candidates at the candidate MAs extraction stage, and the
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Fig 14. Examples of error detection. (A)-(B) The true MAs with low contrast. (C) The vessel crossing with
high contrast. (D)-(E) The non-MAs have very similar appearance as true MAs.

doi:10.1371/journal.pone.0161556.g014

extracted features cannot discriminate these false positives at the classification stage. Fig 14D
and 14E lists some isolated spots which are mistakenly detected as MAs. These non-MAs
appeared almost identical to the true MAs, which are challenging to be distinguished even by
ophthalmologists.

Conclusions

This paper proposed a novel automated method for MAs detection in color fundus images,
which contains two stages, i.e. candidate MAs extraction and classification. In the first stage,
the vessels can be effectively removed and the candidate MAs can be accurately localized by
analyzing the gradient vectors of the images, which demonstrates that the gradient vectors can
reflect the characteristic of different objects on fundus images. Most of the true MAs can be
effectively extracted in this stage. To classify the non-MAs and the true MAs, seven types of
features, i.e. geometry, contrast, intensive, edge, texture, region descriptors and other features,
are extracted in the second stage. These features, especially the region descriptors, can well
characterize the true MAs and have high discriminability to the true and the non-MAs. Since
the non-MAs and the true MAs are extremely class imbalanced in the extracted candidates, the
class imbalanced classifiers, e.g. RUSBoost, can effective classify these candidates. The pro-
posed method performs well on different databases.
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