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Abstract: New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were pre-
pared via solid state synthesis and sintering, and characterized as promising candidates for low
dielectric permittivity substrates for very high frequency circuits. The sintering behavior, compo-
sition, microstructure, and dielectric properties of the ceramics were investigated using a heating
microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and
terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7
and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials,
owing to a low sintering temperature of 900–960 ◦C, are suitable for LTCC (low temperature cofired
ceramics) applications.

Keywords: microelectronics; packaging; copper borates; ceramic substrates; low dielectric permittiv-
ity; dielectric properties; THz spectroscopy; LTCC applications

1. Introduction

Modern high frequency communication systems create demand for new substrate
materials with specific dielectric characteristics comprising a low dielectric permittivity,
a low dielectric loss, and a low temperature coefficient of dielectric permittivity. Such
dielectric properties of a substrate for microwave and mm-wave circuits improve the signal
speed and quality, selectivity, and temperature stability of the operating frequency [1–5].

Silicates, such as cordierite, forsterite, diopside, mullite, and willemite, are well-
known conventional materials for low dielectric permittivity substrates for microwave
circuits [6–12]. Recently, with the tendency to decrease the sintering temperature, new mate-
rials have attracted more attention. Besides molybdates, tungstates, and phosphates, some
borates are good candidates for new materials with a low sintering temperature [13–24].

The copper metaborate CuB2O4 crystallizes in a tetragonal structure with I-42d space
group [25–27]. Its structure is composed of a BO4 tetrahedra sharing four common oxygen
ions. Cu2+ ions are situated between them in two different crystallographic positions
corresponding to a planar square or an elongated octahedral coordination [25–27].

Cu3B2O6 has a more complex structure and a lower symmetry [28] as compared with
CuB2O4. The best known is Cu3B2O6 with a triclinic structure, although the crystallization
of this compound in the monoclinic and orthorhombic structures was also reported. In
Cu3B2O6, Cu2+ ions occupy 16 nonequivalent crystallographic positions, which can be
divided into the following three types—predominant square planar positions (CuO4) with
the coordination number four, distorted square pyramids (CuO5) with the coordination
number five, and distorted octahedral positions (CuO6) with the coordination number
six. For this compound, the calculated average effective coordination number is close
to four for the triclinic structure. In Cu3B2O6, boron also shows different coordination
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numbers—(BO3) and (B2O5) groups occur with shorter B–O bonds than for tetrahedral
(BO4) groups in CuB2O4 [28].

Besides broad studies of the magnetic properties of CuB2O4 and Cu3B2O6 crystals,
potential magneto-optical, piezoelectric, multiferroic, and photocatalytic applications of
CuB2O4 were also reported [25–27,29–37]. Furthermore, Cu3B2O6 was applied for active
electrodes of lithium-ion batteries [38,39]. However, the characterization of dielectric
properties at THz frequencies for ceramic substrates made of copper borates has remained
an unexplored area thus far.

This work reports on sintering behavior, microstructure, and dielectric properties in
the THz range of new ceramics based on two pure copper borates, CuB2O4 and Cu3B2O6,
and CuB2O4–Cu3B2O6 mixtures. These ceramics offer a low dielectric permittivity and
a low dielectric loss at very high frequencies, and a relatively low sintering temperature
adequate for LTCC (low temperature cofired ceramics) technology.

2. Materials and Methods

Two copper borates, CuB2O4 and Cu3B2O6, were synthesized using the conventional
solid state reaction method. The high purity starting materials, H3BO3 and CuO (Sigma
Aldrich, St. Louis, MO, USA), were mixed in stoichiometric proportions, ball milled
(Pulverisette 5, Fritsch, Germany) for 8 h in isopropyl alcohol, and dried. Then, the
powders were pressed into pellets and calcined in a two-step process—at 200–400 ◦C for
2 h to decompose boric acid, and at 700 ◦C for 5 h to carry out solid state syntheses.

The resulting materials were ball milled for 8 h to obtain fine CuB2O4 and Cu3B2O6
powders. In addition, three CuB2O4–Cu3B2O6 mixtures containing 35, 50, and 70 wt.%
Cu3B2O6 were prepared by ball milling for 8 h. For the last two compositions, 5 wt.%
CuBi2O4 was added as a sintering aid. Finally, the powders were granulated with polyvinyl
alcohol, pressed into pellets, and sintered in the temperature range 900–960 ◦C.

The phase compositions of the materials were investigated using the X-ray diffraction
method (Empyrean, PANalytical, Almelo, The Netherlands) using Cu Kα1 radiation within
a 2θ range of 10 to 90◦. Optimal sintering conditions and melting points of the samples
were established based on observations in a heating microscope (Leitz, Germany) in the
temperature range 20–1040 ◦C. Scanning electron microscopy and X-ray energy disper-
sive spectroscopy (FEI Nova Nano SEM 200 with EDAX Genesis EDS system, Hillsboro,
OR, USA) were used to characterize the microstructure and elemental composition of
the ceramics.

Dielectric properties at room temperature in the frequency range 0.12–2.5 THz were
studied using time domain spectroscopy (TDS) (TPS Spectra 3000, Teraview, Cambridge,
UK) according to the procedure reported previously [12]. The measurements were per-
formed in purged air to avoid interference related to the presence of water vapor.

3. Results and Discussion
3.1. Phase Composition

As illustrated in Figure 1a,b, the XRD phase analysis confirmed the presence of the
planned copper borates CuB2O4 and Cu3B2O6 as crystalline phases. CuB2O4 shows the
tetragonal structure with the space group I-42, while Cu3B2O6 was detected as triclinic
Cu15B10O30 with the space group P-1. For the compositions prepared as CuB2O4–Cu3B2O6
mixtures with a 5% CuBi2O4 addition, the XRD analysis revealed two main crystalline
copper borate phases, but additional crystalline phases were not detected (Figure 1d). This
implies that the sintering aid, CuBi2O4, formed an amorphous phase or entered the crystal
lattice of the main crystalline components.
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Figure 1. Diffraction patterns of the ceramics: (a) CuB2O4, (b) Cu3B2O6, (c) 65% CuB2O4–35% Cu3B2O6, and (d) 30% CuB2O4–
70% Cu3B2O6 doped with 5% CuBi2O4. 

3.2. Heating Microscope Studies 
Figure 2 presents some selected images from a heating microscope that provided 

insight into the behavior of the samples during heating from room temperature to 1040 
°C.  
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Figure 1. Diffraction patterns of the ceramics: (a) CuB2O4, (b) Cu3B2O6, (c) 65% CuB2O4–35% Cu3B2O6, and (d) 30%
CuB2O4–70% Cu3B2O6 doped with 5% CuBi2O4.

3.2. Heating Microscope Studies

Figure 2 presents some selected images from a heating microscope that provided
insight into the behavior of the samples during heating from room temperature to 1040 ◦C.
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Figure 2. Selected images from a heating microscope for: (a) CuB2O4, (b) Cu3B2O6, (c) 65% CuB2O4–
35% Cu3B2O6, (d) 50% CuB2O4–50% Cu3B2O6 doped with 5% CuBi2O4, (e) 30% CuB2O4–70%
Cu3B2O6 doped with 5% CuBi2O4.
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These studies helped to establish the optimal firing profiles for each composition based
on information about the temperature range in which the shrinkage occurs and about the
softening and melting points. For pure copper borates (Figure 2a,b), the samples start to
shrink at 891 and 893 ◦C, and the relevant optimal sintering temperatures are 940 and
930 ◦C for CuB2O4 and Cu3B2O6, respectively. The melting points are 1000 ◦C for CuB2O4
and 1040 ◦C for Cu3B2O6. The Cu3B2O6 ceramic shows a higher melting point than CuB2O4,
but it has a similar temperature of the shrinkage onset and exhibits an advantageous feature
of a broader sintering range. Consequently, its optimal sintering temperature is close or
even lower as compared with CuB2O4. For mixed copper borates, the optimal sintering
temperatures were established as 960, 920, and 900 ◦C for 65% CuB2O4–35% Cu3B2O6,
50% CuB2O4–50% Cu3B2O6 with 5% CuBi2O4, and 30% CuB2O4–70% Cu3B2O6 with 5%
CuBi2O4, respectively.

3.3. Microstructural Studies

The SEM studies of all the sintered samples based on pure and mixed copper borates
showed a very compact microstructure with a small contribution of porosity. It follows
from the comparison of the images in Figure 3a,b that the microstructure for pure copper
borates is similar, fine-grained, and uniform, with grain sizes in the 0.5–3 µm range.
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Figure 3. SEM images of fractured cross-sections of ceramic samples: (a) CuB2O4 sintered at 940 ◦C,
(b) Cu3B2O6 sintered at 930 ◦C, (c) 50% CuB2O4–50% Cu3B2O6 doped with 5% CuBi2O4 sintered at
920 ◦C, and (d) 30% CuB2O4–70% Cu3B2O6 doped with 5% CuBi2O4 sintered at 900 ◦C, ×10,000.

For the mixed borates compositions, the dense microstructure was preserved, although
there was a more significant variation in grain sizes as compared with the single-phase
copper borate ceramics. For the ceramics with 5% CuBi2O4 added (Figure 3c,d), small
grains 1–3 µm in diameter prevail, although a fraction of much bigger grains appears
with sizes ranging from 4 to 12 µm. Thus, it seems that the sintering aid causes a grain
growth effect, even though the sintering temperature is slightly lower as compared with
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pure copper borates. Table 1 presents the results of the EDS analysis at the points marked
in Figure 3d for 30% CuB2O4–70% Cu3B2O6 ceramic doped with 5% CuBi2O4. Point one
represents a big grain attributed to CuB2O4 (Cu/B ratio close to 0.5), while points two,
four, and five were assigned to smaller grains of Cu3B2O6 (Cu/B ratio close to 1.5). Grain
boundaries were enriched with Bi originating from the dopant CuBi2O4 (point three). The
EDS results are distorted due to the imprecise detection of boron using this method.

Table 1. Results of EDS analysis at the points marked in Figure 3d for 30% CuB2O4–70% Cu3B2O6

ceramic doped with 5% CuBi2O4, sintered at 900 ◦C.

Element
at. %

Point 1 Point 2 Point 3 Point 4 Point 5

B 45.76 26.06 28.20 31.63 26.31

O 31.40 16.75 25.15 26.65 17.11

Bi 0.20 0.62 0.92 0.47 0.74

Cu 22.64 56.57 45.73 41.25 55.84

Cu/B 0.49 2.17 1.62 1.30 2.12

3.4. Dielectric Properties

A theoretical prediction of dielectric permittivity based on the knowledge about the
composition and crystal structure of the compound should be considered to design a
substrate material with dielectric properties tailored for high frequency applications. For
a simple assessment of the real part of relative dielectric permittivity εr, one can use the
Clausius–Mossotti equation, which relates this quantity with the polarizability α:

α =4πVm/3[(εr − 1)( εr + 2)] (1)

where Vm is the molar volume.
For a compound, molecular polarizability can be calculated using the additive rule, as

a sum of the polarizabilities of particular ions that built the molecule. Thus, the molecular
polarizabilities of the investigated copper borates can be expressed as follows:

α(CuB2O4) = α(Cu2+) + 2α(B3+) +4α(O2−) (2)

α(Cu3B2O6) = 3α(Cu2+) + 2α(B3+) +6α(O2−) (3)

The polarizabilities of the constituent ions are 2.11, 0.05, and 2.01 Å3 for Cu2+, B3+,
and O2−, respectively [40]. The molar volumes (calculated as the unit cell volume per the
number of formula units in the unit cell) are 61.76 and 112.54 Å3 for CuB2O4 and triclinic
Cu3B2O6, respectively. Thus, the theoretical relative dielectric permittivities of CuB2O4 and
Cu3B2O6 calculated from the Clausius–Mossotti equation are 7.83 and 7.61, respectively.
These values are close to each other.

However, the predictions based on the Clausius–Mossotti relationship are consistent
with the experimentally measured values mainly for a high symmetry cubic crystallo-
graphic system. For the materials characterized by structural peculiarities related to the
presence of “rattling” or “compressed” cations, ionic or electronic conductivity, dipolar
impurities, or piezoelectric behavior, distinct deviations from the additivity rule were
observed [40].

Low polarizability is responsible for confining ionic polarization in a material. A lower
average bond length diminishes the rattling effect of cations in a polyhedral structural unit.
A lower cell volume restricts the interaction of polarizable dipoles [41–43]. Qin et al. [41]
proposed a universal model based on machine learning for predicting microwave dielectric
permittivity. These authors stated that there are three most important features related to
the crystal structure of a compound determining its dielectric permittivity. According to
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this model, the dielectric permittivity decreases with a decrease in the polarizability per
unit cell volume ppv and with a decrease in the average bond length blm. The average cell
volume per atom va is also an important parameter that should be maintained in an optimal
range. Qin et al. [41] stated that the ranges of the decisive parameters that favor creating
materials with a low dielectric permittivity are ppm < 0.15, va 11–16 Å3, and blm < 2.3 Å.

The relevant values for CuB2O4 and Cu3B2O6 obtained in this work are 0.17 and 0.16
for ppm, and 17.6 and 10.2 for va, respectively. The bond lengths reported for CuB2O4
are 1.999 Å for prevailing Cu–O shorter bonds, 2.864 Å for Cu–O longer bonds, and
1.444–1.487 Å for B–O bonds [26]. For Cu3B2O6, the average Cu–O bond length is 2.1 Å [28].
The analysis of ppm, va, and blm values for CuB2O4 and Cu3B2O6 leads to the conclu-
sion that these parameters are close to the ranges indicated in [41] for low permittivity
candidate materials.

Figure 4a,b compare the frequency dependences of the dielectric permittivities and
the dissipation factors of copper borate ceramics at 20 ◦C in the 0.12–2.5 THz range.
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Figure 4. Comparison of dielectric permittivity (a) and dissipation factor (b) at 20 ◦C as a function of
frequency in the range 0.12–2.5 THz for CuB2O4, Cu3B2O6, and CuB2O4–Cu3B2O6 ceramics.
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In the 0.14–0.7 THz range, the dielectric permittivities are low, at a level of 5.3–5.4
for CuB2O4, 6.4–6.7 for Cu3B2O6, 5.1–5.2 for 65% CuB2O4–35% Cu3B2O6, 5.8–6.0 for 50%
CuB2O4–50% Cu3B2O6 with 5% CuBi2O4, and 5.8–6.1 for 30% CuB2O4–70% Cu3B2O6 with
5% CuBi2O4. The lowest dielectric permittivities were shown by pure CuB2O4 ceramic
and 65% CuB2O4–35% Cu3B2O6 ceramic without the sintering aid. For all the materials
under investigation, the dielectric permittivity changes very slightly with a frequency up
to 0.7 THz and then reaches a maximum at about 1 THz for Cu3B2O6 and at about 0.9 THz
for the rest of the copper borate-based ceramics.

Figure 5a,b show the comparison of the dielectric permittivities and dissipation factors
of the CuB2O4 ceramics sintered at three different temperatures—930, 940, and 950 ◦C. The
dielectric permittivity increases, while the dissipation factor decreases with an increasing
sintering temperature. This is typical behavior that can be attributed to a lower porosity of
the samples sintered at higher temperatures.
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Figure 5. Comparison of dielectric permittivity (a) and dissipation factor (b) versus frequency in the
range 0.12–2.5 THz for CuB2O4 ceramics sintered at 930, 940, and 950 ◦C.
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The dissipation factors are relatively low (0.004–0.01) in the 0.14–0.7 THz range, with
a flat minimum at 0.4–0.6 THz. A few peaks on the dissipation factor versus frequency
plots were observed above 0.9 THz at the positions corresponding to those of the dielectric
permittivity maxima.

At very high THz frequencies, some types of dielectric polarization, such as space
charge and dipolar polarizations, cannot follow the changes of the external electrical
field. In this case, the dielectric behavior is determined by ionic, atomic, and electronic
polarization. The dielectric properties can be described by the damped harmonic oscillators
model [44]. This model explains the observed frequency independent constant value of the
real part of dielectric permittivity ε’, an increase in its imaginary part ε” and, consequently,
the dissipation factor (ε”/ε’) in the region of THz frequencies.

Peaks on the dielectric permittivity/dissipation factor versus frequency plots that
occur above 0.7 THz are supposed to be attributed to phonon modes related to vibrations
in Cu–O complexes [26,28]. Due to the large number of atoms that form the unit cells of
both copper borates (42 atoms for CuB2O4, 110 atoms for Cu3B2O6 [26,28]), phonon modes
for these compounds are numerous, which was confirmed using infrared and Raman
spectroscopic studies [26–29].

In Figure 6a,b, the dielectric permittivities and dissipation factors for a few frequencies
in the 0.2–0.7 Hz range (the region of a weak frequency dependence) are plotted as a
function of temperature in the range 30–150 ◦C for the CuB2O4 ceramic. The temperature
dependence of dielectric permittivity is very weak up to 90 ◦C, while the dissipation
factor is almost temperature independent in the whole analyzed range. The frequencies
corresponding to the peaks of dielectric permittivity and dissipation factor do not change
with temperature, which implies that the phenomena responsible for these peaks are not
thermally activated processes. It was found that the temperature coefficient of dielectric
permittivity of CuB2O4 ceramic in the temperature range 30–90 ◦C is negative and changes
from −19 to −55 ppm/◦C in the 0.2–0.7 THz range.
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Figure 6. Comparison of dielectric permittivity (a) and dissipation factor (b) of CuB2O4 ceramic sintered at 940 ◦C as a
function of temperature in the range 30–150 ◦C for a few frequencies in the 0.2–0.7 THz range.

The dielectric permittivities determined experimentally in this work are distinctly
lower than those calculated using the Clausius–Mossotti equation. This discrepancy cannot
be assigned only to porosity, considering the high relative density of the sintered samples
at a level of 95–98%. It is supposed to be related to the complex noncentrosymmetric
crystallographic structures of the copper borates under investigation. For such systems,
deviations from the Clausius–Mossotti relationship have often been observed [40].

For commercially available LTCC materials, the values of dielectric permittivity in the
range 4–7 and tanδ below 0.012 at 1 THz are considered low values, suitable for millimeter
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wave systems. The dielectric properties of CuB2O4 and CuB2O4–Cu3B2O6 ceramics in the
0.14–0.7 THz range are comparable with those reported for the commercial LTCC material
Ferro A6M at 1 THz (εr’ = 6.06, tanδ = 0.012) [45]. We plan to use the developed powders
based on copper borates for tape casting and the fabrication of multilayer LTCC substrates
appropriate for very high frequency applications in future work.

4. Conclusions

New ceramics based on two copper borates, CuB2O4 and Cu3B2O6, were successfully
prepared via solid state synthesis and sintering processes. These ceramics exhibit the
following advantageous features: a low sintering temperature suitable for LTCC technology,
a very dense microstructure, a low and temperature stable dielectric permittivity (5.1–6.7),
and a low dielectric loss (0.004–0.01) in the 0.14–0.7 THz range. The developed ceramics
are promising substrate materials for submillimeter wave applications and have been
investigated for the first time in such a frequency range.
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