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Overexpression of FGF2 delays 
the progression of osteonecrosis of the femoral 
head activating the PI3K/Akt signaling pathway
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Abstract 

Background:  The purpose of the current study was to explore the role and underlying mechanism of FGF-2 in dexa‑
methasone (DEX)-induced apoptosis in MC3T3-E1 cells.

Methods:  GSE21727 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differ‑
entially expressed genes (DEGs) by the limma/R package. MC3T3-E1 cells were exposed to DEX at different concen‑
trations (0, 10−8, 10−7, 10−6, 10−5 and 10−4 mol/L), and cell viability, flow cytometry and TUNEL assay were used to 
detect cell proliferation and apoptosis. An FGF-2-pcDNA3 plasmid (oe-FGF-2) was used to overexpress FGF-2, and 
western blotting was conducted to detect protein expression.

Results:  We found that FGF-2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX 
downregulated FGF-2 gene and protein expression, inhibited viability and induced MC3T3-E1 cell apoptosis. Overex‑
pression of FGF-2 reversed DEX-induced apoptosis in MC3T3-E1 cells. FGF-2-mediated anti-apoptosis was impaired 
by inactivating the PI3K/AKT pathway with LY294002. Moreover, overexpression of FGF2 delayed the progression of 
DEX-induced osteonecrosis of the femoral head (ONFH) animal model by regulation PI3K/Akt signaling pathway.

Conclusion:  In conclusion, FGF-2 is effective at inhibiting DEX-induced MC3T3-E1 cell apoptosis through regulating 
PI3K/Akt signaling pathway.
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Introduction
Glucocorticoids (GCs), first-line anti-inflammatory 
agents, are widely used in inflammation and autoimmune 
diseases due to their strong anti-inflammatory effects 
[1–3]. After megadose or long-term application of GCs, 
patients are at risk of osteoporosis or even osteonecrosis 
of the femoral head (ONFH) [4–7]. Kubo et al. [8] found 
that approximately 51% of cases of osteonecrosis of the 
femoral head were associated with GC intake. However, 

the exact pathogenesis of GCs mediating impaired bone 
formation remains elusive [9]. Many scholars have indi-
cated that the increase in osteoblast apoptosis is one of 
the important mechanisms of GC-induced bone loss [10, 
11].

Fibroblast growth factors (FGFs) are secreted glyco-
proteins and possess many biological functions, such as 
regulating cell viability and apoptosis [12]. To date, a total 
of 22 ligands of FGF families have been discovered, and 
their function is mainly through binding to FGF recep-
tors (FGFRs) [13]. Byun et  al. [14] observed that TAZ 
mediated FGF2 signaling and promoted osteogenic dif-
ferentiation of C3H10T1/2 cells. Montero et  al. [15] 
found that by disruption of the FGF2 gene in mice, bone 
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mass and bone formation were decreased. Moreover, 
FGF2 attenuates neuronal apoptosis after subarachnoid 
hemorrhage [16].

Gene expression microarrays have been widely used to 
study gene expression in many diseases [17]. Bioinfor-
matics analysis was performed to identify the key regula-
tory mediator of MC3T3-E1 cell apoptosis and an in vitro 
study was conducted to test this hypothesis. Our findings 
provide novel insights into the mechanism underlying 
DEX-induced apoptosis of MC3T3-E1 cells, and FGF-2 
may be a new target for ONFH.

Materials and methods
Microarray analysis
The mRNA expression profile GSE21727 was retrieved 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). In this microarray, 3 samples of primary human 
osteoblasts were treated with dexamethasone (DEX, 
10−4  mol/L) for 24  h and 6 samples without treatment 
as controls. Differentially expressed genes (DEX-treated 
vs Con) were further analyzed by the R package ‘Limma’ 
from the Bioconductor project [18]. |logFC|> 1 and P 
value < 0.05 was set as the cutoff point.

Function enrichment analysis
Gene Ontology (GO) analysis, which includes biological 
processes (BP), cellular components (CC) and molecu-
lar function (MF), and Kyoto Encyclopedia of Gene and 
Genomes (KEGG) pathway enrichment analysis, was car-
ried out using the clusterProfiler (version 3.10.1) package 
[19]. DOSE packages in R software were used to visual-
ize the GO and KEGG results [20]. Differences were con-
sidered statistically significant when P < 0.05. We used 
the Search Tool for Interactions of Chemicals (STITCH, 
http://​stitch.​embl.​de/) online database to predict and 
construct the biological network of DEX [21]. An inter-
action score > 0.4 was considered statistically significant.

Cell culture and plasmid transfection
The mouse preosteoblast cell line MC3T3-E1 was 
obtained from American Type Culture Collection 
(ATCC, CRL-2593) and maintained in DMEM (Gibco, 
Life Technologies, Carlsbad, CA, USA) supplemented 
with 10% FBS (Gibco, Life Technologies, Carlsbad, CA, 
USA), 10  mM HEPES (Sigma-Aldrich, Poole, UK), and 
0.1% penicillin–streptomycin (Sigma-Aldrich, Poole, 
UK). The FGF-2-pcDNA3 plasmid (oe-FGF-2) was syn-
thesized by GeneChem, Inc. Then, MC3T3-E1 cell sus-
pensions (150  μl, containing 1 × 104 cells) were plated 
onto the cover glass of a confocal petri dish (NEST, Hong 
Kong, China) for transient transfection. DMEM (1  mL) 
containing 10% FBS was added to the dish, and the cells 
were cultured for 24 h prior to transfection. Transfection 

was performed using Lipofectamine 3000 (Thermo Fisher 
Scientific) and Opti-MEM reduced-serum media (Life 
Technologies, Waltham, Massachusetts, USA) accord-
ing to the manufacturer’s instructions. To explore the 
mechanisms of FGF-2-mediated MC3T3-E1 cell apop-
tosis, the PI3K inhibitor LY294002 was used to pretreat 
cells (20 μM, MCE, Shanghai, China) for 2 h followed by 
stimulation with FGF-2-pcDNA3 for 12 h. The choice of 
inhibitor concentrations and time course was based on a 
previous study [22].

Cell viability assay
MC3T3-E1 cells (5 × 103 per well, 200  μl) were seeded 
in 96-well culture plates. Then, cells were exposed to 
different doses of DEX (0, 10−8, 10−7, 10−6, 10−5 and 
10−4  mol/L, Sigma-Aldrich, CAS, 50-02-2) to identify 
the optimal dose to induce apoptosis of MC3T3-E1 cells. 
After 24 h, cell viability was measured using Cell Count-
ing Kit-8 Assay (CCK-8, Solarbio, Beijing, China) follow-
ing the manufacturer’s protocol.

Apoptosis flow cytometry assay
MC3T3-E1 cell apoptosis was assessed using Annexin 
V-fluorescein isothiocyanate (FITC)/propidium iodide 
(PI) double staining following the manufacturer’s instruc-
tions (Haime Jiangsu, China). After exposure to DEX for 
24 h, MC3T3-E1 cells were collected in a centrifuge tube 
and stained with 5  μl Annexin V-FITC (10  μg/mL) and 
5 μl PI (5 μg/mL) for 30 min. After washing with phos-
phate-buffered saline (PBS) three times, the cells were 
analyzed with a FACSCalibur flow cytometer (BD Bio-
sciences). At least 50,000 events were detected and ana-
lyzed for apoptotic cells. Apoptosis rate was calculated as 
ratio of apoptotic cells in Q3 + Q2 to total cells.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay
For TUNEL staining, MC3T3-E1 cells were rinsed with 
PBS for 5  min and fixed with 4% paraformaldehyde for 
1 h. Then, MC3T3-E1 cells were permeabilized with 0.1% 
Triton X-100 for 10  min. An In  Situ Cell Death Detec-
tion Kit (Roche) was used to incubate the cells for 1  h 
at 37 °C in the dark. Finally, MC3T3-E1 cells were incu-
bated with DAPI (Solarbio Biotechnology, Beijing, China) 
at room temperature in the dark for 5  min. High-reso-
lution images were captured using an Olympus CX41 
microscope (Center Valley, PA, USA). The percentage 
of TUNEL-positive MC3T3-E1 cells was calculated by 
counting TUNEL-positive cells/total number of cells (%) 
in 5 random high-power fields.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://stitch.embl.de/
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Reverse transcription PCR assay
Total RNA of MC3T3-E1 cells was extracted using the 
TRIzol method as previously described [23]. cDNAs 
were synthetized by reverse transcription using oligo(dT) 
with RNA samples. cDNAs were amplified by a SYBR 
Green PCR kit. The relative level of FGF-2 was normal-
ized to the GAPDH level. The expression of FGF-2 and 
GAPDH was detected using qPCR with SYBR Green 
Mix Kits (Applied Biosystems). All results were quanti-
tated using the 2−ΔΔCt relative quantification method. 
The primer pair sequences were as follows: GAPDH for-
ward, 5′-AAG GCC ATC ACC ATC TTC CA-3′, GAPDH 
reverse, 5′-GGA TGC GTT GCT GAC AATCT-3′; 
FGF-2 forward, 5′-CGA​GTG​AGA​GGC​AAC​TTG​G-3′, 
FGF-2 reverse 5′-CGG​TTA​CAG​AAC​CAC ACACG-3′.

Western blot analysis
Total protein was extracted from MC3T3-E1 cells for 
western blot analysis. Briefly, cells were immersed in 
RIPA buffer and then separated by sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS-PAGE). 
The separated proteins were transferred onto polyvi-
nylidene difluoride (PVDF) membranes. The membranes 
were blocked with 5% nonfat milk dissolved in Tris-
buffered saline with 0.05% Tween-20 (TBS-T) for 1 h at 
room temperature. The membranes were then incubated 
overnight at 4 °C with primary antibodies against cleaved 
Caspase 3 (Cell Signaling; Beverly, MA, #9664, 1:1000), 
Caspase 3 (Cell Signaling; Beverly, MA, #9662, 1:1000), 
phospho-Akt (Ser473, Cell Signaling, Beverly, MA, 
#4060, 1:2000), phospho-PI3K (Tyr458, Cell Signaling, 
Beverly, MA, #9655,1:1000), Akt (Cell Signaling, Beverly, 
MA, #4685, 1:2000), PI3K (Cell Signaling, Beverly, MA, 
#4249, 1:1000), FGF-2 (Abcam, Cambridge, UK, ab8880, 
1:5000), Bax (Abcam, Cambridge, UK, ab32503, 1:2000), 
Bcl-2 (Abcam, Cambridge, UK, ab182858, 1:5000), 
and GAPDH (Proteintech, Wuhan, China, 6004-1-1g 
1:6000). Finally, the membranes were incubated for 1  h 
with horseradish peroxidase (HRP)-conjugated second-
ary antibodies (1:500) and visualized using an enhanced 
chemiluminescence system, according to the manufac-
turer’s instructions.

Animal studies
All animal experiments were performed following the 
guidelines for experimentation with laboratory animals 
set in The Affiliated Wuxi No.2 People’s Hospital of Nan-
jing Medical University. ONFH animal model were estab-
lished based on method published previously [24]. Fifteen 
male Sprague–Dawley rats (weighing 250–300  g) were 
randomly divided into two groups: (1) Normal groups 
(n = 5), (2) DEX (Dex 5 mg/kg.d, n = 5)-treated group, (3) 

Dex + FGF-2-pcDNA3 group (Dex 5  mg/kg.d, n = 5). In 
brief, FGF-2-pcDNA3 was injected into medullary cavity 
of bilateral distal femur once a week. All rats were housed 
under specific pathogen-free conditions with free access 
to food pellets and tap water for 1 month.

Hematoxylin and eosin (HE) staining 
and immunohistochemistry (IHC)
Femoral heads in each group were harvested and fixed 
with 4% paraformaldehyde for 1  day and processed for 
paraffin embedding. Following embedding in paraffin, 
samples were cut into 5-μm sections. Subsequently, the 
sections were dewaxed and hydrated, followed by HE 
staining according to the instruction manual. Follow-
ing deparaffinization, epitope retrieval was performed 
in a citrate buffer (pH 6.0) heated in a microwave oven 
for 10  min. The sections were incubated with 20% BSA 
blocking solution (Solarbio, Beijing, China, 37  °C, 
30  min) for blocking non-specific staining. The slides 
were then incubated with p-Akt primary antibody (Cell 
Signaling, Cat#4060S, RRID: AB_2315049) at 4  °C over-
night, followed by incubation with biotin-conjugated 
secondary antibody (1:1000; sc-2004; Santa Cruz Bio-
technology, Inc.). Photographs were taken with an Olym-
pus Optical AX70 microscope (Olympus).

Statistical analysis
All statistical analyses were performed using SPSS1 
version 7.0 software. The data are expressed as the 
mean ± standard deviation (SD, n = 3). Student’s t test or 
one-way analysis of variance was conducted to compare 
differences between groups. *P < 0.05 was considered to 
be statistically significant.

Results
Identification of differentially expressed genes
The selection criteria were set as |logFC|> 1 and P 
value < 0.05 for the selection of DEGs. A volcano plot of 
the identified DEGs is shown in Fig. 1a, and a heatmap of 
the DEGs is shown in Fig. 1b. A total of 258 DEGs were 
identified, among which 117 DEGs were downregulated, 
while 141 DEGs were upregulated. We found that FGF-2 
was downregulated in the DEX-treated group. To further 
understand the function and mechanism of the identi-
fied DEGs, GO enrichment analyses were performed 
using the ClusterProfiler package. Figure 1c presents the 
top ten significantly enriched GO terms. The DEGs were 
mainly associated with oxidation–reduction process and 
negative regulation of growth. The top 10 DEG-enriched 
pathways are represented by a bubble chart and shown in 
Fig. 1d.
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FGF‑2 is downregulated by DEX and its related biological 
functions
FGF-2 was significantly downregulated after DEX treat-
ment. FGF-2 and its adjacent gene-related GOs are 
presented in a chord diagram (Fig.  2a) and a circle plot 
(Fig. 2b). From the STITCH database, a network involv-
ing DEX and its interacting proteins was constructed, 
and we observed that FGF-2 was not a direct target gene 
of DEX but was closely related to PER2, a direct target 
gene of DEX (Fig.  2c). To validate our results, we per-
formed an in vitro experiment, and the qRT-PCR results 

further confirmed that DEX could decrease FGF-2 
mRNA expression (Fig. 2d).

DEX promotes apoptosis of MC3T3‑E1 cells
DEX significantly decreased the viability of MC3T3-
E1 cells in a dose-dependent manner, with the maximal 
concentration that induced MC3T3-E1 apoptosis being 
10−4  mol DEX (Fig.  3a). Therefore, 10−4  M DEX was 
used for subsequent studies based on our results and 
GSE21727. Consistent with the change in FGF-2 mRNA 
expression, the FGF-2 protein level was much lower in 

Fig. 1  Identification of DEGs in human osteoblasts exposed to DEX. a Volcano plot analysis of 258 DEGs. The red dots represent the upregulated 
DEGs, green dots represent downregulated DEGs, and black dots represent genes with no significant change in expression. b Heatmap graphs 
of the DEGs in the experimental groups: DEX versus control. Arbitrary signal intensity acquired from the microarray analysis is represented by the 
colors (green = lower expression; red = higher expression). Log2 signal intensity values for any single gene were resized to row Z-score scales. c 
Top 10 significantly enriched GO terms of DEGs. The x-axis represents the − log10 (P value) associated with GO terms, and the y-axis represents the 
significantly enriched GO terms. d A bubble chart showing the identified KEGG pathways. The abscissa represents the GeneRatio, and the ordinate 
represents the KEGG pathway terms. P values indicate larger values from blue through to red, and a larger node size represents a higher number of 
enriched genes
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the DEX group than in the control group (Fig. 3b). DEX 
induced an increase in Bax, Cleaved caspase-3 and Cas-
pase3 (proapoptotic protein) and a decrease in Bcl-2 
(antiapoptotic protein) (Fig. 3b).

To further explore the impact of DEX on MC3T3-E1 
cell apoptosis, we used Annexin V/PI double staining 
and TUNEL assays to examine apoptosis. The apoptosis 

ratio was increased by 10.8% (Fig.  3c), indicating the 
promoting role of DEX in MC3T3-E1 cell apoptosis. 
We further examined and quantitated this observa-
tion using TUNEL staining (Fig. 3d). Through TUNEL 
assays, we observed that DEX increases the number of 
apoptotic cells.

Fig. 2  a Chord diagram that presents the DEGs linked via ribbons to their assigned GO terms. Color coding indicates logFC of upregulated genes 
(red) or downregulated genes (blue). b GO circle plot; the inner color indicates the significance of the term (z-score), where pink represents 
increasing and purple represents decreasing. The outer ring displays scatterplots of the expression levels (logFC) for the genes in each GO term. c 
DEX-protein interaction network based on STITCH database. d FGF-2 expression in primary MC3T3-E1 cells from control or DEX after 24 h treatment. 
*P < 0.05, DEX dexamethasone
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Fig. 3  The apoptosis assay revealed that DEX promoted cell apoptosis in MC3T3-E1 cells. a Effects of DEX on MC3T3-E1 cell proliferation, as 
demonstrated by CCK-8 assay. b Protein levels of Bax, Bcl-2, Cleaved caspase-3, Caspase-3 and FGF-2 were detected by western blotting after DEX 
treatment. c Flow cytometry after Annexin V/PI staining and quantitative analysis of the apoptosis ratio after DEX treatment. d Apoptosis by TUNEL 
staining after DEX treatment (× 100 magnification); *P < 0.05, DEX dexamethasone
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Overexpression of FGF‑2 rescued DEX‑induced apoptosis 
in MC3T3‑E1 cells
To further verify that FGF-2 is involved in DEX-
induced apoptosis, FGF-2-pcDNA3 plasmid trans-
fection for FGF-2 overexpression was used in further 
studies. The results showed that the expression of 
FGF-2 was upregulated obviously following transfec-
tion with pcDNA-FGF-2 compared with transfection 
with empty vector, which indicated that FGF-2 overex-
pression was performed successfully (Additional file 1: 
Fig. S1). Apoptosis was analyzed by flow cytometry 
using Annexin V/PI staining. As illustrated in Fig. 4a, 
the number of apoptotic cells in the DEX group was 
markedly increased after incubation for 24  h, which 
was partly reversed by FGF-2-pcDNA3 (P < 0.05). 
To test whether this inhibition could be reversed by 
the inhibition of the PI3K/Akt signaling pathway, we 
treated MC3T3-E1 cells with the specific inhibitor 
LY294002 and found that the inhibition of apoptotic 
MC3T3-E1 cells was increased to a certain extent. The 
TUNEL staining analysis provided similar results to 
those of Annexin V/PI staining (Fig. 4b).

Therefore, we constructed an FGF-2 overexpression 
plasmid and confirmed the overexpression efficiency 
by western blot (Fig.  4c). The protein level of FGF-2 
was significantly increased in FGF-2-overexpressing 
MC3T3-E1 cells.

The upregulation of apoptosis-related proteins (Bax, 
Cleaved caspase-3 and Caspase3) induced by DEX was 
reversed by FGF-2-pcDNA3, as shown by western blot 
analysis, while a marked increase in Bcl-2, an apopto-
sis-related protein, was observed in FGF-2-pcDNA3 
compared with DEX using western blot analysis 
(Fig. 4c).

It is evident from Fig.  4d that PI3K and Akt activa-
tion was significantly reduced after incubation with 
DEX, and FGF-2 overexpression partially restored 
both PI3K and Akt phosphorylation. Pretreatment 
with LY294002 of DEX and FGF-2-pcDNA3-treated 
MC3T3-E1 cells significantly decreased the expression 
of p-PI3K and p-Akt compared with administration 
of DEX and FGF-2-pcDNA3 alone. These data sug-
gested that FGF-2 restored the activation level of the 
PI3K/Akt signaling cascades blocked by LY294002 in 
MC3T3-E1 cells.

Overexpression of FGF‑2 delayed progression of OFNH 
in animal model
In the ONFH group, trabecular bone destruction and fat 
vacuoles were significantly increased than normal group, 
suggesting that the ONFH animal model was successfully 
established. Administration with overexpression of FGF-2 
could prevented the trabecular bone destruction and for-
mulation of fat vacuoles (Fig. 5a). What is more, treatment 
with overexpression of FGF-2 plasmid was able to reverse 
downregulation p-Akt protein expression in DEX-induced 
animal mode (Fig. 5b).

Discussion
Osteoblasts are bone-building cells, and the fine regula-
tion of osteogenic differentiation is critical to the process of 
bone formation, modeling, and remodeling. Better under-
standing of the signaling pathways involved in osteogenic 
differentiation may result in the discovery of novel poten-
tial targets of osteoporosis. The most common risk fac-
tors for osteoporosis include age, menopause-associated 
hormone changes in women, changes in physical activity, 
medications, and certain diseases. It is widely accepted 
that age-associated growth hormone, estrogens, and other 
hormones play a key role in the maintenance of bone 
homeostasis and the development of osteoporosis. DEX 
is a common GC with strong anti-inflammatory activity. 
However, large doses and long treatment courses of DEX 
administration may lead to osteoporosis or even ONFH. 
Studies have found that DEX promotes apoptosis in a vari-
ety of cells, including MLO-Y4 [25], MC3T3-E1 [26], bone 
marrow-derived mesenchymal stem cells (BM-MSCs) 
[27], and primary osteoblasts [28]. However, the under-
lying mechanisms have not yet been comprehensively 
investigated.

Previous related research studies have shown similar bio-
logical processes of osteoblasts exposed to DEX [29, 30]. 
Period2 (PER2) is a circadian gene and plays an important 
role in regulating cells apoptosis [31]. Honma et  al. [32] 
found that PER2 is a directly target gene of DEX. Abe et al. 
[33] revealed that PER2 is required for the maturation of 
bone tissue. In this study, we suggested that PER2 directly 
regulating FGF2 through STITCH network. FGF-2 plays a 
central role in osteoblast differentiation and osteoblast sur-
vival [34]. FGF-2 has a positive role in preventing apoptosis 
in multiple cells [35, 36]. Analysis in the STITCH database 
indicated that DEX affects FGF-2 expression mainly by 
regulating other neighboring genes (FGFR-3 and PER2). A 

Fig. 4  The effects of FGF-2 overexpression on DEX-induced apoptosis of MC3T3-E1 cells. MC3T3-E1 cells were pretreated with an FGF-2 
expression plasmid and/or PI3K inhibitor (LY294002) 12 h before DEX treatment. Flow cytometry after Annexin V/PI staining (a) and TUNEL (× 100 
magnification, b) analysis of apoptosis after DEX (10−6 M, 24 h), DEX + FGF-2 pcDNA3, and DEX + FGF-2 pcDNA3 + LY294002 treatments. c Western 
blotting was performed to analyze the expression levels of Bax, Bcl-2, cleaved Caspase-3, Caspase-3, FGF (c), PI3K, p-PI3K, AKT and p-AKT (d) in 
MC3T3-E1 cells after DEX (10−6 M, 24 h), DEX + FGF-2 pcDNA3, and DEX + FGF-2 pcDNA3 + LY294002 treatments. *P < 0.05, DEX dexamethasone

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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mechanistic study revealed that overexpression of FGF-2 
activated the PI3K signaling pathway.

DEX reduced the number of MC3T3-E1 cells in a 
concentration-dependent manner. We used 10−4  M 
DEX to treat MC3T3-E1 cells based on our experiment 
and GSE21727 data [37]. The MC3T3-E1 apoptotic rate 
increased in the DEX group, which was determined by 
TUNEL staining and FITC/PI double staining by flow 
cytometry. After DEX treatment, the expression of apop-
totic markers (Cleaved caspase-3, Caspase-3 and Bax) 
was increased, and the expression of an inhibitor of 
apoptotic proteins (Bcl-2) was decreased.

The apoptotic effect of DEX has been demonstrated 
in previous studies [38, 39]. FGF-2-pcDNA was used 
to increase the expression of FGF-2 and elucidate the 
underlying mechanism of FGF-2. FGF-2 played an 
important role in DEX-induced apoptosis, and the main 
result showed that overexpression of FGF-2 could rescue 
DEX-induced apoptosis in MC3T3-E1 cells. The apop-
totic effects of FGF-2 overexpression were attenuated by 
blocking with a PI3K inhibitor (LY294002). The PI3K/Akt 
signaling pathway plays a significant role in maintaining 
cell viability and enhances resistance to cell apoptosis [40, 
41]. Activation of the PI3K/Akt signaling pathway signifi-
cantly inhibits apoptosis-related proteins [42–44].

PI3K-Akt signaling pathways showed the most signifi-
cant upregulation after FGF-2 overexpression. Thus, we 
propose that FGF-2 effectively inhibits DEX-induced 

MC3T3-E1 cell apoptosis through activation of the PI3K/
Akt signaling pathway. In the future, gene knockdown of 
FGF-2 rats should be constructed to further investigate 
the effects of FGF-2 for ONFH. A limitation should be 
noted in this study. FGF-2 silencing or PI3K/Akt direct 
stimulation was not perform in vivo and in vitro.

Conclusion
In conclusion, we first conducted a bioinformatics anal-
ysis of the DEGs of control and DEX-treated human 
osteoblasts. We determined that FGF-2 overexpression 
could reverse DEX-induced apoptosis in MC3T3-E1 cells 
through the PI3K/Akt signaling pathway. These outcomes 
indicate the value of FGF-2 as a potential therapeutic tar-
get for ONFH.
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Bone marrow-derived mesenchymal stem cells; PER2: Period2.

Fig. 5  The effects of FGF-2 overexpression on delaying progression in ONFH animal model. a HE staining was measured histological changes in the 
trabecular bone microstructure after administration with FGF-2 overexpression plasmid. b Immunohistochemistry results of the p-Akt expression in 
femoral head after administration with FGF-2 overexpression plasmid (× 100 magnification)
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