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Cognitive tasks are commonly used to identify brain networks involved in

the underlying cognitive process. However, inferring the brain networks

from intracranial EEG data presents several challenges related to the sparse

spatial sampling of the brain and the high variability of the EEG trace due

to concurrent brain processes. In this manuscript, we use a well-known

facial emotion recognition task to compare three different ways of analyzing

the contrasts between task conditions: permutation cluster tests, machine

learning (ML) classifiers, and a searchlight implementation of multivariate

pattern analysis (MVPA) for intracranial sparse data recorded from 13 patients

undergoing presurgical evaluation for drug-resistant epilepsy. Using all three

methods, we aim at highlighting the brain structures with significant contrast

between conditions. In the absence of ground truth, we use the scientific

literature to validate our results. The comparison of the three methods’ results

shows moderate agreement, measured by the Jaccard coefficient, between

the permutation cluster tests and the machine learning [0.33 and 0.52 for the

left (LH) and right (RH) hemispheres], and 0.44 and 0.37 for the LH and RH

between the permutation cluster tests and MVPA. The agreement between

ML and MVPA is higher: 0.65 for the LH and 0.62 for the RH. To put these

results in context, we performed a brief review of the literature and we discuss

how each brain structure’s involvement in the facial emotion recognition task.
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Highlights

- Intracranial EEG recordings during a facial emotion
recognition task.

- The first implementation of searchlight MVPA with sparse
intracranial electrodes.

- Comparison of permutation cluster tests, ML classification,
and searchlight MVPA.

Introduction

Our understanding of how the human brain works is
currently at its peak, driven by significant technological
and methodological advances. The 19th century marked
the transition from non-scientific, and often superstitious
approaches to treating and diagnosing brain-related diseases, to
evidence-driven scientific research. The pioneering work of Paul
Brocca on aphasia patients resulted in the first evidence of a
region in the left frontal cortex being involved in the articulation
of speech, and hence supported the hypothesis of localization of
brain functions (Finger, 2004). Following the same reasoning,
the lesion studies led to many brain functions being linked to
specific brain regions (Rorden et al., 2007; Karnath et al., 2018;
Vaidya et al., 2019), resulting in what we currently know as the
“localizationist view.” However, a “holistic view,” that argues
that brain functions are widely distributed across the cortex,
emerged gained traction in the last couple of decades, fueled
by the advances in technology (fMRI, MEG, etc.) and numerical
methods (multivariate pattern analysis, machine learning based
decoders, etc.) (Shehzad and McCarthy, 2018; Vaidya et al.,
2019).

A study on brain connectivity and the networks involved
in natural vision (Di and Biswal, 2020) has shown that the
intersubject variability of the brain connectivity is low for the
visual areas and the default mode network, but significantly
higher for widespread brain networks that include brain regions
that participate in the realization of a large number of functions,
like the prefrontal cortex (Miller and Cohen, 2001; Lara and
Wallis, 2015; Funahashi, 2017) and the anterior temporal lobe
(Tsapkini et al., 2011; Rice et al., 2015). When attempting to
identify the brain networks involved in a specific cognitive
task, despite using the same raw data for analysis, the analysis
itself may aim to highlight correlations between the task and
the activation of various brain structures in an exploratory
fashion (Price, 2010; Woolnough et al., 2020), or may aim
to add a predictive dimension to the analysis, like in most
brain-computer interface (BCI) applications (Nicolas-Alonso
and Gomez-Gil, 2012; Saha et al., 2021), to generalize and use

Abbreviations: ML, machine learning; MVPA, multivariate pattern
analysis; fMRI, functional magnetic resonance imaging.

the observations to accurately predict an outcome in prospective
subjects. One of the most common misconceptions is that
the exploratory analysis, if performed rigorously in a well-
controlled experimental setup, can be used to make predictions
on prospective subjects. However, the p-values associated with
various variables of interest identified in the exploratory analysis
do not measure the predictive accuracy of the model, but merely
the contribution of that variable to the realization of an outcome
at a certain chance level (Bzdok and Ioannidis, 2019). Moreover,
the methods relying on p-values are not suitable when there are
multiple strategies to perform a certain cognitive task and the
strategies are all represented in the study cohort. For example,
to perform the cumulative sum of n integers, one may perform
a serial summation to reach the results, may apply the formula
n(n+1)

2 , or, if n is small enough, may rely on mental imagery to
calculate the result (Seghier and Price, 2018).

In this manuscript, we aim at identifying the brain areas that
exhibit differential activation during a cognitive task. We chose
a facial emotion recognition task, for which multiple theoretical
models (Pessoa and Adolphs, 2010; You and Li, 2016; LeDoux
and Brown, 2017) and significant evidence of different brain
structures’ participation in the task already exist (Guillory and
Bujarski, 2014), thus making it easier for us to interpret the
results. At the same time, recent studies (Wager et al., 2015;
Kragel and LaBar, 2016) have shown that the emotional brain
response is widespread across the cortex, and requires a complex
pattern of activation to identify a type of emotion. In our
study, we chose representative methods for both exploratory
and predictive types of analyses. We use three different methods
for identifying condition contrasts: (1) a permutation cluster
test, which is a commonly used technique for the analysis
of EEG data (Maris and Oostenveld, 2007) in an exploratory
fashion, (2) a machine learning (ML) classifier (Graimann et al.,
2003) which was successfully used for epileptic seizure type
prediction in prospective subjects (Donos et al., 2018) and in
BCI applications (Steyrl et al., 2016), and (3) a searchlight
multivariate pattern analysis (MVPA) (Haxby et al., 2001) which
is a method that was successfully used in fMRI studies for
identifying brain regions participating in a cognitive task in both
exploratory (Kriegeskorte et al., 2006) and predictive type of
analyses (Mitchell et al., 2008).

Although we will discuss the results of the three methods
in the context of the existing literature on facial emotion
recognition (Pessoa and Adolphs, 2010; Guillory and Bujarski,
2014), this manuscript does not aim to study the cognitive
processes behind the facial emotion recognition task, but rather
to highlight which analytical method is better suited for doing
so. To support our findings, we present a brief review of the
literature, showing that the brain regions deemed important
for the facial emotion recognition task were indeed reported
by other studies as well, in the context of emotion processing
or supporting or co-occurring functions, such as the working
memory or inner speech (Miendlarzewska et al., 2013).
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TABLE 1 Patient cohort.

Subject Sex LH
electrodes

LH
structures

LH
contacts

RH
electrodes

RH
structures

RH
contacts

No contacts
recorded from

SEEG85 M YES 4 15 YES 23 192 96

SEEG88 M YES 15 112 NO − − 58

SEEG89 M YES 3 8 YES 23 164 91

SEEG90 M YES 9 88 NO − − 42

SEEG92 M YES 18 159 NO − − 51

SEEG94 M YES 14 116 NO − − 77

SEEG96 M NO − − YES 14 158 67

SEEG97 F YES 13 125 NO − − 83

SEEG98 F NO − − YES 14 138 68

SEEG99 M YES 13 167 NO − − 86

SEEG101 M YES 5 36 YES 14 147 96

SEEG102 F YES 5 28 YES 18 204 97

SEEG104 F YES 17 143 NO − − 92

TOTAL 997 1003 1004

MEAN 10.55 90.64 17.67 167.17 77.23

STD 5.52 59.15 4.41 25.79 18.49

FIGURE 1

Spatial coverage of the brain by intracranial electrodes (top row: left and right hemisphere views, bottom row: dorsal and ventral views).
Intracranial electrode contacts of each of the 13 subjects are shown with a different color.

Materials and methods

Thirteen subjects undergoing stereo-EEG (SEEG)
presurgical evaluation for drug-resistant epilepsy at the
Bucharest University Hospital were recruited for this study.
All subjects provided informed consent and the investigation
was performed under the Ethical Committee approval
43/02.10.2019. All subjects were implanted with Dixi depth

electrodes (Dixi, Chaudefontaine, France) having 8–18 contacts
per electrode, 2 mm contact length, 3.5 mm contact spacing, and
0.8 mm diameter. The location of depth electrodes was chosen
solely based on the clinical hypothesis for the epileptogenic
focus. At the group level, 7 subjects had electrodes implanted in
the left hemisphere, 2 subjects had electrodes implanted in the
right hemisphere, and 4 subjects had bilateral implantations.
The depth electrodes and their contacts were precisely localized
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FIGURE 2

The facial emotion recognition task is comprised of sequences
of 1000 ms fixation cross, followed by 1500 ms of a face image.
In this figure, we show two sample trials. Source for the images
in this figure: Radboud Faces Database.

using post-operative CT images registered on top 1.5T or 3T
presurgical T1 MRIs. The presurgical MRI was also used for
brain segmentation (Dale et al., 1999), parcellation (Desikan
et al., 2006; Destrieux et al., 2010), and non-linear registration
(Postelnicu et al., 2009) to the “cvs_avg35_inMNI152” brain
template, which is available in Freesurfer. Each electrode contact
was assigned to a voxel whose 3D coordinates were further
used to represent it on the group template. The anatomical
label, according to the Desikan–Killiany atlas (Desikan et al.,
2006), of each electrode contact was chosen as the label with
the largest number of voxels in a 3×3×3 cube centered on
the electrode contact. We used this procedure to minimize the
chance of mislabeling contacts due to noise in the MRI image
or contacts lying at the border of one or more brain structures.
An average of 11.31 ± 2.75 depth electrodes were implanted
per subject, sampling on average 10.55 ± 5.52 left hemisphere
(LH) and 17.67 ± 4.41 right hemisphere (RH) brain structures.
The average number of depth electrode contacts implanted per
subject was 90.64 ± 59.15 in the LH, and 167.17 ± 25.76 in the
RH (Table 1).

The spatial coverage of the brain with depth electrodes,
represented on the “fsaverage” brain template at the group level,
is shown in Figure 1.

Cognitive task

The task was developed using the stimuli available in the
Radboud Faces Database (Langner et al., 2010). The stimuli
are pictures of 67 actors posing with neutral, negative (angry),
and positive (happy) faces, with matched facial landmarks used
to recreate the facial expressions. The task contains 67 trials
for each condition, each trial consisting of a 1-s fixation cross,
followed by 1.5 s of a face image (Figure 2). The subjects

were instructed to press one of three predefined keyboard
buttons to indicate if the face has a neutral, negative, or
positive expression. The task presentation was accomplished
using PsychoPy (Peirce et al., 2019) and a 24-inch LCD monitor
placed at 114 centimeters from the subject. A photodiode was
used to synchronize the rendering of the visual stimuli with the
EEG recording system.

Intracranial EEG recordings

Intracranial EEG recordings was recorded while the subjects
performed the cognitive task from 93.69 ± 15.26 contacts per
subject, on average. The iEEG was recorded with a sampling
rate of 4096 Hz using a 128- or 256-channel XLTek Quantum
Amplifiers (Natus Neuro, Middleton, WI, USA).

The iEEG processing pipeline contains a mix of open-source
software and in-house code developed in Matlab and Python.
The raw recordings in XLTek format were loaded in Matlab and
exported in ADES format and loaded in Anywave (Colombet
et al., 2015) for visual inspection and marking for removal of
individual trials or EEG channels exhibiting epileptic activity or
non-physiological artifacts. The remaining pipeline steps were
all performed in Python, using MNE (Gramfort et al., 2013) as
the main framework for creating our custom processing steps.
The EEG was notch filtered at 50Hz and its second (100 Hz)
and third (150 Hz) harmonics, using a finite impulse response
filter with Hamming window. A common-average reference
was computed using the good EEG channels, then the EEG
was cropped into epochs of [−0.3; 1] s relative to the stimuli
onset and resampled to 256 Hz. An additional buffer of 1 s
was added for each epoch to mitigate filtering artifacts that
are expected to occur at the edges of the epochs during the
time-frequency transformation which is necessary to extract the
gamma-band spectral content of the signal. The time-frequency
decomposition was accomplished with Morlet wavelets having
a variable number of cycles for each frequency in the [1; 125]
Hz range. The time-frequency representation of individual trials
was cropped to [−0.3; 1] s to remove filtering artifacts and
was baseline corrected. The power in the gamma band was
computed by averaging the power of each frequency in the [55;
115] Hz range. These gamma power traces (GPTs) represent the
inputs for all subsequent analysis methods, which we describe in
detail below.

Permutation cluster analysis for task
contrasts

For each EEG channel, we identified significant differences
between the angry and happy task conditions in the GPTs
using a non-parametric cluster-level statistical permutation test
(Maris and Oostenveld, 2007). The permutation cluster test
was implemented using 1,000 permutations. To assess the
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TABLE 2 Task performance.

Subject Angry trials Happy trials Angry RT Happy RT Sig RT difference

SEEG85 45 21 0.92 0.62 0.0000

SEEG88 62 66 0.96 0.84 0.0000

SEEG89 47 58 0.97 0.85 0.0000

SEEG90 56 60 0.91 0.83 0.0117

SEEG92 53 55 0.95 0.90 0.1700

SEEG94 59 61 0.92 0.87 0.0903

SEEG96 45 54 0.97 0.75 0.0000

SEEG97 56 63 0.98 0.88 0.0005

SEEG98 58 57 0.90 0.88 0.3135

SEEG99 59 61 0.89 0.85 0.2466

SEEG101 43 53 1.05 0.84 0.0000

SEEG102 36 45 1.19 1.10 0.0216

SEEG104 51 56 0.97 0.81 0.0000

TOTAL 670 710

MEAN 51.54 54.62 0.97 0.85 0.0003

STD 7.77 11.38 0.08 0.11

participation of different brain structures in the realization of
the task, we aggregated at the group level the trials from all
contacts within the same brain structure, and we performed
the permutation cluster test as described previously. Only
clusters showing significant differences between task conditions
at p-values below 0.05 were further considered.

Machine learning classification for task
conditions

Machine learning (ML) classification for task conditions
takes the idea of identifying contrasts one step further, in the
sense that once an ML model is trained, it can identify the task
condition of new trials. This is a very strong outcome, as it
proves that the underlying neuronal population that produces
the iEEG recorded by a single contact has specific responses for
different conditions, and the effect size is large enough to be
identified at a single-trial level.

The ML classification was implemented using the “pipeline”
feature of “scikit-learn” (Buitinck et al., 2013), which allows
training of a model with cross-validation (CV) while performing
data augmentation and transformation and separately for each
fold.

In the data augmentation step, we compute the average GPT
for the angry and happy conditions, then for each trial, we
create two new time series by subtracting the condition averages.
Next, during the data transformation step, we split the time
series into three intervals [0.2; 0.4], [0.4; 0.6], and [0.6; 1] s,
and for each interval, we compute 5 statistical measures: mean,
standard deviation, median, skewness, and kurtosis. The data
augmentation and transformation steps are encapsulated into

a Transformer interface (Buitinck et al., 2013) so that they can
be re-fitted and re-applied separately to each fold of the CV
without information leakage. The transformed data is fed into a
random forest classifier (Breiman, 2001), whose parameters are
obtained through hyperoptimization. The hyperoptimization
is performed using Bayesian Search with 10-fold stratified
cross-validation (Snoek et al., 2012), as implemented by the
“BayesSearchCV” function in “scikit-optimize” (Head et al.,
2021). The parameters we optimized for are the number of
estimators (nestimators ∈ {250, 500, 1000}), maximum tree depth
(integer values in the range [2; 10]), and the percentage
of features randomly chosen for growing each individual
tree (pfeatures ∈ {0.15; 0.5; 0.75}). The optimizer performed 100
iterations using 6 out of 8 CPU cores of a 3.40 Ghz Intel
Core i7-6700 CPU with 16 GB RAM. Once the best parameters
for the random forest classifier were identified, we used a 10-
fold stratified CV to evaluate the classification performance.
The evaluation metric of choice was the normalized Matthews
Correlation Coefficient (NMCC) (Chicco and Jurman, 2020):

NMCC =
MCC + 1

2

where MCC =
TN·TN−FP·FN

√
(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

;

TP = true positive; TN = true negatives; FP = false positives;
FN = false negatives.

An NMCC value of 0.5 represents the random chance level,
and to assess if the performance of our classifier is significantly
better than chance, we employed a t-test against the null
hypothesis that the mean of the 10 NMCC values resulting
during the CV is 0.5.

The average training and evaluation time per intracranial
contact was 406.8± 63.2 s.
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Searchlight decoding for task
conditions

The multivariate searchlight was initially developed for
fMRI data, for localizing functional brain regions that are
informative for brain processes (Kriegeskorte et al., 2006)
triggered by a cognitive task. Searchlight maps the information
over a set of neighboring voxels in fMRI, within a predefined
spherical volume, therefore mitigating the issues related to
the multiple comparison problem using a spatial smoothing
approach. In this study, we apply the same reasoning to iEEG
data. A searchlight radius of 25 mm was chosen. While there
is no rule of thumb for choosing the searchlight radius size,
previous studies (Wang et al., 2020) have shown that increasing
the search radius results in the same clusters being identified, but
yielding larger cluster sizes. This behavior is welcome given the
sparsity of the intracranial electrodes and the distance of 3.5 mm
between two adjacent electrode contacts from the same depth
electrode. For each electrode contact, we identified all electrode
contacts that were within the searchlight volume defined by
the searchlight radius, regardless if they were located on the
same or different depth electrodes, and we used MVPA to
decode the task conditions from the gamma traces (King and
Dehaene, 2014; King et al., 2018). The MVPA pipeline took as
input the gamma power traces for both task conditions and
the condition labels associated with the gamma traces, then
performed scaling, concatenation across the channel dimension,
and classification using logistic regression. Therefore, the MVPA
decoder aggregated information across time and space. The
MVPA decoder was trained with 10-fold cross-validation,
evaluated by the NMCC, and assessed significance above or
below the chance level using a t-test, as described in the ML
classification paragraph.

Comparison of the three methods

The results of the three methods for identifying task
contrasts were compared at the group level. For each method, we
identified the brain structures that contained at least one contact
with a significant contrast between the two conditions. We used
the Jaccard index (Jaccard, 1901) to quantify the agreement
between every pair of methods.

Results

Task performance

The average response time was 0.97 ± 0.08 s and
0.85 ± 0.11 s for the angry and happy conditions, respectively
(Table 2). The average number of trials per subject, without
interictal epileptic spikes and other non-physiological artifacts,

and for which the subjects correctly identified the emotion
was 51.54 ± 7.77 and 54.62 ± 11.38 for the angry and happy
conditions. All subjects took a longer time to correctly identify
the angry condition. For 10 out of 13 subjects, the difference
in reaction time between the angry and happy conditions
was significant (Mann–Whitney’s U-test, p < 0.05). At the
group level, the differences in reaction times were significantly
different as well (Mann–Whitney’s U-test, p < 0.05) (Table 2).

Brain sampling

Thirty-two brain structures were sampled by depth
electrodes at the group level (32 LH and 31 RH), and a total
of 1,004 electrode contacts (531 LH and 473 RH) were free
of physiological and non-physiological artifacts and used in
the analysis. The exact distribution of electrode contacts per
implanted structure is detailed in Table 3.

Comparison of methods for assessing
condition contrasts

All the methods were compared at the same significance
level of p < 0.05. No multiple comparison correction was used,
as the p-value is computed using different approaches, that
were described in detail above in each method’s paragraph.
The number of electrode contacts deemed significant in each
structure by each method is shown in Figure 3.

The permutation cluster test identified 12 LH and 13 RH
brain structures exhibiting significant contrasts between the
angry and happy task conditions (Figure 4). 209 LH and 232 RH
electrode contacts were grouped by structures to compute these
contrasts. The two conditions resulted in significant contrasts
in the bilateral amygdala and the right hippocampus, left lateral
occipital cortex, parts of the parietal lobe (bilateral precuneus
and superior parietal cortex, left inferior parietal cortex, and
right supramarginal and postcentral gyri), parts of the temporal
lobe (right entorhinal cortex and bilateral inferior temporal gyri,
banks of the superior temporal sulcus and fusiform cortex, and
left middle temporal), and parts of the frontal lobe (bilateral
caudal middle frontal gyrus, left lateral orbitofrontal cortex,
right parsopercularis, and left parstriangularis) (Table 3).

The ML classifier identified angry-happy contrasts in more
brain structures (19 LH and 19 RH) than the permutation cluster
test (Figure 4). Within these brain structures, a total of 55 LH
and 47 RH electrode contacts exhibited an NMCC that was
significantly different from the random chance. In comparison
with the permutation cluster test results, the ML classifier
identified significant contrasts in the bilateral superior temporal
gyrus, in the right middle temporal gyrus, in the bilateral insula
and the bilateral isthmus cingulate. It also identified contrasts
in the following structures of the left hemisphere: lingual gyrus,
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TABLE 3 Per structure distribution of implanted electrode contacts, and the number of significant contacts per each analysis method.

Brain structure Hemi Implanted Permutation ML MVPA Relation to the task

AMYGDALA LH 2 2 1 Part of the emotion processing network
(Pessoa and Adolphs, 2010; LeDoux and
Brown, 2017)

AMYGDALA RH 12 12 1 5

BANKSSTS LH 10 10 3 5 Face processing (Hein and Knight, 2008)

BANKSSTS RH 15 15 3 7

CAUDALANTERIORCINGULATE RH 3 Emotion processing (Etkin et al., 2011)

CAUDALMIDDLEFRONTAL LH 22 22 1 3 Emotion processing (Etkin et al., 2011)

CAUDALMIDDLEFRONTAL RH 8 8 2 4

ENTORHINAL RH 4 4 −

FUSIFORM LH 25 25 3 13 Part of the visual system, specialized in
facial recognition (Ganel et al., 2005;
Kanwisher and Yovel, 2006; Vuilleumier
and Pourtois, 2007)

FUSIFORM RH 25 25 4 2

HIPPOCAMPUS LH 8 3 Encoding and recognition of facial and
emotional expressions (Fried et al., 1997)

HIPPOCAMPUS RH 35 35 2 4

INFERIORPARIETAL LH 17 17 1 14 Involved in decoding facial expressions
(Sarkheil et al., 2013) and emotion
perception (Engelen et al., 2015)

INFERIORPARIETAL RH 20 2 13

INFERIORTEMPORAL LH 23 23 2 14 Part of the emotion processing network
(Pessoa and Adolphs, 2010)

INFERIORTEMPORAL RH 39 39 7 4

INSULA LH 57 9 3 Emotion regulation (Blair et al., 2007;
Pessoa and Adolphs, 2010)

INSULA RH 36 2 5

ISTHMUSCINGULATE LH 8 1 1 If damaged, may lead to dysfunctional
emotional control (Wei et al., 2021)

ISTHMUSCINGULATE RH 7 1 2

LATERALOCCIPITAL LH 6 6 Involved in face perception (Nagy et al.,
2012)

LATERALOCCIPITAL RH 8 8 1 2

LATERALORBITOFRONTAL LH 2 2 Involved in processing emotional valence
(Pessoa and Adolphs, 2010; Kragel and
LaBar, 2016)

LATERALORBITOFRONTAL RH 7

LINGUAL LH 12 3 7 Sensitive to emotional valence (Lima
Portugal et al., 2020), may cause
prosopagnosia if damaged (Kesserwani
and Kesserwani, 2020)

LINGUAL RH 7 1

MEDIALORBITOFRONTAL LH 3 1 Involved in processing emotional valence
(Pessoa and Adolphs, 2010; Kragel and
LaBar, 2016)

MEDIALORBITOFRONTAL RH 1

MIDDLETEMPORAL LH 35 35 4 10 Part of the emotion processing network
(Pessoa and Adolphs, 2010)

MIDDLETEMPORAL RH 72 5 15

(Continued)
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TABLE 3 (Continued)

Brain structure Hemi Implanted Permutation ML MVPA Relation to the task

PARACENTRAL LH 7 3 2 Tied to mood disorders (Zhang et al.,
2021) and the extraction of social
information from faces (Sarkheil et al.,
2013)

PARAHIPPOCAMPAL LH 4 Involved in emotional memory retrieval
(Smith et al., 2004)

PARAHIPPOCAMPAL RH 3 1

PARSOPERCULARIS LH 30 4 4 Part of ventrolateral prefrontal cortex,
involved in emotion processing (Pessoa
and Adolphs, 2010; Nejati et al., 2021)

PARSOPERCULARIS RH 18 18 4

PARSORBITALIS RH 6 1 Involved in emotional processing (Belyk
et al., 2017; Nejati et al., 2021)

PARSTRIANGULARIS LH 6 6 2 Part of ventrolateral prefrontal cortex,
involved in emotion processing (Pessoa
and Adolphs, 2010; Nejati et al., 2021)

PARSTRIANGULARIS RH 4 1

POSTCENTRAL LH 35 4 12 Involved in emotion recognition and
regulation (Adolphs et al., 2000; Kropf
et al., 2019)

POSTCENTRAL RH 17 17 1 8

POSTERIORCINGULATE LH 9 2 Activated by emotionally salient stimuli
(Maddock, 1999; Maddock et al., 2003)

PRECENTRAL LH 44 44 3 15 Activated by stimuli with emotional
valence (Seo et al., 2014; Hortensius et al.,
2016; Lima Portugal et al., 2020)

PRECENTRAL RH 18 3 4

PRECUNEUS LH 17 17 9 Emotion regulation (Loeffler et al., 2018)

PRECUNEUS RH 8 8 4

ROSTRALANTERIORCINGULATE LH 4 Emotion processing (Etkin et al., 2011)

ROSTRALANTERIORCINGULATE RH 3

ROSTRALMIDDLEFRONTAL LH 18 2 3 Emotion processing (Etkin et al., 2011)

ROSTRALMIDDLEFRONTAL RH 11 3

SUPERIORFRONTAL LH 43 6 7 Emotion regulation (Blair et al., 2007)

SUPERIORFRONTAL RH 5 2

SUPERIORPARIETAL LH 6 6 1 Part of the attention network, necessary to
carry out the task (Viviani, 2013)

SUPERIORPARIETAL RH 10 10 2 9

SUPERIORTEMPORAL LH 32 1 4 When stimulated with electrical currents,
may evoke emotions (Selimbeyoglu and
Parvizi, 2010)

SUPERIORTEMPORAL RH 26 2 6

SUPRAMARGINAL LH 36 2 15 Emotion recognition (Wada et al., 2021)

SUPRAMARGINAL RH 33 33 3 19

TEMPORALPOLE LH 2 When stimulated with electrical currents,
may evoke emotions (Selimbeyoglu and
Parvizi, 2010)

TEMPORALPOLE RH 6 1

TRANSVERSETEMPORAL LH 8 3 Auditory cortex, may be activated by inner
speech while performing the task (King,
2006)

TRANSVERSETEMPORAL RH 6 1

The permutation column shows the number of electrode contacts pooled together to compute the permutation test, while the ML and MVPA columns show the number of electrode
contacts with classification results significantly above the chance level.
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FIGURE 3

The number of implanted electrode contacts, and the number of electrode contacts exhibiting significant contrast between conditions, per
brain structure and analysis method.

superior and rostral middle frontal gyri, the parsopercularis,
the postcentral gyrus, and the paracentral lobule; and the
following structures of the right hemisphere: parsorbitalis,
parstriangularis, and the precentral gyrus. Interestingly, several
brain structures were identified by the permutation cluster
test, but not by the ML classifier: the left amygdala, the left
lateral orbitofrontal gyrus, the left superior parietal cortex, the
right entorhinal cortex, and the bilateral precuneus (Table 3).
The Jaccard coefficient computed between the structures that
exhibited significant contrasts during permutation cluster tests
and ML classification was 0.33 for the LH and 0.52 for the RH
(Table 4).

The searchlight MVPA approach identified contrasts in a
large number of brain structures (24 LH and 23 RH) (Figure 4),
with searchlight clusters centered on 157 LH and 122 RH
electrode contacts. Only the left lateral orbitofrontal cortex,
right entorhinal cortex, the left parstriangularis, and the right
parsopercularis were found significant by the permutation
cluster test, but not by the searchlight MVPA. However, many
additional structures were found significant by the searchlight
MVPA, that have not been identified by either permutation
cluster test or the ML classifier: the left hippocampus, the left
posterior cingulate, and the left lateral occipital cortex, as well
as the right lingual and parahippocampal gyri, the superior
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FIGURE 4

Brain structures with significant contrasts revealed by one or
more methods.

and rostral middle frontal cortices, the right temporal pole
and the bilateral transverse temporal cortex (Table 3). The
Jaccard coefficient between permutation cluster test results and
searchlight MVPA results was 0.44 for the LH and 0.37 for the
RH, and 0.65 for the LH and 0.62 for the RH between ML
classifier and searchlight MVPA results (Table 4).

Discussion

Building on the idea that humans developed a survival
mechanism for immediate threat detection, it was hypothesized
that two pathways are involved in the process of threat
detection (LeDoux and Brown, 2017). In LeDoux’s model,
the first pathway enables fast access from the retina to
the amygdala, using the superior colliculus and pulvinar
as relay nodes, while the second pathway is cortical and
it involves the visual cortex and the fusiform gyrus. An
alternative model was proposed (Pessoa and Adolphs, 2010),
in which the cortex plays, through different cortical and
subcortical routes, a more important role in driving visual
inputs to (and back-propagated from) the amygdala through
additional hubs located in the insula and orbitofrontal, frontal
cingulate and posterior parietal cortices. A recent review of
intracranial studies performed over the last 60 years on the
topic of emotion (Guillory and Bujarski, 2014) signals the
lack of intracranial data: 10 studies described the amygdala’s
and 3 studies described the fusiform gyrus’ involvement
in emotion processing. Moreover, only one study described
the interaction between the amygdala and fusiform gyrus
(Pourtois et al., 2010) at the time of the review, with a
second one being published in 2016 (Méndez-Bértolo et al.,
2016). Therefore, the emotion network, as described by

TABLE 4 Pairwise Jaccard comparison between the three methods.

Comparison Jaccard

LH RH

Permutation–ML 0.33 0.52

Permutation–MVPA 0.44 0.37

ML–MVPA 0.65 0.62

LeDoux’s and Pessoa’s models, is understudied using intracranial
methods.

The intracranial EEG studies present a specific set of
challenges. The first challenge is that intracranial EEG can
only be recorded from epileptic patients undergoing presurgical
evaluation. In these patients, the intracranial electrodes are
placed solely to localize the epileptogenic focus, therefore they
may not cover all brain regions of interest for a given cognitive
task, such as the facial emotion recognition task. Moreover, an
emotion network as the one hypothesized by Pessoa is unlikely
to be fully observed with intracranial electrodes for two reasons:
(1) the network extends on multiple lobes, while the intracranial
implantation schemes are usually focused on 1–2 lobes, and (2)
the subcortical nuclei, such as the pulvinar, are not common
targets for presurgical evaluation for epilepsy. Therefore, the
emotion networks are prone to be studied at the group level, to
overcome the brain spatial sampling issues. A second challenge
relates to the effect size that is to be observed as the contrast
between two conditions. It was estimated that such contrast can
be as low as 3% of the signal-to-noise ratio (Selimbeyoglu and
Parvizi, 2010). A third challenge is represented by the fact that
there is no ground truth for what is the brain network activated
by the facial emotion recognition task. In our study, we leverage
previous studies and theoretical models (Pessoa and Adolphs,
2010) to explain why one of the three methods might highlight
contrasts in a given brain structure. This approach is, however, a
rough approximation, as most relevant studies were performed
using fMRI, and the intracranial EEG literature on emotion
processing is still limited (Guillory and Bujarski, 2014).

The permutation cluster test showed a larger number of
contrasts in the RH than in the LH, a finding that is consistent
with the “Right Hemisphere” model for emotional processing
(Silberman and Weingartner, 1986; Demaree et al., 2005). Of the
LH contrasts observed, the amygdala and the fusiform gyrus, the
inferior and superior parietal and the lateral orbitofrontal, and
the caudal middle frontal cortex are worth mentioning as they
partially outline the non-occipital parts of the Pessoa model.
In addition, we observed contrasts that are likely related to
the task execution: decision-making in the lateral orbitofrontal
and the caudal middle frontal cortex (Talati and Hirsch, 2005;
Nogueira et al., 2017) and movement execution for the button-
press in the precentral gyrus (Li et al., 2015). The same network
was also observed in the RH, with additional contrasts in the
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hippocampus and entorhinal cortex [structures associated with
the encoding and recognition of facial expressions (Fried et al.,
1997)], the parsopercularis and the supramarginal gyrus, which
takes part in the perception (Belyk et al., 2017) and recognition
of emotion (Wada et al., 2021), respectively.

Moving from the permutation cluster test to the univariate
(ML) and the multivariate (searchlight MVPA) classification
methods, we observed an increase in the number of brain
structures with significant contrasts (Figure 4 for qualitative
results and Table 3 for the exact number of intracranial electrode
contacts per brain structure). While some of these are part of
Pessoa’s model, like the insula and the cingulate gyrus, other
structures are surprising and not commonly associated with
the processing of faces and emotions. However, these findings
support the idea of larger and distributed networks for emotion
processing, which encode the different types of emotions as
activation patterns (Wager et al., 2015). The generalization
power of classification methods is, in our view superior to the
statistical method of permutation cluster test (Figure 4), as it
can be demonstrated to classify trial conditions with unseen
data (Cauchoix et al., 2014; Kragel and LaBar, 2016). However,
while the participation of such brain structures in the realization
of the cognitive task is undeniable, it is still debatable if they
are part of the core emotion processing network, or if they
participate in more general aspects of the task such as low-level
visual processing, movement planning, inner speech evoked
unconsciously by the images, etc. The banks of the superior
temporal sulcus, which appeared significant for both ML and
searchlight MVPA bilaterally, are considered an integration
hub for audiovisual stimuli, inner speech, motion, and face
processing (Hein and Knight, 2008). The Jaccard index showed
a good agreement (∼0.65) between the ML and MVPA methods
on both hemispheres, which is expected as both methods rely
on different, yet similar, machine learning classifiers, and the
input data are overlapping. A lower Jaccard index value (∼0.42)
is observed between the permutation cluster test and each other
method on the RH. Therefore, the searchlight MVPA approach
integrates information from a larger brain volume, resulting in
larger Jaccard index when compared to the permutation cluster
test.

Several other fMRI studies have reported widely distributed
brain regions that encode recognition of different emotional
states through patterns of activations that were identified using
MVPA (Kassam et al., 2013; Kragel and LaBar, 2016). Despite
MVPA’s popularity in the fMRI field and its applicability to
scalp EEG (Cauchoix et al., 2014) to our knowledge, only
four studies leveraged MVPA techniques with intracranial EEG
to study rapid visual categorization in the ventral stream in
rhesus macaques (Cauchoix et al., 2016), fast visual recognition
memory systems (Despouy et al., 2020), and semantic coding
in humans (Chen et al., 2016; Rogers et al., 2021), to date.
The searchlight MVPA method we implemented in this study
allowed us to explore for the first time arbitrary spherical brain

volumes centered on an intracranial depth electrode contact.
Despite the variable number of electrode contacts contributing
to this analysis at the patient level, we observed that the electrode
contacts exhibiting statistically significant accuracies above the
chance level tend to cluster at the group level.

Multivariate pattern analysis and its searchlight
implementation appear to be more sensitive to small differences
between conditions and therefore reveal a widespread brain
network involved in emotion processing, which contradicts
the ‘standard hypothesis’ model that considers the emotion
network to have a cortical and subcortical route that connects
the visual cortex to the amygdala (Pessoa and Adolphs, 2010),
but supports the “multiple waves” model (Pessoa and Adolphs,
2010). A wider brain network provides more opportunities to
modulate the brain functions, that have previously focused
on the amygdala stimulation (Inman et al., 2018), and may
explain the success of emotion regulation of various transcranial
magnetic stimulation studies that focused on the prefrontal
cortex (De Wit et al., 2015; Lantrip et al., 2017), a brain region
that is part of the “multiple waves” model and was found to play
an active role in the processing of different types of emotions as
part of a widespread brain network (Wager et al., 2015).

We observed that the permutation cluster test has identified
the least number of brain structures exhibiting a significant
contrast between task conditions, followed by the ML classifier
and then the searchlight MVPA. This behavior is expected
and explained by the particularities of each method. The
permutation cluster test is appropriate to detect large differences
(clusters), but has a low sensitivity for small clusters that
are commonly observed in EEG data (Nichols and Holmes,
2002; Huang and Zhang, 2017). The machine learning classifier
can have better sensitivity, as even a single feature that is
systematically different between the two task conditions is
enough to provide good classification performance. In our
study, we computed features over 200 and 400 ms intervals,
but the five features we have used describe the data underlying
these intervals sufficiently well to identify more brain structures
with significant task contrasts than the permutation cluster
test. The searchlight MVPA has all the benefits of the ML
classifier, and adds the spatial dimension to the analysis: it
considers the multi-variate changes in the features computed
for all intracranial contacts within a predefined search radius.
As expected, the results of searchlight MVPA were the best,
this method identifying the largest number of brain structures
with significant task condition contrasts, all of them being
in agreement with the existing scientific literature on face
recognition and emotion processing (Table 3).

Conclusion

This manuscript provides the first methodological side-by-
side comparison of three methods for identifying task contrasts

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.946240
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-946240 September 22, 2022 Time: 11:18 # 12

Donos et al. 10.3389/fnins.2022.946240

in EEG data and exemplifies the usage of searchlight MVPA with
intracranial depth electrodes. However, an in-depth analysis
of the brain networks identified by searchlight MVPA and
the neuroscientific interpretation of the findings is beyond
the scope of the current study, which is only aimed at
validating the results through the existing literature. We
have shown that the permutation cluster analysis, which is
commonly used for the analysis of intracranial EEG data,
is less sensitive to task contrasts than ML classification,
and both of them are less sensitive than searchlight MVPA
method. Of course, none of these three methods has
identified significant task-related contrasts in all brain structures
featured in Table 3, even though each of those structures
is involved in one way or another in the processing of
faces or emotions, according to the previous studies we have
referenced.

At the same time, our study is the first intracranial EGG
study to reinforce the idea that the emotion network is
widespread and relies on activation patterns to process various
emotions, as demonstrated by an fMRI study (Kragel and
LaBar, 2016) and a meta-analysis of 148 emotion-related studies
(Wager et al., 2015).

A detailed analysis of the searchlight MVPA brain networks
and their temporal dynamics through time generalization (King
and Dehaene, 2014; Rogers et al., 2021) will be addressed in a
future study.
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