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Abstract

The human immunodeficiency virus type-1 (HIV-1) Rev protein regulates the nuclear export of intron-containing viral RNAs
by recruiting the CRM1 nuclear export receptor. Here, we employed a combination of functional and phylogenetic analyses
to identify and characterize a species-specific determinant within human CRM1 (hCRM1) that largely overcomes established
defects in murine cells to the post-transcriptional stages of the HIV-1 life cycle. hCRM1 expression in murine cells promotes
the cytoplasmic accumulation of intron-containing viral RNAs, resulting in a substantial stimulation of the net production of
infectious HIV-1 particles. These stimulatory effects require a novel surface-exposed element within HEAT repeats 9A and
10A, discrete from the binding cleft previously shown to engage Rev’s leucine-rich nuclear export signal. Moreover, we
show that this element is a unique feature of higher primate CRM1 proteins, and discuss how this sequence has evolved
from a non-functional, ancestral sequence.
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Introduction

HIV-1 is unable to replicate in most non-human species due to

species-specific differences in cellular factors that either inhibit or

promote viral replication. In particular, non-human versions of the

cellular restriction factors APOBEC3G, TRIM5a and tetherin/

BST-2/CD317 can each potently inhibit HIV-1 replication

because the HIV-1 encoded evasion strategies (e.g., the viral Vif

and Vpu proteins) are ineffective [1]. In other instances, HIV-1

does not replicate in certain species due to the lack of functional

versions of cellular proteins necessary for completion of key aspects

of the viral life cycle. Mice and other rodents represent notable

examples and exhibit multiple cellular deficiencies in pathways

required for efficient HIV-1 replication [2]. While these

deficiencies have impeded the development of a small animal

model with which to study HIV-1, murine cell lines have served as

powerful tools for delineating important molecular attributes

of species-specific HIV-1 co-factors, including the CD4 entry

receptor [3,4] and CCR5 co-receptor [5], as well as the cyclin T1

(CycT1/CCNT1) transcription co-factor [6,7]. Significantly, the

combined provision of human versions of CD4, co-receptor

(CCR5 or CXCR4) and CycT1 to murine cell lines does not

restore HIV-1 replication, largely reflecting additional deficiencies

that affect post-transcriptional steps of the virus life cycle [8–10].

The HIV-1 genomic RNA (gRNA) serves as the viral mRNA

encoding the Gag and Gag-Polymerase (Gag-Pol) structural

proteins, the genetic substrate that is packaged by Gag into

virions, and as an RNA scaffold that facilitates Gag-Gag

interactions [11]. Moreover, the full-length gRNA also represents

the viral pre-RNA, with the potential to undergo splicing in the

nucleus to generate the entire repertoire of viral mRNAs.

Therefore, full-length gRNA and a subset of partially spliced viral

mRNAs retain functional introns; this represents a specific

challenge for retroviruses because mRNAs containing introns

are typically prevented from exiting the nucleus [12]. HIV-1

overcomes this barrier through the activity of its regulatory protein

Rev. Rev is expressed from fully spliced viral mRNAs and targeted

to the nucleus where it binds and multimerizes on a cis-acting

HIV-1 RNA target called the Rev response element (RRE) found

only within HIV-1 intron-containing mRNAs. Subsequently, Rev

binds the cellular chromosomal region maintenance-1 (CRM1,

also known as exportin-1/XPO-1) nuclear export receptor

through its leucine-rich nuclear export signal (NES) thereby

forming the viral ribonucleoprotein transport complex [13].
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CRM1 is a member of the karyopherin-b family of nuclear

transport receptors regulated by the small GTPase Ran, and

engages NES-containing cargoes in the nucleus prior to trans-

porting them through the nuclear pore complex for release into

the cytoplasm [14]. CRM1-mediated nuclear export of gRNA

therefore acts a switch to initiate the late stages of the viral life

cycle, because the cytosolic accumulation of gRNA is necessary for

the expression of the Gag and Gag-Pol proteins that ultimately

assemble the virus capsid.

In mouse cells expressing hCycT1, the cytoplasmic abundance

of HIV-1 gRNA and Gag protein synthesis are significantly

reduced in comparison to human cells, and Gag is not efficiently

targeted to plasma membrane assembly sites [6,8,9,15–19]. HIV-1

particle production can be restored in mouse cells by either

modulating Gag’s amino-terminal matrix (MA) membrane

targeting domain in ways that enhance membrane binding

[15,16,18–20] or by reprogramming the nuclear export pathway

used by Gag-encoding mRNAs without modifying the Gag coding

region [18,19,21]. More specifically, we have demonstrated that

replacing the RRE in intron-containing Gag mRNAs with four

copies of the constitutive transport element (CTE) from Mason-

Pfizer monkey virus (M-PMV) effectively restores efficient virus

particle assembly in mouse cells [19]. The CTE mediates M-PMV

gRNA nuclear export independently of CRM1 [22], leading us to

propose that the nuclear export of RRE-encoding transcripts and

Gag assembly competence are linked mechanistically [11,18,19].

Fusing HIV-1 infected mouse cells with human cells results in

vastly improved levels of virus production, indicating that one or

more human cellular factors function to complement these

murine-specific defects [8,9]. Mouse-human somatic cell hybrids

were used to map the relevant gene(s) to human chromosome 2

(Ch2) [23], and recent work from Shida and colleagues studying

rat cells identified species-specific activity in CRM1, a gene

product of Chr2 [24,25]. Here, we demonstrate that human

CRM1 (hCRM1) rescues a defect in the nucleocytoplasmic

transport of viral intron-containing RNAs, including the gRNA.

The molecular determinant of CRM1 underlying this stimulatory

activity is a defined cluster of amino acids on the outer face of

hCRM1’s ringed structure, discrete from the hydrophobic cleft

that binds the leucine-rich Rev NES. Moreover, combined

phylogenetic and functional analyses indicate that the stimulatory

activity conferred by this element may have evolved exclusively in

higher primates.

Results

We established murine NIH 3T3 cells as a platform to screen

for viral and cellular determinants that affect HIV-1 post-

transcriptional regulatory pathways [18,19,26]. To focus on

post-transcriptional events, we engineered surrogate, intron-

containing HIV-1 gRNA that encode Gag and Gag-Pol (derived

from HIV-1NL4-3) and circumvent rodent-specific deficiencies

affecting Tat-dependent transcriptional elongation [7,27] and viral

pre-RNA splicing [8,28,29]. To this end, we replaced the native

HIV-1 promoter with the hCMV-IE promoter, that does not

require HIV-1 Tat, and retained only the major 59-splice donor

and a subset of splice acceptors, thereby reducing the potential for

oversplicing (Figure 1A). The gag and pol genes are located within

the major intron and therefore Gag and Gag-Pol are expressed

solely from full-length transcripts, for which nuclear export is

differentially regulated by including either the HIV-1 RRE (GP-

RRE; Figure 1A, top), that recruits Rev and CRM1, or four copies

of the CTE from M-PMV (GP-4xCTE; Figure 1A, bottom), that

recruits a heterodimer of NXF1 and NXT1/2. As previously

demonstrated, Gag expression and virus-like particle (VLP)

production were diminished for GP-RRE/Rev-dependent tran-

scripts in 3T3 cells relative to human cells such as HeLa under

identical transfection conditions (Figure 1B, compare lane 2 to

lane 11) [19]. By contrast, CTE-dependent nuclear export in 3T3

cells resulted in a marked improvement to VLP production

(Figure 1B, compare lane 6 to lane 2). Both nuclear export

pathways were functionally equivalent in HeLa cells (Figure 1B,

compare lane 11 to lane 15).

hCRM1 rescues HIV-1 viron production in mouse cells
To address the hypothesis that defects in RRE-dependent virus

production in murine cells reflect the lack of functional human

versions of one or more factors, we screened a panel of human

cDNAs encoding proteins with known functions in post-transcrip-

tional regulatory pathways. These cDNAs were co-expressed with

GP-RRE transcripts and Rev in 3T3 cells and we assayed for

improvements to RRE/Rev-dependent Gag expression and VLP

production [26]. In this screen, we identified hCRM1 as a factor

whose expression led to an increase to VLP production relative to

a luciferase control (Figure 1B, compare lane 4 to lane 2). hCRM1

effects on VLP production from GP-RRE transcripts were

dependent on Rev expression (Figure 1B, compare lane 4 and

lane 5) and were not exerted on GP-4xCTE transcripts that do not

rely on Rev-dependent nuclear export (Figure 1B, compare lane 4

to lane 9). Subsequent experiments suggested that hCRM1

displayed substantially more activity in 3T3 cells than the murine

version of CRM1 (mCRM1), indicating that the effect might

reflect species-specific activity (Figure 1B, compare lane 4 to lane

3). By contrast, neither mCRM1 nor hCRM1 expression affected

VLP production in human HeLa cells from either RRE/Rev-

dependent or 4xCTE-dependent transcripts (Figure 1B, right

panel). Taken together, these results highlighted mCRM1 as a

candidate for the source of the defect to RRE/Rev-dependent

HIV-1 virion production in 3T3 cells.

hCRM1 effects on HIV-1 production are species-specific
We further assessed hCRM1 effects on RRE/Rev-dependent

VLP production in a variety of cell lines, using an ELISA to

quantify p24Gag (capsid) levels in the cell supernatant at ,48 h

post-transfection (Figure 2). hCRM1 expression enhanced p24Gag

Author Summary

HIV-1 requires multiple cellular co-factors to replicate, and
non-human cells often carry species-specific variations in
the genes encoding these co-factors that can prevent
efficient replication. Here, the basis for murine cell-specific
deficiencies in the late steps of HIV-1 replication is
addressed. We show that differences between the mouse
and human forms of the essential host protein CRM1, a
protein required for the transport of macromolecules from
the nucleus to the cytoplasm, underlie this problem. More
precisely, murine CRM1, unlike its human counterpart, fails
to fully support the function of the HIV-1 Rev protein, a
factor necessary to transport viral RNAs to the cytoplasm.
Key amino acid differences between the mouse/human
CRM1 proteins are identified and computational analyses
of divergent animal CRM1 proteins reveal a unique motif in
higher primates likely acquired in response to ancient
evolutionary pressures. This CRM1 element may represent
a novel pathogen interaction site that evolved to evade
prior infections, but is now contributing to the suscepti-
bility of humans to HIV-1.
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levels relative to mCRM1 in both 3T3 and murine Ltk- cells

(Figure 2A, samples 1-8) but did not differentially affect VLP

production in cells of human origin including human osteosarco-

ma (HOS) cells and HeLa cells (Figure 2A, samples 9-16), or in

African green monkey Cos7 cells (Figure 2A, samples 17-20).

Importantly, HOS cells exhibit low levels of Gag expression

similar to 3T3 cells [20] and were not affected by hCRM1

expression (Figure 2A, compare samples 11 and 12, and Figure 2B,

compare lanes 7 and 8), suggesting that hCRM1 responsiveness is

not merely a corollary of low levels of Gag expression.

mCRM1 expression consistently resulted in slight increases to

VLP production in murine cell lines relative to a luciferase control

(e.g., Figure 1B, Figure 2A), so that we directly compared the

relative activities of mCRM1 and hCRM1. Varying amounts of

Figure 1. hCRM1 expression promotes HIV-1 VLP production in mouse cells. (A) Cartoon depicting the CMV-driven surrogate, intron-
containing gRNA encoding Gag and Gag-Pol (GP) used in our screen. Rev-dependent, intron-containing transcripts (GP-RRE, top) carry a single Rev
response element (RRE) forming 4 RNA stem loops predicted to accomodate 3 Rev (R) homodimers that recruite a maximum of two CRM1/Ran-GTP
export complexes (based on [66]). Rev-independent GP transcripts (GP-4xCTE, bottom) carry four copies of the constitutive transport element (4xCTE)
that binds to the NXF1/NXT1/2 heterodimer [54,67]. With the exception of the export element, the GP-RRE and GP-4xCTE transcripts were identical
and included the major splice donor (SD) and two native splice acceptors (SA’s). Gag and Gag-Pol expression results exclusively from full-length,
intron-containing transcripts. (B) 3T3 or HeLa cells were were transfected with pGP-RRE (1 mg) and 0.5 mg of plasmids encoding either luciferase,
mCRM1 or hCRM1, with or without 0.25 mg pcRev as indicated. ,48 h post-transfection, VLPs and cell lysates were harvested for immunoblot analysis
using anti-p24Gag or anti-HSP90 (loading control) antibodies.
doi:10.1371/journal.ppat.1002395.g001
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Figure 2. hCRM1 effects on HIV-1 VLP production are species-specific. A) The indicated cell lines were transfected as for Figure 1B.
Supernatants were harvested at ,48 h post-transfection and p24Gag levels were measured by ELISA. Error bars represent the standard deviation for
three independent transfections. In 3T3 cells, mCRM1 increased VLP production 2.9-fold (+/21.4, n = 9, p = 0.0242 for mCRM1 vs. luciferase) and
hCRM1 12.5-fold (+/25.2 n = 9, p = 0.0045 for hCRM1 vs. Luc) relative to the luciferase control. B) Gag expression profiles for 3T3 and HOS cells
transfected as for (A) and analyzed by immunoblot as for Figure 1B using antisera detecting p24Gag and HSP90 (loading control).
doi:10.1371/journal.ppat.1002395.g002
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myc epitope-tagged versions of these proteins were expressed with

GP-RRE transcripts and Rev prior to detection by immunoblot

using an anti-myc antiserum (Figure 3A). myc-hCRM1 was

substantially more active than myc-mCRM1 in stimulating VLP

production, even at lower levels of abundance (Figure 3A,

compare lanes 3-5 to lane 2). The myc tag also allowed us to

demonstrate by indirect immunofluorescence that both proteins

exhibited similar intracellular distributions in 3T3 cells, localizing

predominantly to the nucleus but with pronounced accumulation

at the nuclear membrane (Figure 3B). To further test hCRM1

species-specificity, we established 3T3 cell lines that stably

expressed GFP-tagged versions of mCRM1 (3T3.GFP-mCRM1)

or hCRM1 (3T3.GFP-hCRM1). Compared to the parental cell

line, VLP production was improved ,4-fold for the cells

expressing GFP-hCRM1 relative to GFP-mCRM1, despite similar

levels of transgene expression relative to endogenous CRM1

(Figure 3C, compare lane 3 to lanes 1 and 2). In sum, these

experiments demonstrated that hCRM1 exhibits species-specific

activity compared to mCRM1 in enhancing HIV-1 particle

production.

hCRM1 induces HIV-1 gRNA nuclear export to stimulate
the post-transcriptional stages of the viral life cycle in
mouse cells

To evaluate the functional consequences of hCRM1 expression

on the individual post-transcriptional stages of the HIV-1 life

cycle, we assessed hCRM1 effects in the context of the full-length

HIV-1NL4-3 provirus (Figure 4). To ensure efficient Tat-dependent

transcription from the HIV-1 promoter, we co-expressed a

previously described version of murine CycT1 (tyrosine-261

changed to cysteine; Y261C) that is fully Tat-responsive in mouse

cells [6,27]. Consistent with the GP-RRE system, myc-hCRM1

expression increased HIV-1 particle release ,6-fold relative to

myc-mCRM1 as measured by ELISA (Figure 4A, compare lanes 3

and 4). myc-hCRM1 did not affect a Rev-deficient (NL4-3/Rev-

minus) provirus, confirming that these effects were Rev-dependent

(Figure 4A, lane 5). We also tested if these viruses were infectious

by harvesting cell supernatants at 48 h post-transfection and

adding them to TZM reporter cells (Figure S1). The combined

expression of mCycT1-Y261C and myc-hCRM1 resulted in a

,100-fold increase in infectious virus production from 3T3 cells

relative to the expression of mCycT1-Y261C alone (Figure S1A,

compare lanes 2 and 5) and, when normalized for levels of input

p24Gag, this virus exhibited comparable infectivity to viruses

harvested from HeLa cells (Figure S1B).

To test the effects of hCRM1 expression on HIV-1 RNA

abundance in the cytoplasm, we performed northern blotting on

samples from an experiment identical to that in Figure 4A, using a

probe that detects the full repertoire of HIV-1 mRNAs that

includes ,9 kb unspliced, ,4 kb partially-spliced and ,2 kb fully-

spliced transcripts. The intron-containing ,9 kb and ,4 kb

transcripts harbor the RRE and require Rev for their nuclear

export while the accumulation of ,2 kb transcripts in the

cytoplasm is independent of Rev activity. The intron-containing

RNAs accumulated to low levels in the cytoplasm of 3T3 cells

expressing wild-type provirus and, as anticipated, were absent

from the cytoplasm in cells expressing a Rev-minus mutant

(Figure 4B, compare lanes 2 and 5). The relative abundance of

cytoplasmic ,9 kb unspliced RNA (gRNA) was increased ,4-fold

by hCRM1 relative to mCRM1 (Figure 4B, compare lane 3 to

lane 4).

We next directly compared hCRM1 effects on Gag synthesis

rates and virus particle production. myc-hCRM1 expression led to

an enhanced rate of Gag translation relative to myc-mCRM1 at all

levels of input plasmid (Figure 4C) as measured by metabolic

labeling, correlating well with the observed increases to gRNA

levels in the cytoplasm. Interestingly, relative effects on net virus

particle release as measured by p24Gag ELISA for these conditions

were ,3-fold higher than the increase in translation rate

(Figure 4C, compare lanes 3 and 6, black bars). Taken together,

the results presented in Figure 4 demonstrated that the ectopic

expression of hCRM1 in murine cells increases the cytosolic

abundance gRNA, resulting in improved Gag expression and a

more pronounced boost to the efficiency of virus particle

production.

hCRM1 enhances matrix-dependent Gag membrane
targeting in mouse cells

In mouse cells, it is well-established that virus particle assembly

is enhanced by modifications of Gag amino-terminal matrix

domain (MA) that enhance Gag-membrane association [15,16,18–

20]. MA encodes a bipartite plasma membrane targeting signal

consisting of a hydrophobic myristoylation that modifies the

amino-terminal glycine residue and a patch of basic amino acids

distributed between amino acids 15 and 33 (Figure 5A) [30]. Gag

membrane targeting is thought to be regulated by a myristoyl

switch mechanism wherein the myristoyl group is sequestered

within the MA globular head domain unless exposed in response

to stimuli including Gag-Gag interactions and binding to the

plasma membrane resident phosphoinositide PI(4,5)P2 [31,32].

We recently described a Gag mutant carrying a single change to a

non-charged amino acid, leucine-21 to serine (L21S) (highlighted

in Figure 5A), that dramatically improves Gag assembly efficiency

in murine cells, likely by circumventing the myristoyl switch

mechanism in order to constitutively target Gag to the plasma

membrane [18,33].

To test if hCRM1 effects on Gag assembly in 3T3 cells are MA-

dependent, we expressed Gag from GP-RRE subgenomic

transcripts encoding wild-type Gag and Gag-L21S with myc-

mCRM1 or myc-hCRM1 and measured virus assembly efficiency

by calculating a ‘‘release factor’’ representing the ratio of released

Gag to cell-associated Gag at 48 h post-transfection (Figure 5B).

These experiments were performed under conditions where the

viral protease was inactivated so that Gag levels could be measured

by quantitative immunoblot as a discrete, uncleaved 55 kDa

species. hCRM1 expression significantly enhanced the assembly

efficiency of wild-type, Rev-dependent Gag (GP-RRE) relative to

mCRM1 almost 5-fold, corresponding to an increased Gag

translation rate of , 2-fold (Figure 5B, compare lane 3 to lane

4). Moreover, these effects were CRM1-dose dependent (Figure

S2). By contrast, hCRM1 had relatively little impact on the

assembly efficiency of the Gag-L21S mutant that constitutively

targets the plasma membrane [18] (Figure 5B, compare lanes 5

and 6). Overall VLP output of Gag-L21S increased ,2-fold in the

presence of hCRM1, corresponding not to better assembly

efficiency but to improvements in Gag synthesis rates (Figure 5B,

lower panel, compare lanes 5 and 6). Consistent with a rescue of

Gag trafficking to virus assembly sites, single-cell visual analysis of

Gag distribution under these conditions revealed a striking

accumulation of Gag at the plasma membrane in 43% of cells

expressing hCRM1 compared with 17% for mCRM1 (Figures 5C).

In sum, hCRM1 expression promotes Gag’s ability to traffic to the

plasma membrane in mouse cells and efficiently assemble into

virus particles.

The myristoyl switch in Gag is regulated by Gag multimerization,

which is a cooperative process [32,34]. Since hCRM1 exerted

moderate effects on Gag expression in mouse cells but amplified

effects on the production of virus particles (Figures 4C and 5B), we
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asked if these effects were cooperative and due to achieving a

threshold level of intracellular Gag or, instead, reflected a second

function for hCRM1 in modulating MA-dependent Gag membrane

targeting. We titrated Gag expression plasmids in the presence of

hCRM1 to achieve intracellular levels of Gag equivalent to that

observed in the absence of hCRM1 expression. At comparable levels

of Gag for either condition, we observed nearly identical levels of

VLP production (Figure 5D top panel, compare lanes 1 and 3).

Moreover, the magnitude of the release factor for virion production

correlated with the intracellular abundance of Gag (Figure 5D,

bottom panel). Therefore, hCRM1’s effects on HIV-1 assembly in

mouse cells can be attributed to its ability to enhance Gag expression

(Figures 4C and 5B, lower panel), which is achieved through

increasing the cytoplasmic level of gRNA.

Identification of a functional domain within hCRM1 that
stimulates HIV-l production in murine cells

To assess the relevance of individual domains of CRM1 to HIV-1

Rev function, we constructed eight myc-tagged CRM1 chimeras,

alternating the mouse or human species identity of the amino-,

central-, and carboxyl- portions of the protein as depicted in

Figure 6A. When co-transfected with GP-RRE and Rev plasmids

into 3T3 cells, we observed significant increases in VLP production

whenever the central region (residues 381 to 800) of the chimera was

derived from hCRM1 (Figure 6B, lanes 3,4,7 and 8). For instance, the

mouse-human-mouse (MHM) chimera exhibited activity while the

human-mouse-human (HMH) chimera did not, demonstrating that

the activity within the central domain was both transferable and

sufficient (Figure 6B, compare lanes 6 and 7).

Figure 4. hCRM1 overcomes deficiencies in HIV-1 production in murine cells. (A) 3T3 cells were co-transfected with 1.0 ug HIV-1NL4-3

plasmid (lanes 2-4) or HIV-1NL4-3 Rev-minus plasmid (lane 5), 0.5 mg mCycT1-Y261C plasmid and either 0.5 mg mCRM1 plasmid (lane 3) or hCRM1
plasmid (lanes 4 and 5). Cells and supernatants were harvested at 48 h post-transfection and analyzed by immunoblot and p24Gag ELISA. myc-CRM1
species were detected using anti-myc antiserum. myc-hCRM1 expression increased HIV-1 particle release relative to myc-mCRM1 6.4-fold (+/21.7
n = 7) as measured by ELISA. (B) 3T3 cells were transfected as for (A) and processed for northern blot analysis ,48 h post-transfection. Cytoplasmic
(lanes 1-5) and nuclear (lanes 6-10) RNA fractions were probed with [32P]dCTP-labeled DNA probes complementary to HIV-1 mRNA or b-actin mRNA
(loading control). The Rev-minus control also served as a cell fractionation control. The relative abundance of cytoplasmic ,9 kb unspliced RNA
(gRNA) was increased ,4.0-fold (+/20.95, n = 3) in the presence of hCRM1 relative to mCRM1. Nuclear gRNA levels increased 2.1-fold +/2 1.2
comparing hCRM1 to mCRM1. (C) 3T3 cells were transfected as for (A) with the indicated plasmids. Supernatants were harvested at ,43 h post-
transfection for analysis by p24Gag ELISA (black bars) and proteins were radiolabeled using [35S]methionine/cysteine for 20 min at 37uC. Cells were
lysed and Gag was immunoprecipitated, resolved by SDS-PAGE, transferred to nitrocellulose and visualized using autoradiography. [35S]-labelled Gag
was quantified using a phosphoimager. Fold changes to Gag levels are shown relative to the luciferase control. The pulse data is representative of 3
independent experiments and myc-hCRM1 expression enhanced the rate of Gag translation ,3.6-fold (+/21.2, n = 3) relative to myc-mCRM1 at
500 ng of input plasmid. A duplicate set of samples, shown below, were subjected to immunoblot analysis in order to detect myc-CRM1 species and
HSP90. Error bars represent the standard deviation for three independent transfections.
doi:10.1371/journal.ppat.1002395.g004

Figure 3. hCRM1 is more responsive to Rev than mCRM1. (A) 1 mg GP-RRE and 0.25 mg Rev plasmids were co-transfected into 3T3 cells with
the indicated amounts of myc-tagged versions of luciferase, mCRM1 and hCRM1. Supernatants and cell lysates were harvested at ,48 h post-
transfection and analysed by immunoblot using anti-myc and anti-HSP90 (loading control) antibodies. myc-hCRM1 was 5.3-fold (+/21.9, n = 3) more
active than myc-mCRM1 in stimulating VLP production at 250 ng input of hCRM1 plasmid relative to 500 ng mCRM1 plasmid. (B) 3T3 cells transfected
as for (A) were fixed on glass coverslips at ,24 h post-transfection prior to visualization by indirect immunofluorescence using anti-myc antiserum
and fluorescently conjugated secondary antibodies prior to confocal microscopy. Cell nuclei were visualized using DAPI. Images represent merged
confocal z-slices covering ,1 mm of the center of the cell. Size bars represent 5 mm. (C) 3T3 cells and 3T3 cells lines stably expressing GFP-mCRM1 or
GFP-hCRM1 were transfected with 1 mg GP-RRE and 0.25 mg Rev plasmids and analyzed by p24Gag ELISA and immunoblot. CRM1 species were
detected using anti-CRM1 antibodies.
doi:10.1371/journal.ppat.1002395.g003
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CRM1 is a toroid-shaped molecule that is remarkably well-

conserved throughout the animal kingdom, with murine and

human versions of CRM1 differing at only 21 of 1071 amino acids

(98% identity). CRM1 consists of 21 ‘‘HEAT’’ repeats; antiparallel

alpha helices wherein the ‘‘A’’ helix faces outward on the convex

face of the molecule and the ‘‘B’’ helix faces inward as depicted in

Figure 6C. Recent structural work provides strong evidence for a

model wherein Ran-GTP (in purple) binds to the inner surface of

CRM1 and triggers allosteric changes in the hydrophobic NES

binding pocket located within HEAT repeats 11 and 12, thereby

promoting the binding of an NES-bearing cargo (Rev NES in

blue) to form the trimeric CRM1/Ran/cargo export complex [35-

38]. The mCRM1 and hCRM1 proteins differ at only seven

positions within the central domain (Figure 6C, specific residues

are highlighted in red), all of which are located on the outward-

facing ‘‘A’’ helices of HEAT repeats 9A and 10A, with the

exception of amino acid 402 that is situated on the loop just

upstream of HEAT repeat 9A. HEAT repeats 9A and 10A form a

contiguous surface ‘‘patch’’ that is over 20 Å away from the Rev

NES binding site (Figure 6C, bottom panels and Figure S3, note;

no density was observed for the loop including residue 402 in the

hCRM1 crystal structure) and clearly does not interact with the

Rev NES. Indeed, the amino acids that interact with Ran or the

Rev NES [36,37] are invarient between human and mouse. Single

mouse-to-human amino acid substitutions in mCRM1, at each of

the differing seven residues, were not sufficient to stimulate VLP

production (Figure 6B, lanes 12 through 18). By contrast, a triple

substitution (T411P/V412M/S414F) corresponding to the human

Figure 5. hCRM1 expression in mouse cells improves Gag assembly efficiency and trafficking to the plasma membrane. (A) Depiction
of the Gag MA domain showing the amino-terminal myristoyl group and basic patch (basic residues are highlighted with a ‘‘+’’). Replacement of
leucine-21 with serine results in a mutant that constitutively targets the plasma membrane in 3T3 cells [18]. (B) 3T3 cells were transfected as for
Figure 1B with the indicated Gag expression constructs. To prevent the proteolytic processing of Gag, the protease inhibitor saquinavir was added to
a concentration of 1 mM at 24 h post-transfection. p55Gag, CRM1 and HSP90 were detected by immunoblot and Gag assembly efficiency was
measured based on a ‘‘release factor’’: the ratio of VLP-associated p55Gag to cell-associated p55Gag. Values represent the fold change in release factor
relative to the luciferase control (lane 2). The data is representative of 3 independent experiments. Shown at bottom, cells from an identical
experiment were metabolically labeled for 15 minutes with [35S]methionine/cysteine ,43 h post-transfection and Gag was detected as described for
Figure 3C. Fold changes to Gag levels are relative to the luciferase control (gray bar, lane 2). hCRM1 expression enhanced the assembly efficiency of
wild-type, Rev-dependent Gag (GP-RRE) relative to mCRM1 4.6-fold (+/-1.8, n = 5) corresponding to a increased Gag translation rate of 1.9-fold (+/
20.2, n = 3). (C) 3T3 cells were plated on glass coverslips, transfected as for (B) using the indicated Gag expression constructs and fixed at ,30 h post-
transfection prior to immunostaining with p24Gag-(red) and p17Gag-(green) specific antibodies that preferentially recognize immature p55Gag and
processed, mature p17Gag, respectively, followed by fluorescently conjugated secondary antibodies (upper panel). Cell nuclei were visualized using
DAPI. Images represent a merger of 4 confocal z-slices to cover ,1 mm in the z-dimension at the center of the cell, size bars represent 10 mm. 200 CA-
positive (red) cells for each condition were scored blindly for evidence of MA (green) accumulation at the plasma membrane (lower panel). (D) 3T3
cells were transfected with 0.25 mg Rev and 0.5 mg hCRM1 or luciferase plasmids plus decreasing amounts of GP-RRE plasmid as indicated. Each
transfection mix was normalized to 1.75 mg of total plasmid by adding additional luciferase plasmid as required. VLP levels were assessed using a
p24Gag ELISA and intracellular Gag and HSP90 were visualized by immunoblot (upper panels). Intracellular Gag levels were quantified and a release
factor was calculated based on the ratio of released p24Gag to intracellular Gag (lower panel). Error bars represent the standard deviation from three
identical experiments.
doi:10.1371/journal.ppat.1002395.g005
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configuration of amino acids in HEAT repeat helix 9A,

consistently exerted a stimulatory effect (,2-fold compared to

mCRM1) on VLP production (Figure 6B, lane 10).

The functional domain in hCRM1 HEAT repeat 9A evolved

specifically in higher primates. The clear dichotomy between

human and mouse CRM1 in terms of supporting Rev function

prompted us to consider its sequence evolution. We reconstructed

the phylogeny of 17 full length mammalian CRM1 sequences using

maximum likelihood inference (Figure 7A). Interestingly, the 21

amino acid differences between human and mouse CRM1 were due

to two independent bursts of change, with 12 amino acidchanging

substitutions in the primate lineage and 9 amino acid changing

substitutions in the murid lineage of rodents that includes mice and

rats. These two instances of diversification resulted in more amino

acid changes than any other internal branch (or lineage) of the

phylogeny (Figure 7A). 6/21 of these changes (28%) fell within

HEAT repeat 9A or 10A while, combined, these two helices

comprise only 3% of the protein’s amino acids.

CRM1 overall, and HEAT repeat helices 9A and 10A in

particular, is well conserved among representatives of the

Laurasiatheria (horse), Afrotheria (elephant) and Xenarthra

(armidillo) placental mammalian superorders (e.g., Figure 7B).

These two helices are also highly conserved in marsupials

(opossum), monotremes (platypus), and other vertebrates such as

the chicken and zebrafish, whose evolution from a common

ancestor, combined, spans hundreds of millions of years. Further

investigation of CRM1 changes in the primate lineage indicated

that these amino acid substitutions occured abruptly in evolution-

ary time. For example, the tarsier, a primate, has a CRM1 amino

acid sequence identical to horse CRM1, while the Simiiformes

(new and old world monkeys) exhibit 12 amino acid differences

(A191S, G334D, V412M, S414F, A869T, P961S, M972I, I974L,

T1040I, Q1046D, L0152R, L1060F). All 12 of these changes

occured at a similar time in mammalian evolution, when

Simiiformes diverged from Tarsiiformes ,80 million years ago

[39]. They were subsequently fixed in all descending primates, as

indicated by the presence of these amino acid alterations in all

Simiiform CRM1 sequences that are currently available

(Figure 7B). Because the amino acid changes in the central region

of CRM1 are important for the function of CRM1 as a cofactor

for HIV-1 RNA nuclear export (Figure 6B), the evolution of the

two changes in Simiiformes HEAT repeat helix 9A (V412M and

S414F) are highlighted in Figure 7B. A similar phenomenom

occured in the rodent lineage, where all 9 changes (V284E, I337L,

T346A, V402I, P411T, R474I, E478K, H481Q, E976D) occured

in the lineage separating Muridae from Sciuridae (squirrels) and

Heteromyidae (kangaroo rats) and are also not found in the

lagomorphs rabbit and pika. The evolution of the five changes

distributed in or near HEAT repeat helices 9A and 10A (V402I,

P411T, R474I, E478K, and H481Q) in murids are highlighted in

Figure 7B.

Recent analyses of several host antiviral restriction factors that

interact with retroviral proteins have revealed that the sites of

interaction have been subjected to positive, or Darwinian,

Figure 6. A species-specific determinant within hCRM1 is necessary for efficient HIV-1 virus production. (A) Depictions of mCRM1
(green), hCRM1 (red) and key mouse-human CRM1 chimerae. mCRM1 and hCRM1 exhibit 21 amino acid differences (ticks). The human-mouse-human
(HMH) and mouse-human-mouse (MHM) chimeric proteins were constructed as shown. HEAT repeats 9-12 and the NES-binding cleft (blue line) are
highlighted. (B) 3T3 cells were transfected with pGP-RRE, pcRev and plasmids encoding the indicated CRM1 species. VLP production was measured
by p24Gag ELISA at ,48 h post-transfection and cell lysates were subjected to immunoblot using anti-myc and anti-HSP90 (loading control)
antibodies. (C) Murine- and human-specific residues within HEAT repeat helices 9A and 10A are highlighted in red for mCRM1 (upper and bottom left
panels, PDB ID: 3NBZ) [36] and hCRM1 (lower right panel, PDB ID: 3GB8) [35]. The loop shown only for mCRM1 including residue 402 (bottom left) was
not resolved in the published hCRM1 structure. RanGTP (purple) and the Rev NES (blue) in complex with mCRM1 are as indicated. The figure was
generated using PyMol.
doi:10.1371/journal.ppat.1002395.g006
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selection: examples include APOBEC3G, APOBEC3F, TRIM5a

and tetherin/BST-2/CD317 [40–43]. In particular, these coding

elements are marked by a high ratio of non-synonymous (codon-

altering; dN) changes relative to synonymous (silent; dS) changes

within a coding region, resulting in dN/dS values . 1.0 [44]. The

estimation of dN/dS across the entire gene by single likelihood

ancestor counting method (SLAC) indicated that the evolution of

CRM1 has been driven by very strong negative selection

throughout mammalian evolution (mean dN/dS = 0.015 [95%

confidence intervals: 0.011;0.019]), consistent with a strong

sequence conservation among species. However, because dN/dS

can vary for specific regions of a protein, we evaluated whether

positive selection had occurred in individual domains of CRM1.

Because primates and rodents are both members of the

Euarchontoglires placental superorder, we compared human or

mouse CRM1 to CRM1 from the horse, a member of the

Laurasiatheria placental superorder, using a 30 bp sliding window

dN/dS analysis (step-size of 3 bp). The human/horse comparison

revealed two peaks of dN/dS .1 within HEAT repeats 9A and

21B (Figure S4A) while all other regions had a dN/dS , 1. A

similar sliding window comparison between human and mouse

CRM1 sequences demonstrated a dN/dS . 1 peak only within

HEAT repeat 9A. However, all dN/dS values in both analyses

were less than 2 and therefore did not completely rule out a

scenario of neutral evolution, wherein dN/dS = 1. In addition,

codon-specific selection analyses using SLAC, fixed effect

likelihood (FEL) and random effects likelihood (REL) failed to

identify individual sites under continuous positive selection at the

p,0.05 statistical level.

In order to test whether specific residues in the CRM1 HEAT

repeat helices 9A or 10A were subjected to positive selection along

the branches leading to the higher primates (red branch; Figure 7A)

and to the murid rodents (blue branch; Figure 7B), we performed

branch-site dN/dS analyses. These analyses, restricted to the

HEAT repeat 9A plus residues 402-404, identified 2 positively

selected sites on the branch leading to the higher primates at

positions 412 and 414 as well as two positively selected sites on the

branch leading to the rodents at positions 402 and 411 (Table S1).

Branch-site analysis of HEAT repeat 10A identified all 3 rodent-

specific changes (I474, K478 and Q481) as resulting from positive

selection (Table S1). However, the model assuming positive

selection along these branches did not provide a significantly better

fit to the data compared to the neutral model (p.0.99) so that,

again, an episode of neutral selection, or relaxed purifying

selection, on these branches cannot be fully excluded. In sum,

fixation of multiple changes in HEAT repeat 9A within the

Simiiformes infraorder and HEAT repeat helices 9A and 10A in

the Muridae family suggest two bursts of rapid amino acid

Figure 7. The hCRM1 stimulatory domain may be a specific adaptation of higher primates. (A) The phylogeny of 17 full-length CRM1
sequences was determined by maximum likelihood inference. Local support values .90% (one star) or = 100% (two stars) are indicated on the
branches. Branch lengths indicate the number of nucleotide substitutions per site. Values on the branches correspond to the number of amino acid
changes compared to the reconstructed ancestral CRM1 sequence. The branches leading to higher primates (red) and murids (mice and rats) (blue)
exhibited 12 and 9 changes, respectively, compared to the reconstructed ancestral sequence. (B) Amino acids within HEAT repeat helices 9A and 10A
that differ between mCRM1 and hCRM1 (positions noted at top), and their changes from an ‘‘ancestral Euarchontoglires’’ consensus in this region.
The A470V change appears to have occured in the evolution of the placental superorders, and the valine is present in all of the Euarchontoglires
CRM1 sequences we analyzed. The sequence of HEAT repeat 10A was not available for the mouse lemur. (C) 3T3 cells were transfected with pGP-RRE,
pcRev and plasmids encoding the indicated CRM1 proteins. VLP production and immunoblot analyses of cell lysates were performed as described for
Figure 6B.
doi:10.1371/journal.ppat.1002395.g007
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alterations, resulting either from ancient selective pressures or an

episodic relaxation of the negative constraints otherwise main-

taining these particular regions.

Considering that both human and mouse CRM1 HEAT

repeats 9A and 10A have substantially diverged from the ancestral

sequence (Figure 7B), we sought to determine if the functional

human CRM1 activity was due to its two amino acid changes

(V412M, S414F) relative to the ancestral sequence or, alterna-

tively, if the non-functional mouse CRM1 activity reflected its five

changes (V402I, P411T, R474I, E478K, H481Q). We addressed

this question by substituting the central domain of mCRM1 with

the ‘‘ancestral’’ configuration of amino acids (Figure 7B, middle

sequences) and measuring the ability of the ectopically expressed

CRM1 chimeras to promote VLP production in 3T3 cells

(Figure 7C). The activity of the M-ancestral-M CRM1 was

equivalent to mCRM1, despite the fact that only residues 412 and

414 differed in this protein relative to the more active MHM

chimera. Given that the mCRM1-T411P/V412M/S414F triple

mutant exhibited some stimulatory activity (Figure 6B), we infer

that the human, and not the ancestral, HEAT repeat helix 9A

sequence is central to CRM1’s capacity to serve as an effective co-

factor for HIV-1 Rev function.

Discussion

Here, we provide evidence that the human CRM1 protein

contains a species-specific element required for efficient nucleocy-

toplasmic transport of Rev-dependent HIV-1 intron-containing

RNAs and infectious HIV-1 production in murine cells (Figures 1-

5). CRM1 is the major nuclear export receptor for cellular

proteins, and maintains the nucleocytoplasmic partitioning of a

broad array of cellular factors that regulate cell signaling and gene

expression. These critical functions are emphasized by CRM1’s

high level of sequence conservation; for example, 98% amino acid

identity is shared between human and mouse and 96% between

human and fish (Danio rerio). Our results therefore present a striking

example of how the evolution of subtle changes within an essential

host protein, with no evidence of disturbing general cellular

function, can have profound implications for the replication of an

important human pathogen.

In keeping with our observations, the Shida lab previously

demonstrated a synergistic effect for hCRM1 expression combined

with human CycT1 expression in increasing HIV-1 production

from rat macrophages [25], and recently reported a defect in rat

CRM1 that specifically impacted HIV-1 assembly with effects that

were largely independent of changes to cytoplasmic gRNA

abundance, Gag levels or Gag trafficking to the plasma membrane

[24]. By contrast, our work identifies ineffective Rev-mediated

RNA nuclear export as the principal manifestation of murine

CRM1 activity (Figure 4B) and we demonstrate that hCRM1

expression triggers a significant increase to cytoplasmic gRNA

levels and intracellular Gag concentration in murine cells (e.g.,

Figures 4 and 5). These increases likely underlie the observed

stimulation of MA-dependent transport of Gag molecules to the

plasma membrane (Figure 5), and are consistent with a model

wherein cooperative, concentration-dependent Gag-Gag interac-

tions regulate the efficiency of virus particle assembly [32,34]. At a

fundamental level, our data support the earlier Trono and

Baltimore assertion that Rev-dependent nuclear export is deficient

in mouse cells [17], and we conclude that the species-specific

factor responsible for this defect is CRM1.

The ability of hCRM1 to stimulate HIV-1 production requires

a species-specific configuration of amino acids on the convex

surface of CRM1 within HEAT repeat helices 9A and 10A

(Figure 6). Activity can be transferred from hCRM1 to mCRM1

by swapping the central domain, indicating that, in the context of

either species’ CRM1, this region is both necessary and sufficient

for stimulating virus particle production in murine cells (Figure 6B,

compare lanes 6 and 7). Remarkably, amino acids within HEAT

repeats 9A and 10A are almost entirely conserved in all sequenced

placental animals, with two notable sets of changes in the primate

and rodent lineages (Figures 6C and 7B). Regarding hCRM1, we

demonstrate that the insertion of the primate configuration of

proline-411, methionine-412, phenylalanine-414 to the mouse

protein (Figure 6B), as well as the removal of methionine-412 and

phenylalanine-414 from the human central domain in the M-

Ancestral-M chimera (Figure 7C) both impact on CRM1 activity,

highlighting the biological significance of this surface-exposed

element.

How might a CRM1 element impact Rev-dependent nucleo-

cytoplasmic RNA transport, considering that the hydrophobic

cleft that engages the Rev NES, located within HEAT repeats 11

and 12 (amino acids 514 to 575), is wholly conserved between

hCRM1 and mCRM1 (Figure 6A), and throughout the animal

kingdom? The implicated species-specific domain comprising

HEAT repeat helices 9A and 10A is positioned more than 20 Å

from the NES binding site (Figure S3). While significant, this

distance might not exclude the formation of a secondary interface

between CRM1 and one or more additional elements associated

with Rev or the viral gRNA ribonucleoprotein complex. Indeed,

CRM1 was reported to interact more strongly with Rev compared

to a Rev NES peptide [45]. Moreover, protein footprinting

analysis implied a secondary Rev/CRM1 interface, although these

Rev-protected residues localize to CRM1 HEAT repeats 15 and

16 and not to HEAT repeat 9A/10A [46]. Importantly, several of

the residues in HEAT repeats 9A and 10A that contrast between

human and mouse CRM1, including proline-411, phenylalanine-

414, arginine-474 and histidine-481, were implicated in CRM1’s

ability to recruit RanBP3 [47], a factor affecting CRM1’s

interaction with RanGTP and ability to bind to specific substrates

[48–50]. Despite this finding, wild-type versions of human and rat

CRM1 exhibit a similar capacity to engage RanBP3 [47] so the

relevance of this particular interaction remains to be determined.

Taken together, it will be important to further characterise how

differences between the human, mouse and ancestral sequences of

CRM1 influence its interaction with the Rev hexamer on the RRE

as well as with other nuclear export co-factors.

Positive selection and neutral selection are two possible

scenarios for how HEAT repeats 9A and 10A may have evolved

more drastically in the primate and murid lineages. While

extensive phylogenetic and computational analyses of selective

pressure in CRM1 failed to prove positive selection, we find it

remarkable that these ‘‘bursts’’ of diversification within CRM1

HEAT repeats 9A and 10A were maintained over the subsequent

80 million years (Figures 6 and 7). Considering that this region of

CRM1 clearly exhibits important biological relevance, at least to

HIV-1, we suggest that positive, pathogen-driven selection may

well underlie the emergence of these key CRM1 residues. We can

only speculate as to the source of such selective pressure, but

emphasize that modulation of nuclear membrane transport is

critical for retroviral replication. For example, all lentiviruses such

as HIV-1, as well as deltaretroviruses like HTLV, encode Rev-like

proteins that use CRM1 to regulate the export of intron-

containing RNA from the nucleus. Notably, neither lentiviruses

nor deltaretroviruses are associated with natural infection of

rodents. Despite this apparent exclusion, a Rev equivalent, Rem,

was recently identified for the betaretrovirus mouse mammary
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tumor virus [51,52], indicating that CRM1 may indeed be co-

opted by rodent retroviruses.

In sum, we hypothesize that CRM1 was subject to a strong

selection event in the primate lineage ,80 million years ago that

altered the sequence of HEAT repeat 9A. While we do not know

the pathogen (or other selective pressure) that caused this, we have

shown that the resulting CRM1 sequence is better able to support

HIV-1 Rev’s function as a mediator of viral RNA nuclear export.

This may therefore serve as an example of the complexity of the

pathogen-host ‘‘arms race’’, wherein protein evolution in response

to one pathogen has, over time, provided a useful foothold for the

efficient replication of another.

Materials and Methods

Cell culture, plasmids and stable cell lines
Cells were cultured in Dulbecco’s modified Eagle medium

supplemented with 10% fetal bovine serum plus L-glutamine and

penicillin/streptomycin. The pGP-RRE-, pGP-46CTE-based

vectors, pBC12/IL-2, pcRev, pBC12/mCycT1-Y261C-3HA and

pluciferase have been described [18,19,27,53]. The 4xCTE was a

kind gift of Hans Georg Kräusslich [54]. Murine and human

CRM1 cDNAs were obtained from Open Biosystems (Thermo

Scientific) and cloned into pcDNA3.1 (Invitrogen). An amino-

terminal triple-myc encoding epitope tag was added to CRM1,

luciferase and GFP expressing vectors using a modified triple-myc

pcDNA3.1 (Invitrogen)-based plasmid. myc epitope tagged mouse-

human chimeric cDNAs and mutants thereof were generated by

overlapping PCR and also cloned into the triple-myc vector. The

Rev-minus HIV-1NL4-3 provirus was generated by replacing the

EcoRI-NheI fragment of pNL4-3 with that of pNL4-3Rev-/

4xMS2 [55], generating pNL4-3/Rev-. To generate the

3T3.GFP-mCRM1 and 3T3.GFP-hCRM1 cell lines, the GFP

reading frame was fused to the mCRM1 and hCRM1 reading

frames using overlapping PCR and these DNAs were subsequently

subcloned into a retroviral vector [56] for expression from

transcripts also carrying an internal ribosomal entry site (IRES)

and encoding neomycin-resistance.

Assembly and infectivity assays
Cell lines were plated at ,30% confluency in 6 well dishes prior

to transfection using FuGene 6 reagent (Roche) following the

manufacturer’s instructions and medium was replaced at 24 h

post-transfection. Levels of p24Gag in viral supernatants were

measured by enzyme-linked immunosorbent assay (ELISA)

(Perkin Elmer). Viral infectivity was gauged by adding filtered

supernatants in the presence of 5 mg/ml polybrene to TZM-bl

indicator cells [57] at ,50% confluency and measuring the

induced expression of ß-galactosidase at 24 h using the Galacto-

Star system (Applied Biosystems). Immunoblot analyses were

carried out as previously described [18]. Gag was detected using

mouse anti-p24Gag antiserum 24-2 (diluted 1:1,000) [58], myc-

tagged species using mouse anti-myc antiserum (9E10) [59],

CRM1 using rabbit anti-CRM1 ab24189 antiserum (Abcam) and

HSP90 using rabbit anti-HSP90 antiserum (Santa Cruz Biotech-

nologies) followed by anti-mouse or anti-rabbit secondary

antibodies conjugated to infrared fluorophore IRDye800 (Li-Cor

Biosciences) for quantitative immunoblotting. Anti-mouse second-

ary antibodies conjugated to horse radish peroxidase (Pierce) were

used for detection of the myc-tagged CRM1 species. For

Figures 5B and S2, the protease inhibitor saquinavir (NIH AIDS

Research and Reference Reagent Program) was added at 1 mM at

24 h post-transfection.

Metabolic labelling and northern blot analysis
Rates of translation were analyzed using [35S]methionine-

cysteine metabolic labeling as previously described [18]. RNA

isolation and northern blot analyses were as described [26] with

minor modifications. For nuclear/cytoplasmic separation, 3T3

cells were lysed in 400 ml of cold, low salt NB buffer (50 mM Tris-

HCL pH 8.0, 20 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40) at

,40 h post-transfection, held on ice for 5 min and then

centrifuged at 500 6 g to pellet nuclei. 200 ml of the cytoplasmic

fraction was added to 600 ml RLT buffer (Qiagen) and vortexed

vigorously. The nuclear pellet was washed twice in cold, low salt

NB buffer, lysed in RLT buffer and spun through a Qiashredder

column (Qiagen). The 32P-labelled random primed probes for

northern analyses were generated using HIV-1NL4-3 nucleotides

8465-8892 or a b-actin PCR fragment [60].

Microscopy
3T3 cells were plated on glass coverslips, transfected and

processed as described [18]. myc-tagged proteins were detected

using anti-myc antiserum (9E10) [59] and Gag using mouse

monoclonal anti-p24Gag antiserum (24-2; diluted 1:1,000 in NGB)

[58] and rabbit polyclonal anti-p17Gag serum (UP595; diluted

1:500 in NGB) [19], respectively, followed by goat anti-mouse-

AlexFluo546 and goat anti-rabbit-AlexaFluo488 fluorescent sec-

ondary antibodies (Invitrogen). Cell nuclei were visualized by

staining with 49,6-diamidino-2-phenylindole (DAPI). Cells were

visualized using laser scanning confocal imaging on a DM IRE2

microscope (Leica). Images were processed using LCS (Leica) and

Openlab (Improvision) software packages.

Phylogenetic analysis
CRM1 sequences were retrieved from NCBI and Ensembl. The

phylogeny of 17 full-length (3213 nt) mammalian CRM1 sequences

was reconstructed by maximum likelihood (ML) inference, under

the general time reversible model of nucleotide substitutions, using

the program FastTree 1.0 [61]. The species included in the analysis

were human (Homo sapiens), chimpanzee (Pan troglodytes), gorilla

(Gorilla gorilla), gibbon (Nomascus leucogenys), macaque (Macaca mulatta),

marmoset (Callithrix jacchus), mouse (Mus musculus), rat (Rattus

norvegicus), rabbit (Oryctolagus cuniculus), dog (Canis lupus familiaris),

panda (Ailuropoda melanoleuca), horse (Equus caballus), microbat (Myotis

lucifugus), cow (Bos Taurus), pig (Sus scrofa), elephant (Loxodonta

Africana), opossum (Monodelphis domestica). Local support values of the

phylogenetic branches were calculated on the basis of 1000

replicates. Trees were edited using the program FigTree v1.3.1

(http://tree.bio.ed.ac.uk/software/figtree). The ancestral recon-

struction of amino acid alteration along the CRM1 phylogeny

was performed by maximum likelihood inference under the Whelan

and Goldman empirical model, as implemented in the program

codeML from the package PaML v3.14a [62]. The reconstructed

ML phylogeny was fixed for all subsequent selection analyses. For

sliding window analysis we used KaKs Calculator v2 [63], using the

modified LPB option, a window of 30 bp and step size of 3 bp.

The chicken (Gallus gallus) and zebra fish (Dani rerio) sequences were

obtained from Ensembl. In addition, we analysed several CRM1

sequences from Enembl or NCBI that are from low-coverage or

preliminary assemblies/annotation and therefore did not have full

length CRM1 sequences. These included the bushbaby (Otolemur

garnetti), tarsier (Tarsius syrichta), baboon (Papio hamadryas), orangutan

(Pongo abelii), pika (Ochotona princeps), squirrel (Spermophilus tridecemlinea-

tus), kangaroo rat (Dipodomys ordii), armadillo (Dasypus novemcinctus) and

platypus (Ornithorhynchus anatinus). To reconstruct the tarsier CRM1

sequence, we used the NCBI trace archive database to nearly

complete the partial sequence obtained from Ensembl. This allowed
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a sequence that had only two amino acid gaps (position 112 and 117)

to be assembled. As this sequence is identical to several Laurasiatheria

CRM1 sequences (horse, cow, dog, panda) and has only 1 difference

compared to the rabbit (at position 396), which is not conserved in

other Rodentia or primate sequences, this is considered the ancestral

Euarchontoglires sequence. The mouse lemur (Microcebus murinus)

CRM1 sequence for HEAT repeat 9A was obtained from the NCBI

trace archive database.

Several approaches were used to investigate the role of selection on

the CRM1 gene during mammal evolution. First, evidence for

codon-specific positive selection was sought using three different

maximum likelihood tests implemented in the HyPhy package [64]:

SLAC (Single Likelihood Ancestor Counting), FEL (Fixed Effect

Likelihood) and REL (Random Effects Likelihood). Analyses were

conducted under the Hasegawa-Kishino-Yano (HKY85) model of

nucleotide substitution, and the MG94xHKY85 model of codon

evolution. The M7 model (neutral model) and the M8 model (positive

selection model) implemented in the program codeML were also

fitted to the sequence alignment. Model M7 assumes a beta

distribution for dN/dS over sites limited to the interval (0,1),

providing a null hypothesis for testing positive selection. Model M8

adds an extra class of dN/dS over sites to M7, allowing dN/dS .1. A

likelihood ratio test was used to test whether allowing individual sites

to evolve under positive selection (i.e, M8) provided a significantly

better fit to the data than the neutral model (i.e., M7). In the latter

analysis, codon frequencies were calculated under the F3x4 model.

Second, the branch-site test implemented in codeML was used

to identify codons subjected to positive selection along specific

branches of the phylogeny (‘foreground’ branches) [65]. The two

foreground branches tested were the one supporting the higher

primate lineage (red branch in Figure 7A) and the one supporting

the rodent lineage (blue branch in Figure 7A). These two branches

were selected on the basis of the excess of amino acid changes they

exhibit compared to other internal branches. Two models were

compared: (i) model A, in which the foreground branches may

have different proportions of sites under neutral selection than the

rest of the phylogeny (i.e. relaxed purifying selection), and (ii)

model B, in which the foreground branches may also have a

proportion of sites under positive selection. A likelihood ratio test

was performed to estimate whether model B gave a significantly

better fit to the data. Each test was performed on the full-length

CRM1 alignment (3213 nt), the HEAT repeat helix 9A region

only (codon positions 402 to 423; 66 nt) and the HEAT repeat 10A

region only (codon positions 469 to 481; 51 nt).

Supporting Information

Figure S1 Co-expression of mCyclinT1-Y261C and hCRM1

combine to substantially improve the production of infectious

HIV-1 particles. (A) 3T3 cells were transfected as for Figure 4A

with HIV-1 pNL4-3 proviral plasmid and plasmids encoding

mCycT-Y261C (lanes 3-5) or a control plasmid encoding IL-2

(lane 2). At ,48 h post-transfection, equal volumes of filtered

supernatants were used to infect TZM reporter cells. Error bars

represent the standard deviation for 3 independent transfections.

(B) Relative viral infectivity for the 3T3 cells supernatant from (A),

sample 5, compared to virus harvested from HeLa cells transfected

with 0.2 mg HIV-1NL4-3 plasmid and the indicated plasmids.

Infectivity was calculated as the ratio of b-galactosidase (b-gal)

units from the TZM assay to pg of input p24Gag, and normalized

to the HeLa control sample (lane 2). Supernatants from (A),

samples 2 and 3, were excluded from this analysis due to the low

levels of virus generated. Error bars represent the standard

deviation for 3 independent transfections.

(TIF)

Figure S2 hCRM1 expression in mouse cells stimulates Gag

assembly in a dose-dependent manner. (A) 3T3 cells were transfected

with plasmids encoding protease-defective Gag (GP-D25A-RRE) and

increasing amounts of CRM1 plasmid as indicated. p55Gag, CRM1

and HSP90 were detected by immunoblot and Gag assembly

efficiency was measured based on a ‘‘release factor’’: the ratio of

VLP-associated p55Gag to cell-associated p55Gag. Values represent the

fold change in release factor relative to the luciferase control (lanes 5

and 10).

(TIF)

Figure S3 CRM1 HEAT repeat helices 9A and 10A are at least

19 Å from the NES binding site. Both the Rev NES (blue) and

amino acids differing between mCRM1 and hCRM1 (shown in red)

were modeled onto the mCRM1 structure (PDB ID: 3NBZ) based

on references [35,36]. Pymol was used to generate the figure.

(TIF)

Figure S4 Evidence for positive selection in specific regions of

CRM1. (A) Sliding window analysis of aligned CRM1 coding

sequences from mCRM1 and hCRM1, each compared to a

common ancestor, the horse. Dotted line indicates dN/dS = 1.

HEAT repeat 9A consists of residue 405-423. (B) Evidence for

positive selection in hCRM1 and mCRM1 HEAT repeat helix 9A.

Sliding window analysis of aligned CRM1 coding sequences from

the indicated pair of species.

(TIF)

Table S1 Potential positively selected sites on the primate and

rodent lineages. Candidate sites were identified using a branch site

test in codeML using codons 402-423 or 469-481.

(DOC)
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