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Abstract

Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the

magnitude, duration, and frequency of stressors and the species receiving the stimulus. We

have previously reported that the red cusk-eel (Genypterus chilensis), an important marine

farmed fish, shows a physiological response to stress that results in increased skeletal mus-

cle atrophy mediated by over-expression of components of the ubiquitin proteasome and

autophagy-lysosomal systems. To better understand the systemic effects of stress on the

red cusk-eel metabolism, the present study assessed the transcriptomic hepatic response

to repetitive handling-stress. Using high-throughput RNA-seq, 259 up-regulated transcripts

were found, mostly associated with angiogenesis, gluconeogenesis, and triacylglyceride

catabolism. Conversely, 293 transcripts were down-regulated, associated to cholesterol bio-

synthesis, PPARα signaling, fatty acid biosynthesis, and glycolysis. This gene signature

was concordant with hepatic metabolite levels and hepatic oxidative damage. Moreover, the

increased plasmatic levels of AST (aspartate aminotransferase), ALT (alanine aminotrans-

ferase) and AP (alkaline phosphatase), as well as liver histology suggest stress-induced

liver steatosis. This study offers an integrative molecular and biochemical analysis of the

hepatic response to handling-stress, and reveals unknown aspects of lipid metabolism in a

non-model teleost.
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Introduction

Stress generated during intensive fish farming is a major factor negatively affecting animal

growth and health, and results in a decline in finfish aquaculture production [1,2]. Among the

main types of stressors are those induced by physical stimuli, such as transport, capture, or

handling [3,4], which are unavoidable in intensive aquaculture [5]. Fish possess a set of physio-

logical strategies, allowing them to respond to stressors through adaptive neuroendocrine

adjustments, collectively termed the stress response [6]. In fish, this stress response is mediated

by the hypothalamic-pituitary-interrenal (HPI) axis, which is responsible for promoting the

cortisol synthesis and secretion through interrenal cells into the bloodstream [7].

The liver is one of the most important target organs in the adaptive response to stress, and

is a fundamental metabolic tissue for energy substrate administration [8], because hepatic tis-

sue can synthesize de novo glucose for non-hepatic tissues during periods of stress [9]. In addi-

tion, the liver is a key tissue involved in somatic growth regulation, the immune response, and

detoxification [10–13]. Recent advances in transcriptomic technologies now allow a compre-

hensive understanding of how physical disturbances modulate metabolic adaptations to stress

[14,15]. While early studies were conducted on a limited number of species using microarray

technology [16–18], it is now possible, thanks to progress in high-throughput sequencing tech-

nologies, to study the adaptive function of liver tissue in a range of commercially important

species, including channel catfish (Ictalurus punctatus) [19], rainbow trout (Oncorhynchus
mykiss) [20], and large yellow croaker (Larimichthys crocea) [21], among others. Such studies

demonstrate that each species has different adaptive mechanisms and molecular responses to

stress, revealing particular details in their species-specific stress tolerances, meaning that cul-

turing a new species requires an integrative and detailed knowledge of tissue-specific stress

responses.

The red cusk-eel (Genypterus chilensis) is a new economically important marine species for

the Chilean aquaculture industry [22], but low handling-stress tolerance results in high mortal-

ity rates during juvenile stages [23]. Handling-stress facilitates red cusk-eel skeletal muscle

atrophy through the coordinated expression of components of the ubiquitin-proteasome and

autophagy-lysosome systems, revealing particularities in the compensatory response to stress

[24]. Therefore, in the present study, we evaluate the hepatic response to handling-stress in the

red cusk-eel using RNA-seq analysis, using a recently reported hybrid reference transcriptome

[25]. This transcriptomic analysis was complemented by a quantification of hepatic metabo-

lites, plasmatic enzyme activities, liver histology and oxidative stress markers. Our results

strongly suggest that handling-stress has detrimental effects in this species, modulating the

expression of genes associated with hepatic lipid metabolism and inducing liver steatosis.

Material and methods

Ethics statement

The study adhered to animal welfare procedures, and was approved by the bioethical commit-

tees of the Universidad Andres Bello and the National Commission for Scientific and Techno-

logical Research (CONICYT) of the Chilean government. The field studies did not involve

endangered or protected species. The activities were performed at the Centro de Investigación

Marina de Quintay and authorized by the Andres Bello University.

Kit manufacturer recommendations

All kits were applied following manufacturer recommendations, unless noted.
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Animals and experimental design

Juvenile red cusk-eels (Genypterus chilensis) with an average weight of 900 ± 50 g and length of

55 ± 5 cm were collected from the Centro de Investigación Marina de Quintay (CIMARQ)

(33˚130S 71˚380W, Valparaı́so Region, Chile). Eight fish were kept under natural temperature

and light:dark photoperiod conditions (13˚C ± 1˚C and L:D 12:12) for the spring season. The

animals were then split into control and stressed groups, placed in separate 90 L tanks, and

acclimated for two weeks before the handling-stress protocol. Fish were fed once daily with

6-mm commercial pellets, containing 60% protein, 6% lipids, 11% carbohydrates, 15% ashes,

and 8% humidity (Skretting, Puerto Montt, Chile). The stressed group was then subjected to a

standardized handling-stress protocol consisting of netting and chasing the fish for five min-

utes daily for five days. The management bias from adjacent tanks was prevented through the

completely blocked by black covers on all tanks. Six hours after the final handling stimulation,

the four stressed and four control fish were captured and anaesthetized (3-aminobenzoic acid

ethyl ester, 100 mg/L-1). Blood was collected from the caudal vein with 1 ml heparinized (10

mg/mL) syringes and centrifuged at 5000 xg for 10 min at 4˚C to obtain plasma, frozen in liq-

uid nitrogen, and stored at -80˚C. The fish were then euthanized through an overdose of anes-

thetic (3-aminobenzoic acid ethyl ester, 300 mg/L). Livers were collected and immediately

frozen in liquid nitrogen and stored at -80˚C.

AST, ALT and AP measurements

The plasmatic activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase)

and AP (alkaline phosphatase) were determined using commercially available kits from Valtek

(Santiago, Chile). The enzymatic activity of AST, ALT, and AP are determined, respectively,

by the production of colorimetric products from the generation of glutamate (colorimetric

product: 450 nm), pyruvate (535 nm), and p-nitrophenol (405 nm).

Hepatic metabolites

The hepatic metabolite levels for glycogen, triglyceride, non-esterified free fatty acid (NEFA)

and total cholesterol were determined using commercially available kits from Cell Biolabs

(CA, USA). Ultrasonic disruption in PBS containing 0.5% Triton X-100 was used to homoge-

nize 200 mg of liver tissue, which was centrifuged at 5000 xg for 10 minutes at 4˚C. The super-

natant was collected, stored on ice, and used for glycogen and triglyceride quantification using

the Glycogen Assay Kit (Cell Biolabs), and Serum Triglyceride Quantification Kit (Cell Bio-

labs), respectively. For cholesterol and free fatty acid quantification [26], 10 mg of liver tissue

was extracted with 200 μL of a chloroform:isopropanol:NP-40 (7:11:0.1) mixture in a micro-

homogenizer. The extract was centrifuged at 15,000 xg for 10 minutes, and the organic phase

was transferred to a new tube and air dried at 50ºC to remove the chloroform. The dried lipids

were dissolved and homogenized in 200 μL of 1X Assay Diluent via vortexing. Cholesterol and

NEFA were quantified using Total Cholesterol Assay Kit (Cell Biolabs) and Free Fatty Acid

Assay Kit (Cell Biolabs), respectively.

Hepatic oxidative stress assays

DNA oxidative damage, protein carbonylation, and lipid peroxidation were determined using

commercially available kits from Cell Biolabs (CA, USA). For oxidative DNA damage assess-

ment, genomic DNA (gDNA) was extracted from 25 mg of liver using the Isolate II Genomic

DNA Kit (Bioline, MA, USA), and dissolved in TE buffer. DNA was quantified by spectropho-

tometry using NanoDrop with the Epoch Multi-Volume Spectrophotometer System (BioTek,
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VT, USA). Assessment of gDNA quality and visualization were performed by electrophoresis

on a 1% agarose gel in TAE 1X containing ethidium bromide. In order to determine apurinic/

apyrimidinic (AP) sites, gDNA was mixed with the aldehyde reactive prove (ARP) reaction

using the OxiSelect Oxidative DNA Damage Quantification Kit (Cell Biolabs, CA, USA), read-

ing absorbance at 450 nm. For assessment of protein carbonylation, total proteins were

extracted from 100 mg of liver in 1 ml of lysis buffer containing 50 mM Tris-HCl pH 7.4, 150

mM NaCl, 1 mM EDTA, and 1% NP-40, and solubilized at 4˚C after 12,000 xg centrifugation.

Protein concentration was determined using a Pierce1 BCA Protein Assay Kit (Thermo Sci-

entific, IL, USA). Then, protein carbonyl content was quantified by the OxiSelect Protein Car-

bonyl Spectrophotometric Assay (Cell Biolabs, CA, USA). Lipid peroxidation assessment was

quantified by the formation of thydroxynonenal (HNE) protein adducts using the OxiSelect

HNE Adduct Competitive ELISA Kit (Cell Biolabs, CA, USA).

Liver histology

The livers of the red cusk-eel were dissected immediately after euthanization according to the

protocol described previously. The livers were fixed in 4% paraformaldehyde, embedded in

paraffin, and sectioned at a 5 μM thickness of three slices per liver. The samples were stained

with hematoxylin/eosin, observed in a Olympus BX-61 microscope and photographed with a

Leica DF300 camera.

Liver RNA sequencing

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, TX, USA). RNA was quantified

spectrophotometrically using NanoDrop with the Epoch Multi-Volume Spectrophotometer

System (BioTek, VT, USA). Total RNA isolated from the liver was treated with DNase I to

remove genomic DNA. RNA concentration was measured using a Qubit1 2.0 Fluorometer

(Life Technology, Carlsbad, CA, USA), and RNA integrity was determined using the Fragment

Analyzer™ Automated CE System (Analytical Advanced Technologies, Ames, IA, USA). Equal

quantities of total RNA from four fish were pooled by condition, and the total RNA was used to

prepare mRNA libraries. Complementary DNA (cDNA) libraries were constructed using Tru-

Seq RNA Sample Preparation kit v2 (Illumina1, USA). Libraries were sequenced (2 x 250bp)

with the MiSeq (Illumina1) platform at the Centro de Biotecnologı́a Vegetal (UNAB, Chile).

Analysis and representation of differentially expressed transcripts

Raw sequencing reads were trimmed by removing adaptor sequences, low quality sequences

(quality scores less than 10), and sequences with lengths less than 30 bp. To identify differen-

tially expressed transcripts, the reads from control and stressed conditions were mapped to the

G. chilensis reference transcriptome [25], using CLC Genomics Workbench, v.7.0.3 (http://

www.clcbio.com), with the following parameters: mismatches = 2, minimum fraction length =

0.9, minimum fraction similarity = 0.8, and maximum hits per read = 5. Gene expressions

were based on reads per kilobase of exon model per million mapped read (RPKM) values.

Transcripts with absolute fold-change values> 2.0 and FDR corrected P value < 0.05 were

included in the GO and KEGG enrichment analyses.

The DAVID database [27] was used for the analysis of up- and down-regulated transcripts

and functionally related gene cluster identification [24]. Cut-off enrichment scores of 4.0 or

greater were considered for analysis. The construction of map pathways for Angiogenesis

(WP1539_79949), Cholesterol Biosynthesis (WP197_78758), PPAR Pathway (WP2878_7968),

Fatty Acid Biosynthesis (WP357_70641), Glycolysis and Gluconeogenesis (WP534_78585),

and Triacylglyceride Synthesis (WP325_71223) were performed using PathVisio, v.3.0.
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RNA-seq validation by real-time qPCR

All quantitative real-time polymerase chain reaction (qPCR) assays were carried out comply-

ing with the MIQE guidelines [28]. Total RNA was extracted from liver tissue using the

RNeasy Mini Kit (Qiagen, TX, USA). RNA was quantified by spectrophotometry using Nano-

Drop with the Epoch Multi-Volume Spectrophotometer System (BioTek, VT, USA). Only

RNA with an A260/280 ratio between 1.9 and 2.1 were used for cDNA synthesis. Residual

genomic DNA was removed using the genomic DNA wipeout buffer included in the Quanti-

tect Reverse Transcription Kit (Qiagen, TX, USA). Subsequently, 1 μg of RNA was reverse

transcribed into cDNA for 30 min at 42˚C.

The qPCR assessments were performed using a Stratagene MX3000P qPCR system (Strata-

gene, La Jolla, CA, USA). Each reaction mixture contained 7.5 μl of 2× Brilliant1 II SYBR1

master mix (Stratagene, La Jolla, CA, USA), 6 μl of cDNA (40-fold diluted) and 250 nM of

each primer in 20 μl final volume. The list of primers and amplification efficiencies are de-

scribed in S1 Table. Amplifications were performed in triplicate following thermal cycling con-

ditions of: initial activation of 10 minutes at 95˚C, followed by 40 cycles of 30s of denaturation

at 95˚C, 30s of annealing at 54–60˚C, and 30s of elongation at 72˚C. In order to confirm the

presence of a single PCR product, dissociation curve analysis of the PCR products was per-

formed and evaluated by electrophoresis on a 2% agarose gel. With the purpose of calculating

the assay’s efficiency, 2-fold dilution series were created from a cDNA pool. Efficiency values

were estimated from the slope of the efficiency curve: E = 10(-1/slope)-1. The reference gene,

40S ribosomal protein S30 (fau), was used for gene expression normalization, and control

reactions included a no-template control and a no-reverse-transcriptase control. QGene was

used for analysis of gene expression [29].

Statistical analysis

Data are expressed as the mean ± SEM. Differences in means between groups were determined

using one-way ANOVAs, followed by a Bonferroni post hoc test. Data were accepted as signifi-

cant at a value of P < 0.05. Correlations between RNA-seq and qPCR data were assessed

through multiple linear regression, using coefficients of determination (R2) and p-values. All

statistical analyses were performed using GraphPad Prism, v.5.00 (GraphPad Software, CA,

USA).

Results

Assessment of hepatic metabolites

We previously reported that plasmatic cortisol and glucose levels significantly increased after 5

days of daily handling-stress [24]. Considering how the liver plays a central role in the meta-

bolic homeostasis of carbohydrates and lipids, we measured the hepatic metabolite levels of

glycogen, triglyceride, cholesterol and non-esterified fatty acids (NEFA). We found decreased

glycogen (Fig 1A), triglyceride (Fig 1B) and cholesterol levels (Fig 1C) in comparison to con-

trol conditions. Conversely, the levels of NEFA were higher than in the control condition (Fig

1D). These results indicate a dynamic response to stress-mediated carbohydrate and lipid

metabolism.

Hepatic transcriptomic responses of red cusk-eel to handling-stress

To understand how stress modulates the hepatic stress response in a comprehensive manner,

RNA-seq analyses were performed on liver samples from control and stressed groups includ-

ing cDNA library replicates of each condition. We obtained a total of 12,950,452 paired-end
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Fig 1. Hepatic metabolites levels of glycogen, triglyceride, cholesterol and non-esterified fatty acids

(NEFA). All data are represented as means ± SEM (n = 4). Significant differences between control and

stressed groups are shown as * (P < 0.05) and ** (P < 0.01).

https://doi.org/10.1371/journal.pone.0176447.g001
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reads for the control and a total of 13,669,452 paired-end reads for the stressed group. Raw

reads have been deposited in the NCBI Sequence Read Archive under the study accession

number SRX1056881. After sequence trimming for adapter subtraction and filtering of low

quality base pairs, the data sets were reduced to 11,912,668 and 12,270,950 high-quality reads,

respectively. Differentially expressed transcripts (DETs) were estimated by FPKM, mapping

obtained reads to the reported reference transcriptome for G. chilensis [25], resulting in a map-

ping of roughly 98.5% of the reads. A total of 552 DETs showed significant differential expres-

sion between both conditions. Of these, there were 259 up-regulated transcripts and 293

down-regulated transcripts in stressed fish. A complete list of the differentially expressed tran-

scripts is included in S2 Table.

GO cluster enrichment and pathway analysis

The up- and down-regulated genes were analyzed through the DAVID database and clustered

based on GO terms. Table 1 summarizes the top four clusters of functional categories with

Enrichment Score > 4 up-regulated under stress. The cluster with the highest enrichment

scores (ES 6.69) includes biological processes like vasculature development, blood vessel devel-

opment, blood vessel morphogenesis, and angiogenesis. Other enriched clusters up-regulated

by stress included biological processes like cell migration, molecular function like heparin

binding and biological process like response to hormone stimulus. Table 2 summarizes the top

four clusters of functional categories with Enrichment Score > 4 down-regulated under stress.

The cluster with the highest enrichment scores (ES 17.02) includes biological processes like

steroid metabolic process, sterol metabolic process, sterol biosynthetic process, cholesterol

Table 1. Over-represented functional categories in clusters of up-regulated transcripts in response to handling stress.

GO category GO Term GO ID Genes Count P_Value

Annotation Cluster 1 Enrichment Score: 6.69

Biological Process vasculature development GO:0001944 21 2.1E-9

Biological Process blood vessel development GO:0001568 20 8.6E-9

Biological Process blood vessel morphogenesis GO:0048514 17 1.8E-7

Biological Process angiogenesis GO:0001525 10 5.0E-4

Annotation Cluster 2 Enrichment Score: 4.24

Biological Process cell migration GO:0016477 16 2.7E-5

Biological Process cell motion GO:0006928 21 5.1E-5

Biological Process cell motility GO:0048870 16 9.0E-5

Biological Process localization of cell GO:0051674 16 9.0E-5

Annotation Cluster 3 Enrichment Score: 4.16

Molecular Function heparin binding GO:0008201 11 2.0E-6

Molecular Function glycosaminoglycan binding GO:0005539 11 3.1E-5

Molecular Function polysaccharide binding GO:0030247 11 7.1E-5

Molecular Function pattern binding GO:0001871 11 7.1E-5

Molecular Function carbohydrate binding GO:0030246 13 4.8E-3

Annotation Cluster 4 Enrichment Score: 3.74

Biological Process response to hormone stimulus GO:0009725 19 1.7E-5

Biological Process response to endogenous stimulus GO:0009719 20 1.8E-5

Biological Process response to organic substance GO:0010033 27 5.3E-5

Biological Process response to steroid hormone stimulus GO:0048545 12 2.0E-4

Biological Process cellular response to hormone stimulus GO:0032870 9 1.1E-3

Biological Process response to peptide hormone stimulus GO:0043434 8 1.0E-2

https://doi.org/10.1371/journal.pone.0176447.t001
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metabolic process, cholesterol biosynthetic process, steroid biosynthetic process, lipid biosyn-

thetic process. Other enriched clusters down-regulated by stress included cellular component

like endoplasmic reticulum, molecular function like monocarboxylic acid binding and cellular

component like microsome.

Pathway analysis with a curated collection was used to visualize and integrate transcrip-

tomic data. Eight transcripts associated with angiogenesis were up-regulated (S1 Fig): angio-

tensin receptor type 2 (agtr2), transforming growth factor beta receptor type 3 (tgfbr3),

fibroblast growth factor receptors type 2 and 4 (fgfr2 and fgfr4), platelet-derived growth factor

receptor type alpha (pdgfra), intracellular effectors related to hepatocyte proliferation: mito-

gen-activated protein kinase 6 (mapk6), proto-oncogene c-fos (fos), and transcription factor

AP-1 (jun). Seventeen transcripts associated with fatty acid and cholesterol biosynthesis were

down-regulated (S2 and S3 Figs, respectively): ATP-citrate synthase (acly), acetyl- carboxylase

1 (acaca), fatty acid synthase (fasn), hydroxyacyl-coenzyme A dehydrogenase (hadh), peroxisomal

trans-2-enoyl- reductase (pecr), stearoyl-CoA desaturase 5 (scd5), long-chain-fatty-acid-ligase 3

(acsl3), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (hmgcs1), 3-hydroxy-3-methylglu-

taryl-CoA reductase (hmgcr), mevalonate decarboxylase (mvd), isopentenyl-diphosphate delta

isomerase 1 (idi1), farnesyl diphosphate synthase (fdps), squalene epoxidase (sqle), lanosterol

synthase (lss), cytochrome P450, family 51, subfamily A1 (cyp51a1), NAD(P)dependent steroid

dehydrogenase-like (nsdhl), lathosterol oxidase (sc5dl), and 7-dehydrocholesterol reductase

(dhcr7).

Table 2. Over-represented functional categories in clusters of down-regulated transcripts in response to handling stress.

GO category GO Term GO ID Genes Count P_Value

Annotation Cluster 1 Enrichment Score: 17.02

Biological process steroid metabolic process GO:0008202 31 1.2E-19

Biological process sterol metabolic process GO:0016125 24 1.2E-19

Biological process sterol biosynthetic process GO:0016126 17 1.4E-19

Biological process cholesterol metabolic process GO:0008203 21 8.6E-17

Biological process cholesterol biosynthetic process GO:0006695 14 8.8E-17

Biological process steroid biosynthetic process GO:0006694 20 3.0E-16

Biological process lipid biosynthetic process GO:0008610 33 1.4E-15

Annotation Cluster 2 Enrichment Score: 7.38

Cellular Component endoplasmic reticulum GO:0005783 53 4.0E-13

Cellular Component endoplasmic reticulum part GO:0044432 28 1.5E-10

Cellular Component nuclear envelope-endoplasmic reticulum network GO:0042175 21 2.2E-7

Cellular Component endoplasmic reticulum membrane GO:0005789 20 4.2E-7

Cellular Component organelle membrane GO:0031090 43 2.3E-6

Cellular Component endomembrane system GO:0012505 29 4.1E-4

Annotation Cluster 3 Enrichment Score: 6.45

Molecular Function monocarboxylic acid binding GO:0033293 11 2.3E-8

Molecular Function carboxylic acid binding GO:0031406 16 2.5E-8

Molecular Function fatty acid binding GO:0005504 9 2.1E-7

Molecular Function acyl-CoA binding GO:0000062 5 1.3E-4

Annotation Cluster 4 Enrichment Score: 4.45

Cellular Component microsome GO:0005792 20 5.8E-8

Cellular Component vesicular fraction GO:0042598 20 9.2E-8

Cellular Component cell fraction GO:0000267 39 5.3E-5

Cellular Component membrane fraction GO:0005624 25 1.1E-2

Cellular Component insoluble fraction GO:0005626 25 1.7E-2

https://doi.org/10.1371/journal.pone.0176447.t002
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A general down-regulation was observed in the PPARα signaling pathway (S4 Fig), includ-

ing the transcription factor, peroxisome proliferator-activated receptor alpha (ppara), and

transcripts associated with ketogenesis (hydroxymethylglutaryl-CoA synthase, hmgcs1), lipid

transport (apolipoprotein B-100, apob; apolipoprotein D, apod), cholesterol metabolism (sterol

26-hydroxylase, cyp27a1), fatty acid transport (fatty acid-binding protein 1, fabp1; fatty acid-

binding protein 3, fabp3; long-chain-fatty-acid-CoA ligase 3, acsl3; and long-chain-fatty-acid-

CoA ligase ACSBG2, acsbg2), and fatty acid beta oxidation (peroxisomal acyl-coenzyme A oxi-

dase 3; acox3). An up-regulation was observed in the expression of two transcripts associated

with fatty acid omega oxidation (alcohol dehydrogenase class-3, adh5, and cytochrome P450

2D6, cyp2d6). In addition, a down-regulation was observed in triglyceride synthesis (glycerol-

3-phosphate acyltransferase 1, gpam; 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma,

agpat3; diacylglycerol O-acyltransferase 1, dgat1; and diacylglycerol O-acyltransferase 2, dgat2)

and a consequent up-regulation in transcripts associated to triglyceride degradation (lipase

member H, liph and patatin-like phospholipase domain-containing protein 2, pnpla2) (S5 Fig).

Transcripts related to gluconeogenesis and glycolysis pathways showed changes in gene

expression (S6 Fig), including up-regulated glucose-6-phosphatase (g6pc), fructose-bispho-

sphate aldolase C (aldoc), and aspartate aminotransferase (got1) and down-regulated tran-

scripts glucokinase (gck), alpha-enolase (eno1), pyruvate kinase (pklr), and dihydrolipoyl

dehydrogenase (dld).

RNA-seq validation

To validate the RNA-seq analysis, we used qPCR to assay stress-associated changes in mRNA

levels of 26 genes. We selected 12 transcripts from the first functional annotation up-regulated

cluster (agtr2, anxa2, cav1, ctgf, jun, lepr, plat, plxnd1, pkd1, s1pr1, thbs1, tgfbr3) and 14 tran-

scripts from the first functional annotation down-regulated cluster (hmgcr, hmgcs, dhcr7,

nsdhl, acat2, c14orf1, cyp51a1, cyb5r3, fdps, tecr, hsd17b7, idi1, lss). The transcript expression

fold-changes measured by qPCR and RNA-seq had a high statistical correlation (R2 = 0.78,

P< 0.001) (Fig 2).

Hepatotoxicity induced by handling-stress

To evaluate the hepatotoxicity induced by this stress, we measured cellular and plasmatic

markers of liver damage. Handling-stress significantly increased the rate of lipid peroxidation

(Fig 3A), protein carbonylation (Fig 3B), and DNA oxidative damage (Fig 3C) (3.4-fold,

2.8-fold, and 3.3-fold, respectively) in comparison to control conditions. Similarly, the plas-

matic concentrations of alanine aminotransferase (Fig 4A), aspartate aminotransferasa (Fig

4B) and alkaline phosphatase (Fig 4C) were significantly raised in stressed animals (1.3-fold,

3.8-fold, and 1.8-fold, respectively), in comparison to control conditions. In addition, histolog-

ical liver analysis reveals that hepatocytes from control conditions have the typical polygonal

cell shape and clear cytoplasm. However hepatocytes from stressed conditions start to lose

their polygonal shape and have a condensed cytoplasm characteristics of liver fibrosis (S7 Fig).

Discussion

Our results are the first to describe the molecular and biochemical hepatic response to stress in

the marine teleost, the red cusk-eel. This species’ molecular response to stress has been docu-

mented in terms of the effects of cortisol-induced stress in skeletal muscle atrophy [24]. This

work provides new evidence of the susceptibility of this non-domesticated organism and rein-

forces the idea that each species has specificities in their stress tolerance. Here, RNA-seq analy-

sis evaluated the hepatic transcriptomic response to handling-stress, revealing a differential
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gene expression primarily associated with biological pathways, such as angiogenesis, fatty acid

biosynthesis, cholesterol biosynthesis, PPARα signaling, triglyceride metabolism, gluconeo-

genesis and glycolysis. The results obtained by this in silico approach were validated by qPCR

analysis of representative cholesterol and angiogenesis pathway genes, as well as the assessment

of hepatic metabolites and markers of hepatic damage.

Stress and glucose metabolism

Numerous studies in teleost demonstrate that stress is intimately related to glucose metabo-

lism, because its oxidation meets the increased energy demand needed to cope with stress

[30,31]. Studies in rainbow trout (O. mykiss) have determined that handling-stress induces an

elevation in the expression of key enzymes involved in gluconeogenesis during the recovery

Fig 2. Quantitative real time PCR validation of differentially expressed transcripts. Expression of fold changes measured by RNA-seq and qPCR are

indicated in the grey and black columns, respectively. agtr2 (type-2 angiotensin ii receptor), anxa2 (annexin a2), cav1 (caveolin-1), ctgf (connective tissue

growth factor precursor), jun (transcription factor ap-1), lepr (leptin receptor precursor), plat (tissue-type plasminogen activator precursor), plxnd1 (plexin-b2

precursor), pkd1 (polycystin-1 precursor), s1pr1 (sphingosine 1-phosphate receptor 1), thbs1 (thrombospondin-2 precursor), tgfbr3 (transforming growth

factor beta receptor type 3 precursor), hmgcr (3-hydroxy-3-methylglutaryl-coenzyme a reductase), hmgcs1 (hydroxymethylglutaryl- cytoplasmic), dhcr7

(7-dehydrocholesterol reductase), nsdhl (sterol-4-alpha-carboxylate 3- decarboxylating), acat2 (acetyl-CoA acetyltransferase), c14orf1 (ergosterol

biosynthetic protein), cyp51a1 (lanosterol 14-alpha demethylase), cyb5r3 (nadh-cytochrome b5 reductase 3), fdps (farnesyl pyrophosphate synthase),

tecr (trans- enoyl- reductase), hsd17b7 (3-keto-steroid reductase), idi1 (isopentenyl-diphosphate delta-isomerase 1), lss (lanosterol synthase), mvd

(diphosphomevalonate decarboxylase), fau (40S ribosomal protein). Significant differences between the control and stressed groups are shown as *
(P < 0.05) and ** (P < 0.01).

https://doi.org/10.1371/journal.pone.0176447.g002
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Fig 3. Hepatic levels of lipid peroxidation, protein carbonylation and DNA oxidative damage. All data

are represented as means ± SEM (n = 4). Significant differences between control and stressed groups are

shown as * (P < 0.05) and ** (P < 0.01).

https://doi.org/10.1371/journal.pone.0176447.g003
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phase, including phosphoenolpryruvate carboxykinase (pck1) and glucose-6-phosphatase

(g6pc), as well as a decrease in the expression of pyruvate kinase (pklr) and glucokinase (gck)

involved in glycolisis [32,33]. Most expressions of these genes are directly regulated by the glu-

cocorticoid receptor [9,14]. Consistent with these observations, handling-stress in the red

cusk-eel induced an up-regulation in the expression of gluconeogenic gene g6pc and a down-

regulation of glycolitic genes pklr and gck. These results are similar to those of juvenile carp

(Cyprinus carpio) and Mozambique tilapia (Oreochromis mossambicus), for which the adminis-

tration of a high dose of cortisol significantly increased glucose serum levels and glucose-6

phosphatase activity, revealing a major role for cortisol in gluconeogenesis [34,35]. Similar to

our observations, chronic cortisol administration in gilthead sea bream (Sparus aurata),

induces a down-regulation of enolase 1 (eno1) [18], a glycolitic gene. In addition, in Senegalese

sole (Solea senegalensis), repeated handling-stress induces a decrease of enolase 1 protein

expression [36]. Therefore, we hypothesize that the increase in plasma glucose levels seen in

the red cusk-eel after stress may be associated with enhanced muscle protein catabolism neces-

sary for liver gluconeogenesis, even though increases in plasmatic levels of lactate during stress

were not found [24]. The increase in plasmatic glucose levels can also be related to glycogen

hydrolysis (glycogenolysis), evidenced by its decrease in the liver. Indeed, stress and cortisol

have been demonstrated to play a fundamental role in glycogen metabolism in rainbow trout

[37,38], although we did not find changes in the expression of genes associated with such

catabolism.

Stress and lipid metabolism

The liver also plays a central role in lipid metabolism [39], and in the current study, handling-

stress induced a general down-regulation in the cholesterol and fatty acid biosynthesis path-

ways. The stress-induced inhibition of cholesterol biosynthesis is in line with previous data

on rainbow trout, where plasma cholesterol levels decreased after 30 days of high stocking den-

sities [40]. Additionally, the down-regulation in fatty acid biosynthesis is concordant with

observations of rainbow trout following handling-stress, in which fatty acid synthase (fasn)

expression and activity decreased [37].

It is well known that under stressful conditions another metabolic fuel, ketone bodies, is

generated through NEFA beta oxidation[40]. A major NEFA source is the hydrolysis of liver

and adipose tissue triglycerides through lipase-catalyzed lipolysis [41]. Consistent with this,

handling-stress induced an increase in the expression of liph and pnpla2 lipases as well as, a

general down-regulation in the expression of genes associated with triglyceride synthesis.

Lipase H (LIPH) is an evolutionary conserved phospholipase which catalyzes the production

of fatty acids and lysophosphatidic acid (LPA) [42]. PNPLA2 is a member of the patatin-like

phospholipase domain-containing protein family, which catalyzes the initial step in triglycer-

ide hydrolysis [43]. Although there are reports of the over-expression of both genes in mam-

mal tissues under pathophysiological conditions [44], no reports exist linking these genes to

a stress response in teleosts. Consistent with the over-expression of liph and pnpla2 under

stressful conditions, there was a decrease in triglyceride levels and an increase in NEFA hepatic

levels. The dramatic increases in hepatic NEFA levels may be associated with enhanced triglyc-

eride hydrolysis and impaired fatty acid beta oxidation, similar to decreases seen in hepatic tri-

glyceride levels in rainbow trout caused by acute handling-stress [37]. It is therefore probable

Fig 4. Plasmatic levels of ALT (alanine aminotransferase), AST (aspartate aminotransferasa), and AP

(alkaline phosphatase). All data are represented as means ± SEM (n = 4). Significant differences between

control and stressed groups are shown as * (P < 0.05) and ** (P < 0.01).

https://doi.org/10.1371/journal.pone.0176447.g004
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that increased hepatic fatty acid accumulation is related with the development of liver steatosis

[45].

Stress and liver steatosis

Liver steatosis is defined as an accumulation of excessive triglycerides and other fats inside

liver cells [46], although fish that are fed diets rich in unsaturated fatty acids are known to

develop this condition [47], there are no reports relating this condition to stress. A direct

relationship between glucocorticoids and fatty liver disease is described in mammals, with glu-

cocorticoids acting as a promoter of lipid accumulation, leading to inflammation, and the

potential for fibrosis [45]. This accumulation in hepatocyte diminishes mitochondrial oxida-

tive capacity, further reducing the state of the electron transport chain complexes and sti-

mulating peroxisomal and microsomal pathways for omega oxidation [45]. The consequent

increased generation of reactive oxygen species (ROS) and reactive aldehydic derivatives

causes oxidative stress [46].

We found increased expressions of cytochrome P450 2D6 (cyp2d6) and alcohol dehydroge-

nase class-3 (adh5), genes related to fatty acid omega oxidation and a consistent increase in

lipid peroxidation, protein carbonylation, and DNA oxidation induced by stress. While there

are no reports in teleost that link the fatty acid accumulation in liver to oxidative damage,

it has been recently reported in tapertail anchovy (Coilia nasus) that loading stress induces

lipid peroxidation, expression of apoptosis-associated markers, and increased plasmatic

levels of ALT and AST [48]. While the authors associated the liver damage to TNFα-induced

apoptosis, interestingly they also reported an increase of lipid metabolic genes, similar to our

observations.

Recently, a study developed with a mammalian model of hepatocellular steatosis established

the effects of free fatty acid and the mechanism associated to oxidative stress [49]. The authors

reported that high concentration of free fatty acid induced excessive lipid accumulation and

oxidative stress by down-regulating the ppara expression, similar to our observations [49].

PPARα is nuclear hormone receptors, and regulates the expression of many genes involved in

fatty acid oxidation, ketogenesis, gluconeogenesis, cholesterol catabolism, among others. In

fish, PPARα have been identified and characterized in several species however there are no

direct reports that associate changes in its expression during stress response[50]. However, the

systemic administration of the PPARα antagonist, WY-14643, has been shown to induce a

decrease in NEFA plasmatic levels associated to increased fatty acid beta oxidation in turbot

(Scophthalmus maximus) [51]. Therefore, we speculate that stress-impaired PPARα expression

should induce an increase in NEFA overload and cytochrome P450-dependent-omega oxida-

tion. Consistent with these observations, a direct role for glucocorticoids in the increase of TG

hydrolysis, as well as in the inhibition of beta oxidation and cholesterol biosynthesis, has been

demonstrated in mammals through in vitro and in vivo trials [52,53].

Conclusions

Handling-stress induced major changes in the red cusk-eel hepatic metabolic response. Under

stress, 259 genes, mostly associated to angiogenesis, gluconeogenesis, and triglyceride degrada-

tion, were up-regulated. Conversely, 293 genes, associated to PPARα signaling, fatty acid bio-

synthesis, cholesterol biosynthesis, and glycolysis, were down-regulated. These transcriptomic

analyses are supported by quantifications of liver metabolites, oxidative damage, markers of

hepatic damage and liver histology. This is the first study to suggest that handling-stress is

powerful inducer of liver steatosis in a teleost, providing valuable information for monitoring

the culturing and growth of marine fish species under intensive rearing conditions.
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Supporting information

S1 Table. Primer sequences for qPCR assay, amplicon size, and PCR efficiencies for genes

used in the study. Sequences were derived from the red cusk-eel reference transcriptome.

(XLSX)

S2 Table. Complete list of up-regulated and down-regulated hepatic transcripts in

response to handling-stress.

(XLSX)

S1 Fig. Illustration created using Pathvisio v3 of the angiogenesis pathway involved in the

hepatic stress response based on RNA-seq expression analysis. The red colors indicate an

increase in any of the components of the pathways.

(TIF)

S2 Fig. Illustration created using Pathvisio v3 of the fatty acid biosynthesis pathway

involved in the hepatic stress response, based on RNA-seq expression analysis. The green

colors indicate a decrease in any of the components of the pathways.

(TIF)

S3 Fig. Illustration created using Pathvisio v3 of the cholesterol biosynthesis pathway

involved in the hepatic stress response, based on RNA-seq expression analysis. The green

colors indicate a decrease in any of the components of the pathways.

(TIF)

S4 Fig. Illustration created using Pathvisio v3 of the PPARα pathway involved in the

hepatic stress response, based on RNA-seq expression analysis. The green and red colors

indicate a decrease and increase in any of the components of the pathways, respectively.

(TIF)

S5 Fig. Illustration created using Pathvisio v3 of the triglyceride pathway involved in the

hepatic stress response, based on RNA-seq expression analysis. The green and red colors

indicate a decrease and increase in any of the components of the pathways, respectively.

(TIF)

S6 Fig. Illustration created using Pathvisio v3 of the glycolisis and gluconeogenesis path-

ways involved in the hepatic stress response, based on RNA-seq expression analysis. The

green and red colors indicate a decrease and increase in any of the components of the path-

ways, respectively.

(TIF)

S7 Fig. Histology of red cusk-eel liver at A) control and B) stressed conditions (n = 4, per

group). The samples were stained with hematoxylin/eosin, observed in an Olympus BX-61

microscope at 100X and photographed with a Leica DF300 camera.

(TIF)
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