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Development of vessel mimicking microfluidic device
for studying mechano-response of endothelial cells

Pei-Yu Chu,1,7 Han-Yun Hsieh,1,3,7 Pei-Shan Chung,2 Pai-Wen Wang,3 Ming-Chung Wu,4 Yin-Quan Chen,5

Jean-Cheng Kuo,4,5 and Yu-Jui Fan1,6,8,*

SUMMARY

The objective of this study is to develop a device tomimic amicrofluidic system of
human arterial blood vessels. The device combines fluid shear stress (FSS) and cy-
clic stretch (CS), which are resulting from blood flow and blood pressure, respec-
tively. The device can reveal real-time observation of dynamic morphological
change of cells in different flow fields (continuous flow, reciprocating flow and
pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial
cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow di-
rection and paxillin redistribution to the cell periphery or the end of stress fibers.
Thus, understanding the morphological and functional changes of endothelial
cells on physical stimuli can help us to prevent and improve the treatment of car-
diovascular diseases.

INTRODUCTION

Endothelial cells (ECs) within blood vessels form a lining of the interior surface of blood vessels, named as

endothelium.1 Blood flow and blood pressure produce the fluid shear stress (FSS) and cyclic stretch (CS) on

the ECs. FSS and CS have been proposed as pathogenic factors of cardiovascular disease. Mechanical

forces change the morphology and function of endothelial cells,2–7 including adhesion,8–10 migration11

and cytoskeletal arrangement.12 Therefore, studying the changes in endothelial cells stimulated by FSS

and/or CS will be of great help to the future research of cardiovascular disease and treatment.

The endothelium has the function to maintain blood fluidity and regulate blood clotting. Damaged blood

vessel causes the initiation of the hemostatic system, including vascular constriction, platelet plug forma-

tion, and blood coagulation. In response to injury or infection, the endothelial cells release chemicals,

which regulate platelets activation and the coagulation cascades for maintaining the blood fluidity and pre-

venting thrombosis formation.13–16 Therefore, the endothelial cells play an indispensable role in the hemo-

static system. Healthy endothelial cells inhibit platelets aggregation and regulate fibrinolysis.17 Endothelial

cells injuries and endothelial dysfunction may promote platelet adhesion, aggregation and fibrin forma-

tion,18 causing clot formation and finally the thrombosis. Endothelial dysfunction is initial characteristics

of cardiovascular diseases, including hypertension, atherosclerosis, thrombosis, stroke and coronary artery

disease.19 Accordingly, understanding the role of endothelial cells on FSS and/or CS stimulation is crucial

for the treatment, prevention of cardiovascular diseases and drug discovery.20–22

Several reports have demonstrated the applications of combining mechanical stimuli in the in vitro cell cul-

ture system. These devices are applied to investigate the role of fluid shear stress or cyclic stretching on the

regulation of endothelial cell behavior.23–30 Ives et al. established a stretch chamber31 and a constant head

steady flow loop32 in vitro models to investigate the effect of cyclic stretch and fluid shear stress on endo-

thelial cells. In addition, Shikata et al. established a cell culture flow system and a FX4000T Flexcell Tension

Plus system (Flexcell International, McKeesport, PA) to investigatemechanical stimulation for redistribution

of focal adhesions (Fas).33–35 However, none of the devices are designed to generate and apply FSS or CS

on cells. Importantly, the size of these devices may consume large amounts of tissue culture materials.

Other than use these independent designs for studying FSS and CS to endothelial cells, Toda et al. have

combined FSS and CS on a system in an in vitromodel that can be applied to study gene regulation and the

changes of morphology under mechanical stimuli.36 With the development of microfluidics system, the

combination of microfluidics and cell culture has gradually emerged. Because the flow of microfluidics is
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mainly laminar flow, and the hydrodynamics simulated by microfluidics system is similar to the microenvi-

ronment in vivo.7,37,38 In addition, Zheng et al. have developed a microfluidic flow-stretch chip, which can

simultaneously or independently apply FSS and CS to cells to observe the organization of actin stress fi-

bers.39 After applying one dimensional CS, the actin stress fibers are perpendicularly aligned to the direc-

tion of stretching, but the arrangement of cells subjected to FSS is not significantly parallel to the direction

of fluid flow.

In this study, we developed a shearing-stretching device to mimic blood vessel, in which the effect of me-

chanical stimuli on bovine aortic endothelial cells (BAECs) can be observed under microfluidics. This device

provided versatile mechano-environments through supplying shear flow and substrate stretching sepa-

rately or simultaneously, as shown in Figures 1A and 1B. The cells cultured in this device were able to

receive different combinations of mechanical forces including pure flow (continuous flow, reciprocating

flow, and pulsatile flow), cyclic stretching with reciprocating flow, or cyclic stretching with pulsatile flow.

We also investigated cell mechanotransduction on different stiffness materials. The BAECs were cultured

on the PDMS and glass to observe the changes of cell morphology undermechanical stimuli. Moreover, cell

elongation, arrangement, FAs distribution, and cell size in BAECs under different mechanical stimuli were

investigated.

Comparing to most of previous efforts which provided CS in either 1D or 2D direction at a flat surface, this

proposed device that are similar to ECs in real vessel presents the CS in radial direction, and curved defor-

mation. This platform is also able to provide several functions that have not yet been studied, such us recip-

rocating flow dependent/independent with CS that can be used to learn new biology in the future.

RESULTS

Finite element simulations of device

To characterize flow type resulting from combination of continuous flow and reciprocating flow, which is

induced by cyclic PDMS deformation, the finite element software, COMSOL, was used to simulate the

different combination cases. A 2D model that represents central cross-section area as Figure 2A was built.

The upper layer is PDMS membrane, and lower layer is microfluidic channel and material properties of

PDMS and water were given, separately. The boundary conditions of PDMS membrane at left and right

A

B

Figure 1. Schematics of the microfluidic shearing-stretching device

(A and B) Cells cultured in microfluidic device with reguler and pressurized mode. These two modes cyclic alternate to

stretch cells in the device.

(C and D) The device contains two layers of microfluidic channel/chamber and three inlet/outlets. Two inlet/outlets

connect to bottom channel for loading cells and applying shear flow. Upper chamber connects to an air inlet/outlet for

cyclically pressurizing to provide cyclic stretch.
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sides were fixed, and the moving mesh was applied. The upstream of microfluidic channel was given to left

side, and boundary conditions of continuity at left and right sides were set. When applying displacement at

central point in a period and constant flow speed from upstream, the flow field of microfluidic channel was

calculated by solving Navier-Stokes equation. The simulating results are shown in Figures 2B and 2C;

(Videos S1 and S2). Therefore, different flow types, including continuous flow, reciprocating flow, and pul-

satile flow can be modulated by tuning displacement and flow speed. For further experiment, the BAECs in

the vessel mimicking microfluidic channel are subjected to stretch force and different flow types.

To estimate the elongation rate of PDMS membrane in one direction after deflection, we assumed the

PDMS structure is a beam with length of L that is fixed supported at both end and is subjected to the uni-

form loading with force of w. When the internal moment M deforms the element of the beam, the beam

deflects as shown in Figure 2A. The curvature, c, can be expressed as

Figure 2. Simulation results

(A) Schematics of the structure of the device.

(B–E) The simulation results of pulsatile flow that is formed by coupling steady fluidic flow and cyclic PDMS deformation-

induced fluidic flow (Videos S1 and S2). Pseudocolor represents stress of deformed PDMS, and arrows represent flow

direction and scale in microfluidic channel. The animations of the entire simulation in a period is provided in supplemental

materials including: (D) reciprocating flow induced by cyclic PDMS deformation, and (E) pulsatile flow, combination of

steady fluidic flow and reciprocating flow. 1 to 4 represents different mechano-environments for BAECs, 1: reciprocating

flow, 2: reciprocating flow and cyclic stretch, 3: pulsatile flow, and 4: pulsatile flow and cyclic stretch.

(F and G) The velocities of (F) reciprocating flow and (G) pulsatile flow in a period are also showed. An experimental result

of the particle tracing in microfluidic channel is also realized to demonstrate pulsatile flow. The particle bouncing means

backward flow that can be scaled by tuning steady flow rate.
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k =
1

r
=
M

EI
(Equation 1)

where c is the radius of curvature at the point on the elastic curve, E is material’s modulus of elasticity,

and I is beam’s moment of inertia about the neutral axis. The curvature in term of the equation of elastic

curve v(x) is,

k =
1

r
=

d2vðxÞ
.
dx2h

1+ðdvðxÞ=dxÞ2
i3=2 (Equation 2)

For a small deflection, the curvature can be approximated by,

k =
1

r
=
d2vðxÞ
dx2

(Equation 3)

Therefore, the relationship between the equation of elastic curve and internal moment can be found as,

d2vðxÞ
dx2

=
MðxÞ
EI

(Equation 4)

The displacement at the two ends are fixed, the slope of the surface after deformation at the two ends are

equal to 0, and the maximum displacement of Vmax is at the center of the beam.

Based on calculation, if the Vmax are given from 10 to 70 mm, the length of deformed curvature, L0, will elon-
gate 0.02%–1.2% in one direction. According to previous study,7 the diameter change during pulse flow is

around 1%–15% in the several main arteries of a man including aorta, carotid arteries, femoral arteries, and

pulmonary arteries. The channel size and cell elongation in this study is corresponding to that in arterioles

and partial arteries. Enlarging channel size and increasing pressure force are able to increase displacement

for mimicking aorta and arteries.

(1) Continuous flow:

The syringe pump provided continuous steady flow rate to the microfluidic shearing-stretching device,

and the BAECs in the microfluidic channel were subjected to fluid shear stress. The wall shear stress

(tw ) calculation was based on the Fourier series expansions and it was derived a simple approximation

[38–39]:

tw =
2mQ

wh2

�
m+1

m

�
ðn + 1Þ (Equation 5)

where m is the fluid viscosity, Q is the flow rate, w is the width of the microfluidic channel, h is the height of

themicrofluidic channel, andm and n are empirical constants. The wall shear stresses calculated were 138.4

and 184.5 dyn/cm2 in this study.

(2) Cyclic stretch with reciprocating flow:

The programmable air pressure system provided periodic pressure on the microfluidic channel, which

deformed and caused the BAECs to subject the cyclic stretch. COMSOL was used to simulate that the

flow field in the microfluidic channel is reciprocating flow. It can find that the BAECs at the edge are not

stretched, whereas the BAECs at the center are stretched. Therefore, the BAECs at the upstream and

downstream were only be subjected to reciprocating flow, whereas the BAECs at the central were being

subjected to both cyclic stretch and reciprocating flow as Schematics in Figure 2D. The periodic variation

of flow velocity was simulated and plotted in Figure 2F.

(3) Cyclic stretch with pulsatile flow:

The syringe pump provided a continuous flow in the microfluidic channel, which also deformed by the pe-

riodic pressure from the programmable air pressure system as Figure 2E. COMSOL was used to simulate

the flow field in themicrofluidic channel. The periodic variation of flow velocity was simulated and plotted in

Figure 2G. It was found that the BAECs at the edge were not stretched whereas the BAECs at the center
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were stretched. Therefore, the BAECs at the edge were only subjected to pulsatile flow whereas the BAECs

at the center were subjected to both cyclic stretch and pulsatile flow.

An experimental result of the particle tracing in microfluidic channel is also realized to demonstrate pulsatile

flow. The experimental Video S3 is provided in supplementary information. In this experiment, we demon-

strated the most complicate combination of the FSS, which is pulsatile flow with flow reverse that is also cor-

responding to the simulations shown in Figure 2G. It indicates that the system can further be used to simulate

the situation of mitral insufficiency. By increasing flow rate of continuous flow, the reversal flow can be offset.

This vessel mimicking microfluidic platform showed the major advantage that the device is able to study

multiple parameters by individually/simultaneously applying shearing force and stretching force. As Fig-

ure 1A, continuous flow only, the ECs received continuous shearing force. As Figure 2D, cyclic stretch

only, the ECs at area 1 received reciprocating flowing force, and the ECs at area 2 received both of recip-

rocating flowing force and cyclic stretching force. As Figure 2E, simultaneously applying continuous flow

and cyclic stretch, the ECs at area 3 received pulsatile flow only, and that at area 4 received both pulsatile

flowing force and cyclic stretching force. The experimental results are shown below:

Effects of fluid shear stress and substrate stiffness

To study substrate stiffness regulated cell response when sensing fluid shear stress, we first separately

cultured BAECs in PDMS substrate and glass substrate based microfluidic channel, and applied fluid shear

stress for 24 h. The glass substrate was spinning-coated uncured PDMS and then baked until cured to

obtain PDMS substrate. The w/wo PDMS coated glass substrate was bonded with microfluidic channels.

The Young’s Modules of PDMS and glass were�1.5 MPa40 and 50–90 GPa, respectively, with about 10,000-

folds different. Based on previously study found that the physiological elastic modulus measured by tensile

test of coronary arteries obtained from healthy humans aged 25 to 50 was between 0.85 and 1.75 MPa.41 It

means that the elastic modulus of PDMS is suitable to mimic human arteries.

The suspended BAECs were separately injected into microfluidic channels with PDMS or glass substrates,

incubated BAECs on the substrates in channel for 48 h to let BAECs settling down as Figures 3A and 3B, and

then applied static purely FSS of 138.4 and 184.5 dyn/cm2 for 24 h without stretching. The images were re-

corded every 30 min and the variation of the cell morphology was observed after 24 h.

When BAECs were cultured on PDMS substrate-based microfluidic channels, the comparison images from

devices w/o applying different FSS after 24 h were shown in Figure 3C. Themorphology of cells which seed-

ing on PDMS was not aligned with the direction of fluid flow under 24 h FSS, comparing with static control.

We measured the angle of stress fibers with the long-axis of the cell under static condition or under 24 h

FSS, and plotted the charts to observe the angle distribution of cells (Figure 3E). On PDMS substrate,

the angle distribution of stress fibers was dispersed but slightly perpendicular to FSS. The rose diagram

results clearly showed that the cells seeding on PDMS did not align with the direction of fluid flow under

24 h FSS comparing to static condition.

When BAECs were cultured on glass substrate-based microfluidic channel, the comparison images from

devices w/o applying different FSS after 24 h were shown in Figure 3D, which are FSS-dependent response.

The angle of stress fibers with the long-axis of the cell was dispersed on treated with static condition. On

FSS treatment, cells were tended to align along the direction of flow direction after 24 h FSS. Similar results

were found in the rose diagram (Figure 3F). The results showed significance in the statistics, moreover,

compare to the PDMS-based device, BAECs also had significance that cells tended to align along the di-

rection of FSS with applying FSS on glass substrate.

We simulated the endothelial cells under various environmental conditions and successfully observed that

the stiffness of materials affected cell morphology, most of the cells preferred to attach on the glass than

PDMS substrate. Furthermore, we first separately cultured BAECs in PDMS substrate and glass substrate

based microfluidic channel, to study whether substrate stiffness can regulate cell alignment under fluid

shear stress (FSS). However, PDMS substrate-based microfluidic system did not show the statistical signif-

icance alignment with the direction of fluid flow under FSS 138.4 and 184.5 dyn/cm2 up to 24 h. However,

the glass-basedmicrofluidic system tended to align along the direction of applying FSS in 24 h (Figures 3D,
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3F, and 3G). In fact, when cells under the FSS over 24 h, cells might injure and de-attached from both PDMS

and glass substrate because of the continuous flow and limited growth environment in microfluid channel.

Owing to these limitations, when cell seeded on PDMS device over 24 h, the cell numbers were sharply

decreased and we cannot confirm whether the alignment would never happen, or if it is just delayed. In

contrast, cells seeded in glass substrate based microfluidic channel tend to align with the FSS in 24 h.

However, after the continuous flow, the expression level of VE-cadherin was increased compared with static

control. As far as we know, the adherent junction protein VE-Cadherin was highly expressed in the polar-

ized endothelial cells. Previous study also indicated that VE-Cadherin played a critical role in vessel growth

and lumen formation.42 Adequate concentration of VE-cadherin in cell junctions were helpful for

angiogenesis.

Effects of fluid shear stress and/or cyclic stretch on cell adhesion and cytoskeleton

To investigate the changes of BAECs culturing on PDMS substrate-based microfluidic channel after different

combination ofmechanical stimuli, themorphological changes of the cells subjected tomechanical stretching

A B E

C

F

D

G

Figure 3. The angle distribution of cells adhered to the substrates of different materials

(A and B) The microfluidic device setup with (A) PDMS substrate and (B) glass substrate were revealed.

(C) The cells adhered to the PDMS under static conditions or different FSS for 24 h.

(D) The cells adhered to the Glass under static conditions or different FSS for 24 h.

(E) The rose diagram shows that the angle distribution of cells adhered to the PDMS under static conditions or different FSS for 24 h.

(F) The rose diagram shows that the angle distribution of cells adhered to the Glass under static conditions or different FSS for 24 h. The white arrow is the

direction of fluid flow. All experiments were repeated 3 times for data analysis. The results are presented as mean G standard deviation.

(G) The cells with F-actin and VE-Cadherin staining in the static status and after applying FSS for 24hrs. F-actin staining showed the fiber elongation, VE-

Cadherin staining showed that cell-cell interaction was built in the microfluidic system.

ll
OPEN ACCESS

6 iScience 26, 106927, June 16, 2023

iScience
Article



(Figure 4A) was studied. Multiple cells were randomly selected for each condition, such as FSS and CS, to

quantify the BAECs elongation by ImageJ. Nuclear and cell elongation was quantified by the ratio of the

long axis over the short axis of a nucleus and a cell, separately. There is no significant difference in nuclei elon-

gation under on FSS stimulus (Figure 4B), The morphology of cell was significantly elongated under the

FSS+CS, and this cell elongation caused by FSS+CS was longer than that caused by FSS, whereas cell elon-

gation increased significantly under cyclic stretch compared with the static conditions and FSS (Figure 4C).

Figure 4. Effects of FSS and/or CS on the nuclear morphology and organization of F- Actin

(A) The images of cell nucleus (upper panels) and F-Actin (middle panels) under different mechanical stimulations. Lower panels indicated the organization

of the devices with different mechanical stimuli. Scale bar = 20 mm. The black arrows indicate the location of the cell images in the device.

(B) The morphological changes of nucleus after BAECs were subjected to the FSS and FSS+CS as described above (n = 27, 29, 30, 21, 28, 19).

(C) The morphological changes of cell after BAECs were subjected to the FSS and FSS+CS as described above (n = 20, 18, 28, 19, 24, 16). All experiments

were repeated 3 times for data analysis. The results are presented as mean G standard deviation (a: p < 0.005, Control versus stretch + pulsatile flow, b:

p < 0.05, Flow versus stretch + pulsatile flow, c: p < 0.05, reciprocating flow versus stretch + pulsatile flow).
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In addition, we also measured the size and number of paxillin-marked focal adhesions after

different mechanical stimuli (Figures 5A and 5B) showed that the area of paxillin-marked focal

adhesions in BAECs under CS + FSS was no statistical significance compared with static or FSS. Fig-

ure 5C showed that the number of paxillin-marked focal adhesions under CS + FSS was significantly

higher than that in the cells under the static flow and FSS. After the cells subjecting to these mechanical

stimuli, lots of paxillin-marked focal adhesions formed at cell periphery. Also, the cell area became

larger and the cell spread area increased, indicating that the area of focal adhesions was also

increased.

The nuclei, F-actin, and paxillin-marked focal adhesions of BAECs were stained to observe the differences

of nuclear morphology, F-actin, and the focal adhesion distribution after mechanical stimuli. Three

different flow fields were applied including (1) continuous flow, (2) reciprocating flow generated by cyclic

stretch, and (3) pulsatile flow generated by continuous flow coupled with cyclic stretch. The results showed

that cells became elongated under cyclic stretch (Figure 6).

The BAECs were randomly arranged with a random distribution of paxillin-marked focal adhesions under

static conditions. When BAECs were subjected to the FSS produced by the continuous flow, reciprocating

flow or pulsatile flow, the paxillin-marked focal adhesions were distributed around the cell periphery and

engaged with peripheral actin. By contrast, when BAECs were subjected to CS, the stress fibers of the

cell were elongated. Paxillin-marked focal adhesions were formed and connected with the end of

stress fibers.

Figure 5. Effects of FSS and FSS+CS on the focal adhesions

(A) The representative images of cell staining for the paxillin under different mechanical stimulations. Scale bar = 20 mm.

(B and C) The area of paxillin after BAECs were subjected to the FSS and FSS+CS as described in Figure 4A (a: p < 0.001 versus Control, b: p < 0.001 versus

Flow, c: p < 0.001 versus stretch+ reciprocating flow, d: p < 0.001 versus Pulsatile flow) (C) The number of paxillin per cell after BAECs were subjected to the

FSS and FSS+CS as described in Figure 4A (n = 22, 20, 29, 32, 36, 24) All experiments were repeated 3 times for data analysis. The results are presented as

meanG standard deviation. (a: p < 0.001 versus Control, b: p < 0.05 versus Flow, b’: p < 0.005 versus Flow, c: p < 0.001 versus stretch+ reciprocating flow, d:

p < 0.001 versus stretch+ pulsatile flow).
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DISCUSSION

In this study, we developed a microfluidic shearing-stretching device by integrating microfluidic system and

cell culture technology to mimic arterial blood vessels. This system can provide different combinations of

fluid shear stress and cyclic stretch. We concluded that under the same flow condition, the cell alignment

can be changed when culturing on the different stiffness of substrate materials in 24 h. When BAECs

were seeded in the PDMS device, they organized their adherent junction formation after 48 h culture. As

(the picture) showed in Figures 3C and 3D. Furthermore, the adherent junction was stained in Figure 3G after

applying FSS for 24 h. When cells under the FSS for 24 h, some cells might injure and de-attached from the

substrate because of the continuous flow and growth limitation in the microchannel. When cell seeded on

PDMS device over 24 h, the cell numbers were sharply decreased and cannot confirm whether the alignment

would never happen, or if it is just delayed. But the cell which seeded in glass substrate based microfluidic

channel tend to align with the FSS in 24 h.

This device could also provide different mechanical stimuli to endothelial cells and regulate endothelial cell

behavior. For instance, under the CS + FSS, the morphological of cells were changed (Figure 4C), the num-

ber of focal adhesion protein were significantly increased under the cyclic stretch with reciprocating flow or

pulsatile flow (Figure 5C). Moreover, when cells were subjected to CS + FSS, reciprocating flow or pulsatile

flow, the paxillin-marked focal adhesion proteins were distributed around the cell periphery and interacted

with peripheral actin (Figure 6).

In the previous study, indicated that under the stimulating through the shear force of flow field, paxillin

and p130 CAS were phosphorylated and formed paxillin-p130 CAS-DOCK180/ELMO complex

with DOCK180 and ELMO.43 This complex effectively activated Rac1 and played a critical role on cell

migration. This study uses the shear stress of the flow field to observe the attachment of endothelial cells.

According to this finding, the research can be found that the microfluidic device in this study can effec-

tively affect the state of the endothelial cells through the shear stress of the flow field. Recently

the research also indicated that shear stress in stable laminar flow will cause inflammation of endothelial

Figure 6. The merged diagram shows superimposed images from the nucleus, F-actin and paxillin

The representative fluorescence images demonstrate the localization of the paxillin and how mechanical stimuli affect localization of paxillin. Scale bar is

20 mm.
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cells and atherosclerosis.44 Therefore, this study will be able to treat cardiovascular diseases such as

atherosclerosis by increasing microchannel bending or bifurcation, contribute to preventive medi-

cal care.

Limitations of the study

By observing the behavior of cells under mechanical stimuli, we can explore the cellular mechanics, drug

screening with this device in the future. For example, to investigate thrombosis, one of the common car-

diovascular diseases, vessel-on-a-chip can be created. Human endothelial cells (EC) can be seeded into

this microchannels, these chips can stimulate the blood vessel operation, mimic the arterial environment

including pulsatile flow and dynamic stretch. Furthermore, cell behaviors in the system can be monitored

in real-time.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The experimental system, shown in Figure S1, consisted of a programmable air pressure control system, a

syringe pump, and a stage top incubator (STR, Tokai Hit) for culturing cells on microscope. The inlet and

outlet of microfluidic channel were connected to a medium-filled syringe, and a syringe pump was used

to provide a continuously fluid flow in the microfluidic channel. The programmable air pressure system
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chamber of device to connect with pressurized air source and atmosphere the air chamber. Initially, the mi-
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Manager_Version_Archive

GraphPad Prism 9 GraphPad Software https://www.graphpad.com/

ImageJ Schneider et al. https://imagej.nih.gov/ij/

COMSOL COMSOL Inc. https://www.comsol.com/
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surface to form amonolayer. When the air chamber was at pressurizing state, the adhered cells at the PDMS

wall between air chamber and microfluidic channel were stretched in three dimensional directions. There-

fore, the air chamber was cyclically pressurized and released and the cells will receive cyclic stretch force.

METHOD DETAILS

Device design and fabrication

The microfluidic shearing-stretching device as Figures 1C and 1D consisted of three parts: a glass (width

25.4 mm, length 38 mm, height 1 mm), a microfluidic channel (width 1 mm, length 18 mm, height

82 mm), and an air chamber (width 2 mm, length 10 mm, height 55 mm). The Polydimethylsiloxane

(PDMS) was used for the fabrication of microfluidic channel and the air chamber. PDMS possessed the char-

acteristics of optical transparency, high biocompatibility, high elasticity and good permeability and

demonstrated the ability to construct microfluidic device as well as multi-layer microfluidic device45–48

through soft lithography. Firstly, the master molds for fabricating air chamber and microfluidic channel

were made by using traditional photolithography to pattern SU-8 on silicon wafers, separately. Secondly,

PDMSwas poured onto the silicon wafer and cured for 1 hour at 70�C. The replica of PDMSwas then peeled

off from the SU-8 mold. The PDMSmicrofluidic channel and PDMS air chamber were bonded onto the glass

substrate, layer-by-layer by using oxygen plasma-pre-treated surface.

Cell culture

In this study, primary bovine aortic endothelial cells (BAECs, a kind gift from Dr. Chia-Ching Wu, National

Cheng Kung University, Tainan, Taiwan) were used. They were cultured in in low glucose Dulbecco’s Modi-

fied Eagle Medium, (DMEM, Gibco), supplemented with 10% fetal bovine serum (GIBCO), 1x penicillin/

streptomycin. Only early passage cells (<P8) were used in the study. When density of BAECs reached a

confluence about 70–80%, the adhered BAECs were washed twice with PBS and suspended by trypsin-

EDTA (0.25%-2 mM). The suspended cells were adjusted to the density of 107 cells/ml, and then injected

in to microfluidic channels. Before delivering cells into microfluidic channel, fibronectin (100 mg/ml, Sigma-

Aldrich) was used to coat inner PDMS surface of microfluidic channel for 30 min. The suspended BAECs

were filled with microfluidic shearing-stretching device and incubated at 37�C for 12 h.

Immunostaining

After experiments, the cells were fixed with 4% paraformaldehyde (PFA), permeablilized with 2% Triton

X-100 (Sigma-Aldrich) and then soaked in blocking buffer (SuperBlock, Thermo Fisher Scientific) at room

temperature. The cells were then incubated with diluted primary antibody in the blocking buffer were incu-

bated overnight at 4 �C and then incubated with diluted secondary antibody-conjugated with fluore-

phores. The F-actin was stained with phalloidin-TRITC (Thermo Fisher Scientific) and nuclei were stained

with Hoechst33342. The fluorescence images were obtained using a microscope (DMRBE, Leica) coupled

with a 403, NA = 1.0 objective lens (Leica) and an 512B EMCCD (Andor) operated by Micro-Manager 1.4

software (Leica). To detect adherent junction of endothelial cells, primary antibody vascular endothelial

cadherin (VE-cadherin,1:100, Santa Cruz) were used, followed by an anti-mouse IgG Alexa Flour 488 sec-

ondary antibody (1:500 Invitrogen). Hochest 33342 was used to stain the nucleus of BAECs.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are presented as mean G standard error (SEM). p values were obtained from 2 statistical method:

Two-sided paired T-tests or One-way Analysis of Variance (ANOVA) using GraphPad Prism 9. Two-sided

paired T-tests were used for comparison between PDMS and Glass groups (Figure 3). ANOVA with Tukey’s

post-hoc test was used to compare the results with three or more groups under different flow and stretch

conditions (Figures 4 and 5).
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