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Abstract

Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have
focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to
abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of
the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and
subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with
different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three
different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but
rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive
properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous
release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but
not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength,
and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of
cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial
adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic
strength of the surrounding medium.
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Introduction

Bacteria adhere to almost all kinds of surfaces, enabling biofilm

formation [1]. Biofilms can cause serious health problems as well

as economic losses in many industries, such as the oil and gas

industry where biofilms cause corrosion, and the food industry

where spoilage, and contamination leading to food-borne illnesses

are the main concern [2–10]. While antimicrobial surfaces

releasing toxins are the traditional approach to antifouling

solutions, development of non-toxic antifouling surfaces that

intercept cell adhesion and biofilm formation rather than cell

viability are gaining more interest [11]. However, development of

such antifouling strategies relies on detailed understanding of the

mechanisms behind bacterial adhesion and the subsequent

establishment of a biofilm. Bacterial adhesion is a complex process

involving long range Lifshitz van der Waals and electrostatic

forces, as wells as short range acid-base interactions [12,13]. The

physico-chemistry of the substrate surface and the bacterial surface

decides the extents of these interactions and hence the adhesion of

bacteria. However, bacterial adhesion cannot always be predicted

by the average physicochemical properties of the cell surface.

Specific extracellular components that might evade the interaction

force barrier formed between the approaching surfaces are often

the primary facilitator for adhesion, even if they do not contribute

substantially to the average physicochemical surface properties of

the cell [14–16]. Such extracellular components include carbohy-

drate polymers, single and fibrillar proteins, and extracellular

DNA (eDNA) [17].

The active role of eDNA in biofilm formation was discovered by

Whitchurch et al. [18], who showed that removal of eDNA by

DNase treatment could dissolve young Pseudomonas aeruginosa
biofilms and prevent biofilm formation on abiotic surfaces. Since

then, the involvement of eDNA in biofilm formation has been

studied in many different bacteria across several phyla, and an

image of eDNA as a universal adhesin is emerging. But what

makes eDNA adhesive? Only few studies have attempted to

address how eDNA promotes bacterial adhesion to abiotic

surfaces. Das et al. [19] studied adhesion of Streptococcus mutans,
and used AFM force spectroscopy to investigate how eDNA

increased adhesion forces of bacterial cells to hydrophobic and
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hydrophilic surfaces at varying ionic strength (I). They found that

presence of eDNA on the cell surface increased the adhesion

strength to both hydrophilic and hydrophobic surfaces. The

overall adhesion strength in the presence of eDNA was higher to

hydrophobic surfaces than to hydrophilic surfaces, and the effect

was more pronounced at high ionic strength. Furthermore, AFM

retraction-force distance curves revealed that eDNA-mediated

acid-base interactions were more pronounced in the interaction

with hydrophilic surfaces, and that these interactions were high in

low ionic strength. Ionic strength can affect the electrostatic

properties of surfaces and also influence the conformation of

biopolymers such as DNA. The ability of eDNA to function as an

adhesive thus seems to occur within certain boundaries, defined by

the physico-chemical properties of the substrate and the

surrounding environment.

To get a better understanding of eDNA’s versatility as a

universal bacterial adhesin, we investigated how surface chemistry

and ionic strength affects eDNA’s role in bacterial adhesion. We

used Staphylococcus xylosus as a model organism. S. xylosus are

Gram positive, biofilm forming, bacteria that have frequently been

isolated from food and food related environments [20,21]. These

bacteria can produce aroma [22] and enterotoxins that qualify

them as potential contaminants in food processing industries [23].

Furthermore, some strains of S. xylosus have been reported to

carry antibiotic resistance genes [24] which is a major concern in

the emerging threat of antibiotic resistance among bacteria. These

characteristics makes S. xylosus an attractive candidate to study

the factors influencing biofilm formation in vitro. In this study we

quantified initial bacterial adhesion to a range of chemically

modified surfaces, representing surfaces with varying charge and

hydrophobicity, and repeated experiments at three different ionic

strengths. eDNA is critical for the adhesion of bacteria to both

hydrophilic and hydrophobic surfaces. Electrostatic interactions,

modulated by surface chemistry, depended on the ionic strength in

facilitating eDNA mediated adhesion to hydrophilic surfaces. The

amount of eDNA released by the cells, their ability to use eDNA

and/or a combination of other adhesins for adhesin will be

different for different types of bacteria. Therefore, the observed

effects on eDNA mediated adhesion of S. xylosus may not be

generalized to all biofilm forming bacteria. However, the findings

presented in this study can be used to determine the range of

physico-chemical characteristics wherein eDNA can influence

adhesion of bacteria to abiotic surfaces.

Results and Discussion

eDNA is critical for adhesion to glass
The presence of eDNA was critical for adhesion of S. xylosus to

glass surfaces, as removal of eDNA by DNase treatment almost

fully impaired adhesion of cells (Figure 1). Interestingly, the cells

quickly regained their adhesive properties if the DNase was

removed from the cell suspension before the onset of the adhesion

experiment. In this case, adhesion of S. xylosus to glass was only

delayed by approximately 30 min, after which the adhesion rate

was not significantly different from the untreated control (Figure 1)

(Two-way ANOVA; F = 0.03, p = 0.87). Only if DNase was

continuously present, adhesion was impaired for the entire

duration of the experiment (Figure 1). Autolysis caused by the

activity of the major autolysin AltE is responsible for the eDNA in

biofilms formed by other Staphylococcus species [25–27], and the

same mechanism may be present here. The short time needed for

the cells to regain their adhesive properties after removing the

DNase from the cell suspension suggests that eDNA was

continuously released in the culture, and that the amount of

eDNA needed to facilitate cell adhesion is very low. We could not

quantify the amount of eDNA adsorbed to the cells, but the eDNA

concentration in the supernatant of the cell suspension was

110.2611.5 ng/ml for the untreated cells, whereas DNase treated

cells contained 15.560.2 ng/ml for bacterial suspensions of

1.36108 cells.

eDNA increases cell surface hydrophobicity but does not
affect surface charge

To better understand the adhesive properties of cells with

eDNA, we investigated the average physicochemical properties of

untreated and DNase-treated cells by measuring the cell surface

hydrophobicity and charge as approximated by the water contact

angle and zeta potential, which is a measure of potential at the

diffuse layer of ions formed around particles in aqueous medium.

To account for the effect of ionic strength on zeta potential,

measurements were done in PBS and 10 times diluted PBS. The

zeta potential of the cells was not affected by DNase treatment

(Table 1). Cells suspended in 10 times diluted PBS (low ionic

strength compared to PBS) had more negative zeta potential, but

remained unaffected by DNase treatment (Table 1). Hence, the

adsorption of eDNA to the cell surface does not appear to alter the

average surface charge of S. xylosus.
Das et al. [28] did find a more negative zeta potential after

adding DNA to S. aureus, S. epidermidis and P. aureginosa
cultures, but only at relatively high concentrations (.4–

661029 mg DNA per bacterium). As we have alluded before,

the concentration of naturally occurring eDNA in our cell

suspensions was very low (approximately 110 ng/ml, which

corresponds to 8.561027 ng per cell), and the amount of eDNA

present may not have been sufficient to cause a detectable

difference in cell surface charge. Another explanation could be

that nucleotides or short strands of eDNA present after DNase

treatment remain associated with the cell surface, and thus could

contribute to the zeta potential. If eDNA in this form is unable to

promote cell adhesion, DNase treatment could affect the adhesive

properties of the cells without affecting their surface charge.

The water contact angle was significantly lower after DNase

treatment, indicating that cells with eDNA are more hydrophobic

(Table 1). The same phenomenon was observed by Das et al. for

other staphylococci [28,29] who showed that S. epidermidis cells

became less hydrophobic when lacking eDNA due to either DNase

treatment or deletion of the altE gene that facilitates eDNA release

through autolysis. They also showed that adding increasing

amounts of DNA to the culture resulted in increasing cell surface

hydrophobicity. DNA in itself is not hydrophobic, and it is not yet

understood why removal of eDNA makes the cell surface less

hydrophobic. However, it has been suggested that DNA is

associated with other components on the cell exterior [30–36],

and these might contribute to the hydrophobic cell surface

properties. One study simply showed that the adhesive properties

of eDNA-free Nisseria meningiditis could be restored by addition

of genomic DNA from crude extracts, but not from purified DNA

[33], indicating a role of a non-DNA component in eDNA-

mediated adhesion. More specific knowledge was obtained from a

similar experiment on Listeria monocytogenes showing that N-

acetyl glucosamine as well as DNA was needed to restore the

adhesive properties of eDNA-free cells [32]. Several studies have

sought to determine if proteins are involved in eDNA-mediated

adhesion. For example, DNA-binding proteins, such as the pilin

protein of Type IV pili [37], play a part in eDNA’s role in biofilm

formation by e.g. Acidovorax temperans [38] and P. aeruginosa
[39]. Furthermore, Das et al. [35] showed that pyocyanin, a

phenazine molecule produced by P. aeruginosa, affects cell surface
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properties and aggregation by facilitating the binding of eDNA

binding to the cell surface [35]. Whether these are isolated

examples or represent a general picture of eDNA being a partner

in a multi-adhesin system is yet to be revealed, and the attention

should be aimed at small molecules as well as macromolecules in

the search for other extracellular components partnering with

eDNA in mediating biofilm formation.

eDNA’s effect on adhesion depends on surface chemistry
and ionic strength

Bacterial adhesion is dictated by long and short range forces

between the cell and the surface [13,40]. Liefshitz van der Waals

and electric double layer forces are long range forces (several

nanometers), where the former is attractive and the latter can be

both attractive and repulsive. In contrast, Lewis acid-base

interactions operate at short range [12]. The physico-chemistry

defines the extent of these forces and thereby decides the

interaction between approaching surfaces, but the interactions

are also influenced by the properties of the surrounding liquid.

Ionic strength of the liquid affects the thickness of the electric

double layer, and thereby the electrostatic interactions [41]. The

thickness of the electric double layer (the Debye length (d)) is

estimated by equation (1) where e is the permittivity (determined

from ere0, where er is the relative permittivity at temperature,

T = 300 K and e0 is the vacuum permittivity), k is the Boltzmann

constant, e is the electron charge, c is the concentration, and z is

the charge of the electrolyte.
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The Debye length at low, intermediate and high ionic strengths

were 1.75 nm, 0.49 nm and 0.25 nm respectively.

The conformation of biopolymers, such as eDNA, can also be

influenced by ionic strength and ionic composition of the

surrounding medium [42], and we therefore hypothesized that

the ionic strength of the surrounding media as well as the physico-

chemical properties of the abiotic surface will affect eDNAs role in

bacterial adhesion. In order to test this hypothesis, we quantified

the adhesion of bacteria to glass surfaces with different surface

chemistries in the presence or absence of DNase. We modified

glass cover slips to obtain an array of surfaces with highly different

chemistries, representing different hydrophobicity and charge, and

Figure 1. Effect of DNase on the adhesion of S. xylosus to glass surface in flow cell. Black bars indicate untreated cells. Crossed bars indicate
cells treated with DNase (50 mg/ml), washed and resuspended in PBS. White bars indicate cells resuspended in PBS containing DNase (50 mg/ml).
Asterisk indicates statistically significant differences between samples with and without eDNA (t-test, *p,0.05, **p,0.01).
doi:10.1371/journal.pone.0105033.g001

Table 1. Cell surface properties with and without eDNA.

S. xylosus cells Water Contact angle (6) Zeta potential (mV)

10 mM PBS 1 mM PBS

with eDNA 46.763.7 –15.160.9 –34.062.4

without eDNA *33.562.6 –15.160.9 –34.461.3

Water contact angle and zeta potential measurements of S. xylosus cells with and without eDNA.
*indicates statistically significant difference (t-test, p,0.05).
doi:10.1371/journal.pone.0105033.t001
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submerged the cover slips in bacterial suspensions in 12 well plates

under continuous shaking before rinsing and quantifying the

adhered bacteria.

XPS analyses confirmed the presence of the functional groups

on each surface (Figure S1). The Piranha treated and carboxyl

functionalised surfaces were negatively charged with zeta poten-

tials of –55.762.5 mV and –70.465.9 mV respectively, and highly

hydrophilic with water contact angles of only 4.660.8u and

5.562.3u, respectively. Amine functionalised surfaces were posi-

tively charged, (84.664.9 mV) and slightly less hydrophilic with a

water contact angle of 30.364.8u, and the fluoro silane

functionalised surfaces were slightly negatively charged

(–13.760.9 mV) and were the only hydrophobic surfaces tested,

having a water contact angle of 7363.1u.
eDNA stimulated adhesion to all surfaces, but not to the same

extent, and not at all ionic strengths. Very little adhesion occurred

to the hydrophilic and negatively charged Piranha treated and

carboxyl functionalised glass surfaces in the absence of eDNA

(Figure 2). However, the stimulating effect of eDNA was only

evident at low and intermediate I. Das et al. [28] showed that

eDNA mediates bacterial adhesion through short range Lewis

acid-base interactions and the same authors argued that these

forces are more pronounced in eDNA-mediated adhesion at low I
and toward hydrophilic as opposed to hydrophobic surfaces [19].

We speculate that loops of eDNA must extend from the cell

surface and protrude the electric double layer to facilitate

adhesion. Indeed Das et al. showed that eDNA extended

approximately 400 nm from the cell surface of Streptococcus
mutans cells [28], and the thickness of the electric double layer

determine here was only a few nm. Furthermore, DLS measure-

ments have confirmed that eDNA only increases the hydrody-

namic radius of bacteria at low I [19], supporting our hypothesis

that eDNA must extend from the bacterial cell surface to mediate

adhesion to hydrophilic surfaces.

At the intermediate ionic strength, eDNA stimulated adhesion

to Piranha treated but not carboxyl functionalised glass surfaces.

The negatively charged hydrophilic glass surfaces are known to

contain localized positive charges [43], which are important for

adhesion mediated by long range electrostatic interactions [15].

While these are masked by the thicker electric double layer and the

overall negative charge at low electrolyte concentrations, they may

become visible at high electrolyte concentrations. Such positive

charges may not be accessible for the eDNA on carboxyl

functionalized surfaces as they were modified by self-assembled

monolayers of (Triethoxysilyl) propylsuccinic anhydride, but the

availability of these charges on the Piranha treated glass may have

contributed to eDNA-mediated adhesion despite the increase in I.
eDNA promoted adhesion of cells to positively charged

aminated surfaces in medium and high I (Figure 2), but

surprisingly, it had the opposite effect at low I. Electrostatic

interactions are more predominant at low I, and we had therefore

expected that the negatively charged eDNA would promote

adhesion to amine-functionalised under these conditions. We did

not investigate the underlying mechanism is behind this result

further, but it is likely caused by the role of Mg2+ ions in the

absence of other salts. Divalent cations like Mg2+ interact with the

phosphate backbone of DNA and provide charge neutralization

[44], which allows DNA to adsorb to negatively charged surfaces

[45]. Mg2+ is therefore commonly used to facilitate DNA

adsorption to negatively charged mica surfaces, e.g. for atomic

force microscopy [46], and conversely, EDTA is used to chelate

Mg2+ in order to keep DNA in suspension for molecular biology

research. The charge neutralization of Mg2+ is approximately 100

fold more effective compared to monovalent ions [45], and we

therefore expect that charge neutralization of eDNA on the

bacterial cell surface is most significant in the low I incubation,

where Mg2+ does not compete with Na+ and K+ for the interaction

with the phosphate groups of the DNA backbone. Indeed, Nguyen

et al. (2007) showed that the presence of Mg2+ enhanced DNA

adsorption to natural organic matter, but to a lesser extent in the

presence of 7 mM NaCl [47]. The NaCl concentration in 10 mM

PBS is 149 mM, hence the effect of Mg2+ on eDNA-mediated

Figure 2. Effect of ionic strength and surface chemistries on eDNA mediated adhesion of S. xylosus. Black bars indicate untreated cells.
White bars indicate cells treated with DNase. Experiments were carried out at low (I = 0.015 M), medium (I = 0.19 M) and high (I = 0.70 M) ionic
strength. Values are average of 3 replicates (error bars = S.D.) Asterisk indicates statistically significant differences between samples with and without
eDNA (t-test, *p,0.05, **p,0.01).
doi:10.1371/journal.pone.0105033.g002
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bacterial adhesion will be much less in PBS. The charge

neutralization of DNA by Mg2+ in the absence of other ions can

explain that eDNA lowered bacterial adhesion to the positively

charged amine-functionalised surfaces and promoted adhesion to

the negatively charged carboxyl-functionalised surfaces at low I.

The presence of Mg2+ was required for the activity of DNase, and

we could therefore not perform control experiments in the absence

of Mg2+ to test the hypothesis.

In contrast to the hydrophilic surfaces, eDNA promoted

adhesion of S. xylosus to the neutrally charged hydrophobic

surfaces irrespective of the I of the surrounding liquid (Figure 2).

Hydrophobic surfaces in general cannot contribute to acid-base

interactions due to the lack of polar groups. S. xylosus cells were

more hydrophobic in the presence of eDNA (Table 1), and when

hydrophobic surfaces approach each other, Lifshitz-van der Waals

forces increase due to the removal of interfacial water [48]. This

increase in Lifshitz-van der Waals interaction facilitates faster

approach of cells towards the surface, hence promoting adhesion.

Lifshitz-van der Waals forces can be overcome by electrostatic

forces at low ionic strength [49], however the hydrophobic surface,

functionalized with fluorine end groups (-CF3), cannot contribute

to such forces. Das et al. [19] also found that eDNA creates a

favorable conditions for bacterial adhesion to hydrophobic

surfaces, and demonstrated this both theoretically through

thermodynamic calculations, and experimentally by AFM adhe-

sion force spectroscopy measurements [19,29]. DNA is an

amphipathic molecule having a hydrophilic backbone and

hydrophobic bases in the core. These nitrogenous bases might

act as structures that participate in the hydrophobic interactions.

This reinforces the idea that eDNA on the cell surface may be

partially or completely single stranded, allowing the hydrophobic

bases to get exposed. However, further investigation is needed to

strengthen this hypothesis.

Collectively, our data and previous studies suggest that eDNA

can participate both in short-range acid-base interactions and

long-range electrostatic and Lifshitz-van der Waals interactions,

and eDNA is thus able to stimulate bacterial adhesion to a wide

range of surface chemistries. With eDNA being used in biofilm

formation by a wide range of bacteria from several different phyla,

an image of eDNA as a universal adhesin is emerging. In nature,

eDNA-mediated biofilm formation is believed to occur at low ionic

strength in aquatic environments, and as most surfaces in nature

are negatively charged [50–52], our data support this hypothesis.

The effect of ionic strength on the conformation of eDNA might

be the key feature preventing its role in mediating the adhesion at

high ionic strength. However, the ability of eDNA to aid adhesion

to hydrophobic surfaces under any conditions raises new questions

about the possible role of eDNA in e.g. cell aggregation or

attachment to debris in marine environments. The versatility of

eDNA as an adhesive may yet reveal new situations where eDNA-

mediated adhesion increases survival of bacteria. Furthermore, the

emerging image of eDNA as an important adhesin for many

bacteria across several phyla points to eDNA as a potential global

target in biofilm prevention. Understanding the mechanism by

which eDNA mediates bacterial adhesion is therefore an

fundamental basis for development of a new generation of

antifouling surfaces or cleaning regimes that enzymatically

degrade DNA or interfere with eDNA’s adhesive properties.

Materials and Methods

Preparation of bacteria
A Staphylococcus xylosus (DSM 20266, DSMZ, Braunschweig,

Germany) starter culture was inoculated from agar plates and

grown in 3 ml of 1% TSB medium in 50 ml conical bottom tube

by incubating overnight with shaking at 30uC. One ml from this

culture was then used as inoculum for 100 ml of 1% TSB medium,

which was incubated overnight, harvested by centrifugation (5 min

at 30006g), washed twice and resuspended in phosphate buffered

saline (PBS, pH 7.4) containing 5 mM MgCl2, with or without

50 mg/ml DNase I (Sigma), and incubated at 37uC for 1 h. The

MgCl2 is required for DNase activity. After incubation, cells were

again washed three times in PBS and resuspended at OD600 of

0.05 in the buffer used for the subsequent experiment (see below).

Bacterial adhesion assay
To study bacterial adhesion under flow, glass cover slips,

cleaned by dipping them sequentially in acetone, distilled water,

ethanol, and distilled water for 1 minute each, were mounted on 3

channel flowcells, each channel measures (length6width6height)

406464 mm (Denmark Technical University, Copenhagen, Den-

mark). Adhesion of untreated S. xylosus was compared to adhesion

of S. xylosus that was continuously treated with DNase (50 mg/ml),

or had temporarily been treated with DNase (50 mg/ml) for 1 h,

washed and resuspended in PBS with 5 mM MgCl2. All the three

suspensions were adjusted to OD600 of 0.05 and passed through

flowcells (flow rate ,1 ml per minute), and cells attached to the

glass surface were enumerated by phase contrast microscopy after

30, 60 and 90 min.

Continuously shaking batch bacterial adhesion assays were

performed in the presence or absence of DNase during the

incubation of glass cover slips in bacterial suspensions for 100 min

at room temperature with shaking at 120 rpm. The assay was

performed on three replicate surfaces incubated individually in

bacterial suspensions prepared from the same overnight culture

and separated into aliquots before resuspending buffers with or

without DNase. Buffers were prepared with three different ionic

strengths: a) PBS with 5 mM MgCl2 and 30 g l21 NaCl (I = 0.70

M) (pH 6.9), b) PBS with 5 mM MgCl2 (I = 0.19 M) (pH 7.0), and

c) 5 mM MgCl2 in deionized water (I = 0.015M) (pH 6.1). MgCl2
was required for DNase activity. Glass cover slips were recovered

and non-adhered bacteria were gently removed by dipping the

slides in sterile PBS three times. The remaining bacteria were

stained with 10 ml 20x SYBR Green II RNA stain (Sigma-

Aldrich), placed on a glass slide and sealed with nail polish to avoid

evaporation. Slides were kept in the dark at 4uC until quantifi-

cation of adhered bacteria by epifluorescence microscopy (Zeiss

Axiovert 200M, Carl Zeiss GmgH, Jena, Germany) using Zeiss

filterset 10 and 40x or 63x oil immersion objectives. Cells were

counted in 190 mm2 or 120 mm2 grids (depending on the

magnification used) at random positions on the slide until a

minimum of 1000 cells had been counted. Loosely adhered cells

will be removed from the surfaces in the static assay, as large sheer

forces are applied when passing the samples through an air/water

interfaces. The assay therefore only enumerates the strongly

adhered cells, which some studies define as ‘‘bacterial retention’’.

For ease of language, we will refer to both assays as bacterial

adhesion in the present study.

Surface preparation and modification
Glass surfaces with different chemistries were prepared by

surface assembly of silanes on square glass cover slips

(12612 mm). Prior to all surface chemical modifications, the

cover slips were cleaned by submersing them in Piranha reagent

(Ammonium hydroxide (25%), Hydrogen peroxide (35%) and

water at 1:1:4 volume/volume) for 5 minutes, rinsed with water

and dried using jet of nitrogen [53]. Hydrophobic fluoro silane

(-CF3) functionalised surfaces were prepared by incubation in

Extracellular DNA in Bacterial Adhesion
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100 mM Trimethoxy trifluoropropyl silane in toluene for 12 h and

subsequently rinsed by sonication in toluene using a bath sonicator

for 1 h, and dried using a jet of nitrogen. Negatively charged

carboxyl (-COO2) functionalised surfaces were prepared by

incubation in 10% volume/volume 3-(Triethoxysilyl) propylsucci-

nic anhydride in toluene for 15 h. Positively charged amine

(-NH3
+) functionalised surfaces were prepared by incubating

carboxyl terminated surfaces in 3% volume/volume polyethylene

imine (PEI) in water for 12 h. The reaction was catalyzed by NHS-

EDC by incubating the carboxyl terminated surfaces with 3 mg of

NHS and 30 mg of EDC in 30 ml water prior to incubation with

PEI solution. Both the surfaces were then rinsed by sonication in

water using a bath sonicator for 1 h and dried using a jet of

nitrogen. Piranha treated glass surfaces were used as reference in

all the experiments. All surfaces were freshly prepared and used

within 24 h.

Characterization of surfaces
The surface chemical composition of modified surfaces and the

unmodified glass was characterized by X-ray photoelectron

spectroscopy (XPS). XPS spectra were recorded using a Kratos

Axis UltraDLD instrument (Kratos Ltd, Telford, UK) equipped

with a monochromated aluminum anode (Al ka 1486 eV)

operating at 150 W (15 kV and 10 mA) with pass energies of 20

eV and 160 eV for high resolution and survey spectra respectively.

The charge neutralizer was used to neutralize any positive charge

developed during the measurements on electrically non-conduct-

ing surfaces. A hybrid lens mode was employed during analysis

(electrostatic and magnetic). XPS spectra of the surfaces were

recorded at three different spots on each sample. Relative atomic

percentages were calculated from the averages of three survey

spectra recorded for each sample on three different spot. The take-

off angle with respect to normal to the surface was 0u for all

measurements. The measured binding energy positions were

charge corrected with reference to 285.0 eV, corresponding to the

C-C/C-H species. Quantification was conducted using CasaXPS

software. A linear background was used to analyze all spectra.

Surface zeta potential measurements were carried out using the

surface zeta potential cell in zetasizer nano ZS (Malvern

Instruments limited), as described previously [54]. Polystyrene

nanoparticles (,100 nm -PS100 sulphate modified Invitrogen

DK) were used as tracer particles. Measurements were made at

125, 250, 375, and 500 mm from the sample surface. An additional

measurement was made at 1000 mm to determine the zeta

potential of the tracer particles. Surface zetapotentials were

calculated from three replicate measurements and expressed as

millivolts (mV). Surface zetapotential uncertainties calculated by

the software from three measurements were considered as

standard deviation.

Characterisation of bacterial cell surface
Static contact angles were measured on the different surfaces

and bacterial lawns using water. Bacterial lawns were prepared as

described previously [55]. Briefly, 109 cells per ml of planktonic S.
xylosus cells from an overnight culture were harvested and treated

with DNase or PBS (control) as described above. After treatment,

the cells were washed 3 times and resuspended in distilled water,

before depositing the suspension on to a cellulose acetate filter

membrane containing 0.45 mm diameter pores under negative

pressure. All images of liquid drops on surfaces were recorded

using a KRUSS DSA100 (KRUSS GmbH, Hamburg, Germany)

drop shape analysis system, followed by drop shape analysis using

ImageJ software. Water contact angle measurements were done on

at least 3 different places on triplicate samples of each surface and

averaged.

The zeta potential of bacterial cells was also measured to

investigate changes in cell surface charge after removal of eDNA.

S. xylosus (+/– DNase treatment) were washed and resuspended to

OD600 of 1.0 in PBS. The conformation of the eDNA on cell

surface, and the Zeta potential can be affected by the ionic

strength of the buffer. PBS has a relatively high ionic strength. In

order to account for the effect of ionic strength on zeta potential,

we made the measurements in PBS with two different ionic

strengths, 1 mM (I = ,0.019) and 10 mM (I = 0.19). Triplicate

values of the zeta potential were measured for each sample in a

zetasizer (Zetasizer nano, Malvern Instruments, UK) at 25uC.

Each replicate value was an average of 10 measurements.

Statistical analysis
Bacterial adhesion was studied on three replicate surfaces

incubated individually in bacterial suspensions that were prepared

from the same overnight culture, and then separated into aliquots

that were either suspended in PBS+MgCl2 with and without

DNase before submerging samples (one sampler per aliquot).

Statistical analyses were done by student t-test and two-way

analysis of variance (ANOVA) using R, the free software for

statistical computing.

Supporting Information

Figure S1 XPS analysis of surfaces with different
chemistries. A: Wide scan spectrum of Piranha-treated glass;

B: Carboxyl-functionalised glass. The high resolution C 1s

spectrum shows the carboxyl peak at B.E. 289.1 eV; C: Amine-

functionalised glass. The wide scan spectrum shows the nitrogen

(N 1s) peak at B.E. 397 eV; D: Fluoro-functionalised glass. The

wide scan spectrum shows fluorine (F 1s) peak at B.E. 686 eV.

(TIF)
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