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A powerful weighted statistic for 
detecting group differences of 
directed biological networks
Zhongshang Yuan1,*, Jiadong Ji1,*, Xiaoshuai Zhang1, Jing Xu1, Daoxin Ma2 & Fuzhong Xue1

Complex disease is largely determined by a number of biomolecules interwoven into networks, 
rather than a single biomolecule. Different physiological conditions such as cases and controls may 
manifest as different networks. Statistical comparison between biological networks can provide not 
only new insight into the disease mechanism but statistical guidance for drug development. However, 
the methods developed in previous studies are inadequate to capture the changes in both the nodes 
and edges, and often ignore the network structure. In this study, we present a powerful weighted 
statistical test for group differences of directed biological networks, which is independent of the 
network attributes and can capture the changes in both the nodes and edges, as well as simultaneously 
accounting for the network structure through putting more weights on the difference of nodes locating 
on relatively more important position. Simulation studies illustrate that this method had better 
performance than previous ones under various sample sizes and network structures. One application to 
GWAS of leprosy successfully identifies the specific gene interaction network contributing to leprosy. 
Another real data analysis significantly identifies a new biological network, which is related to acute 
myeloid leukemia. One potential network responsible for lung cancer has also been significantly 
detected. The source R code is available on our website.

Complex disease is rarely caused by a single biomolecule (e.g. protein, metabolite), but reflects various pathobi-
ological processes interacting in a complex network1. Numerous risk factors that are related to a disease often act 
together through networks controlling the disease occurrence, development and prognosis. It would inevitably 
lose information to analyze the individual component only. In fact, one single factor can express some certain 
effects on a disease when studying it alone, while this effect could change substantially when studying it within 
one system or network, and vice versa2. Therefore, biomolecules should not be studied beyond the biological 
systems or networks they are involved in ref. 3. In biological networks, the nodes often represent biomolecules 
(e.g., genes and proteins), and the edges represent functional, causal or physical interactions between the nodes. 
An appealing feature of the network is its ability to visualize the topology structure among biological compo-
nents and improve the understanding of their complex interplays and interconnections. From the perspective of 
network medicine, different physiological conditions may manifest as different biological networks. Statistical 
comparison of group differences between biological networks can provide new insight into the underlying disease 
mechanism, and can have extensive biomedical applications4–8. For instance, it could provide statistical evidence 
to give the significant pathways priority for drug targets, which will undoubtedly shorten the time required for 
drug development, hence saving potential cost.

From the epidemiological perspective, traditional epidemiology has suffered from increasing criticism partly 
because it often pays more attention to the identification of a single risk factor than the network that is related to 
a disease, which makes it difficult to deeply explore disease mechanism9. With the development of recent techno-
logical advances in high-throughput omics platforms, some researchers suggested to integrate various omics data 
with traditional epidemiology, and further create a network system to study the underlying disease mechanisms 
in breadth and depth at the human population level. It successfully promotes the emergence of systems epide-
miology9,10. The essential task is still to identify which network. rather than single factor, can affect the different 
physical conditions (e.g. patients and healthy controls).

1Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, China. 2Department of 
hematology, Qilu hospital of Shandong University, Jinan 250012, China. *These authors contributed equally to this 
work. Correspondence and requests for materials should be addressed to F.X. (email: xuefzh@sdu.edu.cn)

received: 04 May 2016

accepted: 08 September 2016

Published: 30 September 2016

OPEN

mailto:xuefzh@sdu.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:34159 | DOI: 10.1038/srep34159

Statistical methods are in great need to detect group differences between biological networks. Thus far, several 
methods have been developed to utilize network topology information to explore various biomedical phenom-
enons. Langfelder et al.11 proposed several measures to compare network topologies for weighted correlation 
networks. Chen et al.12 used an additive element-wise score to compare a gene regulatory network estimate 
to a known network. Zhang et al.13 provided a differential dependency network analysis to detect topologi-
cal changes in transcriptional networks between subclasses of breast cancer. Yates et al.14 developed an addi-
tive element-wise-based dissimilarity measure for biological network hypothesis tests. However, most of these 
methods mainly focus on the difference of network topology and have limited ability to capture the changes in 
nodes. Although the difference of single node may be weak, the aggregated differences of several nodes can be 
quite strong. It will inevitably lose efficiency to only consider the difference of connection, while omitting the 
differences of nodes. Recent network comparison methods can be classified into two major categories15. One 
is alignment-based methods, which aim to find a mapping between the nodes of two (or more) networks that 
preserves many edges and a large subgraph between the networks. The other is alignment-free methods, which 
aim to quantify the overall topological similarity between networks, they are computationally less expensive than 
alignment-based methods, and produce a score that quantifies the overall similarity between the two networks. 
Currently, the best alignment-free network comparison method is Graphlet Correlation Distance16,17. which was 
shown to be the most accurate in clustering topologically similar networks, the most noise-tolerant and the most 
computationally efficient. Nevertheless, the main purpose of these methods is how well to group or cluster topo-
logically similar networks, and most of them mainly focus on undirected networks, while a large set of interest-
ing biological networks such as metabolic, cell signaling or transcriptional regulatory networks are intrinsically 
directional. Recently, Ji et al.18 developed a statistical test for detecting the pathway effect contributing to disease 
under the framework of systems epidemiology. Yet it is limited to the pathway with chain structure, and can only 
capture changes in the edges while ignoring the changes in the nodes.

One directed biological network usually involves nodes to symbolize biological components and arrows to 
represent their relationships, which cannot be simply signified by the correlation coefficient commonly used in 
undirected networks. For instance, the directed edges can reflect the exact nature of mutual regulation mecha-
nisms (promote or suppress) among genes in regulation network, and a cellular signaling network can be used to 
describe various interactions of proteins in human cells. Generally, both changes in the nodes (e.g. the magnitude 
of each gene’s expression change), and changes in the edges (e.g. the strength of regulation) can lead to the whole 
network difference. Even with the same magnitude of edges, it should also be claimed that two networks are dif-
ferent if reverse direction of edges exist. Therefore, the network difference is far from the simple summation of 
changes in the nodes and changes in the edges, and the network topology structure cannot be ignored since it can 
at least provide us the relative position of nodes.

In the present study, we develop a new statistical test for detecting group differences between directed biolog-
ical networks, which is independent of the network attributes and can, in principle, capture the changes in nodes 
and edges, as well as simultaneously accounting for the topology structure through putting more weights on the 
difference of nodes locating on relatively more important position in the network. Various simulations have been 
conducted to assess the performance of the proposed method, under the network has the same or different struc-
ture between the two groups, respectively. Three real data sets were further analyzed to evaluate its performance 
in practice.

Methods
We denote the two directed networks in the two groups (e.g., cases and controls) by GD and GC, and the sample 
size is n1 and n2, respectively, the null hypothesis test is that no difference exists between GD and GC. Let V(GD) 
and E(GD) denote the set of all nodes and directed edges in GD, the node Xi
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be different from that in GC, Kand M is the number of nodes in V and edges in E, if node Xk (edge  →X Xi j ) exists 
in GD but not in GC, we treat Xk

C and the variance of Xk
C (β̂ij

C
 and the variance of β̂ij

C
) equal to zero, and vice versa. 

For instance, Fig. 1A describes the network structure generated from three branches of unfolded protein response 
(UPR) under sever ER stress19. The biological evidence is the three branches ATF6, PERK and IRE1 can be acti-
vated when the chaperone GRP78 is recruited to misfolded proteins accumulating in the ER. We imagine the 
nodes α βα… =X X GRP78 ERK IRE1 JNK eIF2 IK( , ) ( , , , , , ,1 12  κβ β_NF ATF6 ATF6 AKT TRAF IKK, , , , 2, ), 
then the corresponding weight vector for these 12 nodes is =w (11/35, 3/35, 5/35, 2/35, 2/35, 1/35, 0,
3/35, 2/35, 1/35, 3/35, 2/35),  while =w (11/38, 4/38, 5/38, 0, 3/38, 2/38, 0, 3/38, 2/28, 1/38, 4/38, 3/38) 
when the reverse direction between X 4 and X6 (Fig. 1B). If GD and GC have the same structure as in Fig. 1A, then 
K =  12, M =  15. If GD has structure as in Fig. 1A while GC with structure as in Fig. 1B, then we treat K =  12, 
M =  16, β β= =ˆ ˆ0, var( ) 0
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The idea behind our proposed statistic stems from that two nodes, even with the same magnitude of nodes 
differences, may still contribute unequally to the whole network difference because of the different relative posi-
tion hiding in the topology structure. More weight has been put on the differences of nodes locating on relatively 
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dren. Alvo et al.20 have proposed a rank test (RT) which can distinguish significant changes due to either correla-
tions or changes in the mean or both for group of genes in microarray experiments. For the K genes, it first 
subtracts the median expression value obtained from the combined case and control groups, from each gene 
expression value. This process aligns the data thereby inducing subsequent analyses to be sensitive to changes in 
the mean. Then, for the jth subject in group =h h( 1, 2), let λ jh represent the vector of ranks of the aligned inten-
sity values of the K  genes. Let λ λ− = ∑ − ∑= =m mC T n j

n
j n j

n
j

1
1 1

1
1 2

1
1

2
2 ,  the rank test is defined as 

= − ′ −RT m m m m( ) ( )C T C T , where the prime indicates the transpose of the vector.
We also compare the proposed statistic with its corresponding unweighted version NES and the statistic only 
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Our proposed method seems to be the linear combination of some chi-square statistics. The asymptotic theo-
retical properties have been explored for the linear combination of chi-square distributions under the framework 
of multivariate normal distribution21, especially for non-negative definite quadratic forms in non-central normal 
variables22. Nonetheless, it is nontrivial here to obtain the asymptotic distribution, since the covariance between 
the statistic of different nodes and different edges highly depend on the specific network structure. In other words, 
the asymptotic properties are network-specific. Meanwhile, it is also difficult to obtain the asymptotic distribution 
for RT test. To solve this problem, we adopted the strategy of a permutation test to get the empirical P value and 

Figure 1.  The existed network generated from three branches of the unfolded protein response under sever 
endoplasmic reticulum stress (A) and the imagined network with reverse direction between X4 and X6 (B).
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assess the statistical significance23, which can be conducted as follows: (1) calculate the observed statistic from 
the original sample; (2) randomly re-assign subjects to one of two groups to get the permutation sample, while 
keeping the sample size for each group the same as the original observations; (3) perform the above steps many 
times (e.g. 1000) and calculate the statistic for each permutation sample; (4) obtain the P value as the proportion 
of permuted statistics greater than or equal to the observed one.

Simulation
Simulations were designed to evaluate the type I error rate and statistical power, to compare the performance of 
WNES, NES, NS, ES and RT under different sample size and network structure. The statistical power is defined as 
the probability that the two biological networks are claimed to be different when the group difference of these two 
networks indeed exists. Based on the interplay network structure as in Fig. 1A, we first independently generate X1 
f r o m  µ σN ( , )1 1

2 ,  t h e n  β ε= +X X2 12 1 2 ,  β ε= +X X3 13 1 3 ,  β ε= +X X4 34 3 4 ,  β ε= +X X5 25 2 5 , 
β β β ε= + + +X X X X6 56 5 46 4 12,6 12 6 ,  β β ε= + +X X X7 67 6 10,7 10 7 ,  β ε= +X X8 18 1 8 ,  β ε= +X X9 89 8 9 , 
β ε= +X X10 9,10 9 10, β ε= +X X11 3,11 3 11, β β ε= + +X X X12 1,12 1 11,12 11 12, where ε = i( 1, 2, 12)i  are the 

independent residual error terms. Under H0, we assess the type I error rate under various sample sizes (100, 200, 
300, 400, 500 for each group) given all the error terms follow N (0, 1) and the parameter setting µ µ= = 1D C
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Note that under the above scenario (II), (III) and (IV), we must rectify the error term’s distribution to guaran-
tee that all of the unchanged nodes have the identical distribution and all of the unchanged edges have the same 
magnitude between the two groups. Furthermore, to appraise the performance of these statistics to identify the 
changes in edge direction, we consider another situation when GD has structure (Fig. 1A) different from that in 
GC (Fig. 1B), Two scenarios are also designed: (I) only edge direction change with β β= = .0 4D C

46 64  to evaluate the 
ability for detecting the direction difference; (II) only edge direction as above but treat 

 →
X X4 6  in GD and 

 →
X X6 4  in 

GC as the same edge, and compare β̂
D
46 and β̂

C
64 directly for WNES, NES, NS, ES and RT.

To evaluate the scalability of the proposed methods and to make the parameter setting more realistic, we also 
conduct another simulation based on one gene expression data from large airway epithelial cells sampled from 
97 patients with lung cancer, 90 controls24,25. We focus on the 35 genes of Wnt canonical signaling pathway, the 
network structure is obtained from the KEGG database (Fig. 2A). Then in our simulation, the distribution of the 
nodes, the correlation between the nodes, and the magnitude about the changes in the nodes and the changes 
in the edges can be calculated based on this real data. We first calculated the sample mean differences of gene 
CTNNB1 and JUN (− 0.33 and 0.47, respectively), the difference of the edge linking CTNNB1 and PSEN1(− 0.28), 
between lung cancer patients and controls, and designed the following four scenarios: (I) only the node CTNNB1 

Figure 2.  The analyzed network structure for gene expression data of lung cancer (A), GWAS data of 
leprosy (B) and acute myeloid leukemia data (C).



www.nature.com/scientificreports/

5Scientific RepoRts | 6:34159 | DOI: 10.1038/srep34159

changes with magnitude equal to − 0.33; (II) only edge linking CTNNB1 and PSEN1 changes with magnitude − 
0.28; (III) changes of edge as in (II) and changes of node as in (I), with relative weight for CTNNB1 equal to 0.03; 
(IV) changes of edge as in (II) and changes of node JUN with magnitude 0.47 and the relative weight equal to 0.

A total of 1000 simulations were repeated for each sample size, and we permuted 1000 times for each config-
uration to assess the statistical significance by comparing the observed statistic with its empirical distribution.

GWAS data of leprosy. A plausible biologic network underlying susceptibility to leprosy was created for 
depicting the functional relationship between some susceptibility genes identified from GWAS of leprosy26. The 
clustering of genotypes was carried out with the Gen-Call software version 6.2.0.4, which assigns a quality score 
to each locus and an individual genotype confidence score that is based on the distance of a genotype from the 
center of the nearest cluster. All the intensity-only SNPs and the SNPs on the X, Y and mitochondria chromo-
somes and the SNPs with call-rate lower than 90%, or MAF < 1% in either cases or controls, or showing signifi-
cant deviation from Hardy-Weinberg Equilibrium in the controls ( ≤ −p 10 7), or having bad clusters were 
removed. From the initial GWAS data with 706 cases and 1225 controls, we only use the genetic matched 514 
controls to minimize the effect of population stratification.

The original network includes genes CARD6, HLA-DRB1, RIPK2, CARD9, interferon-γ, NOD2, PARK2, 
TNFSF15, LRRK2 and NF-κB. Since each gene contained several SNPs, we first calculated the first principal com-
ponent (PC) with respect to all SNPs within one gene to represent the network node27. However, the SNP number 
within genes PARK2, TNFSF15, LRRK2, NF-κB are larger than sample size, thus we failed to conduct the PCA and 
we attempt to detect the difference between the networks including genes CARD6, HLA-DRB1, RIPK2, CARD9, 
interferon-γ and NOD2.

All participants provided written informed consent, and the study was approved by the ethics committees 
of Shandong Academy of Medical Science26. The methods in this study were carried out in accordance with 
the approved guidelines. These 6 genes located on different chromosomes and totally contained 1119 SNPs 
(Supplementary Table S1), with network structure given in Fig. 2B.

Acute myeloid leukemia data. Our acute myeloid leukemia (AML) data consisting of transcription factor 
forkhead box protein 3 (Foxp3), interleukin-10 (IL-10), T helper type 17 (Th17) cells, regulatory T (Treg) cells 
and their related cytokine transforming growth factor-beta (TGF-β) in bone marrow microenvironment from 23 
AML patients and 7 controls collected by Qilu Hospital of Shandong University in China. Treg and Th17 are per-
centages, IL-10 and TGF-β are concentrations. When calculating Foxp3 quantities, β -actin transcripts were used 
as an internal control. Relative gene expression level of Foxp3 (the amount of target, normalized to endogenous 
control gene) was calculated using the comparative Ct method formula 2 −Δ Ct. Therefore, there is no unit for 
Foxp3 quantity. AML patients were diagnosed based on the French-American-British (FAB) classification system. 
We excluded patients with hypertension, diabetes, cardiovascular diseases, chronic or active infection or preg-
nant. Individuals with slight iron deficiency anemia, having no immunological changes, were used as controls. 
The clinical characteristics of participants were provided in the Supplementary Table S2. The study was approved 
by the Medical Ethical Committee of Qilu Hospital, Shandong University, China. The methods in this study were 
carried out in accordance with the approved guidelines. Informed consent was obtained from all participants 
before enrollment in accordance with the Declaration of Helsinki. Th17 and TGF-β  are significantly decreased, 
while Treg cells, related cytokine IL-10 and transcription factor Foxp3 were markedly elevated in AML patients 
compared to controls28. Some genes can present positive association, while others are negative. One interested 
thing is that whether their grouped network is associated with AML. The structure can be determined as follows 
(Fig. 2C), Foxp3 is essential for the development and function of Treg cells, Treg cells secrete IL-10 and TGF-β .  
And TGF-β , is the main regulator for Th17 differentiation28. We first scaled the data for RT test given that the 
nodes are different biological quantities with different units.

Gene expression data of lung cancer. The proposed method was applied to a gene expression data set 
available on the GEO site (accession GDS2771), which is related to lung cancer. The expression data is from large 
airway epithelial cells sampled from 97 patients with lung cancer, 90 controls. The original study was approved by 
the Institutional Review Boards of all medical centers, and all participants provided written informed consent24,25. 
The methods were carried out in accordance with the approved guidelines. We focus on the 35 genes of Wnt 
canonical signaling pathway, the network structure is obtained from the KEGG database, totally 35 nodes and 79 
edges are included (Fig. 2A). The probe sets corresponding to the same gene symbol were first averaged to obtain 
gene-level expression measurements.

Results
Simulation. Table 1 reveals that type I error rates of all five methods are close to nominal level 0.05 as a func-
tion of sample sizes, under the two network scenarios

Shown in Fig. 3 is the power when both GD and GC have the same structure as in Fig. 1A. Figure 3A shows the 
power when only the nodes change. As expected, ES has no power because it can only capture the edge change. 
WNES has a little higher power than that of NS, which is the gold standard in this case. Shown in Fig. 3B is the 
power when only the edge change, the power for NS vanished, ES expectedly presents the highest power, and the 
power for WNES and NES kept almost the same, though smaller than that of ES. No power can be found for RT, 
indicating that the correlation of these network node variables shows no difference between these two groups. 
Figure 3C illustrates the power when both the edges and nodes change, with the relative weight of the changed 
node greater than one, WNES shows the highest power. Figure 3D presents the power for the situation as in 
Fig. 3C except that the changing node has the relative weight equal to one. WNES, NES and RT have comparable 
and higher power than that of NS and ES.
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Figure 4 demonstrates the power when GD takes structure (Fig. 1A) different from that in GC (Fig. 1B). Shown 
in Fig. 4A is the power when only edge direction change, WNES and NES still have almost the same ability to 
identify the direction change and show the relatively high power, though smaller than that of ES. If we ignore the 
direction difference, treating 

 →
X X4 6  in GD and 

 →
X X6 4  in GC as the same edge and comparing them directly, then 

no power can be found (Fig. 4B) for all methods except RT, since there exists certain correlation changes for 
group of the network nodes due to the direction difference between GD and GC. As expected, RT presents the 
same power as that in Fig. 4A.

Sample size 200 400 600 800 1000

Network 12 nodes and 15 edges

WNES 0.048 0.052 0.056 0.045 0.050

NES 0.046 0.049 0.042 0.053 0.056

NS 0.041 0.059 0.044 0.051 0.047

ES 0.055 0.047 0.053 0.051 0.057

RT 0.042 0.056 0.055 0.048 0.044

Network 35 nodes and 79 edges

WNES 0.058 0.042 0.049 0.054 0.045

NES 0.048 0.044 0.053 0.046 0.047

NS 0.060 0.041 0.058 0.049 0.050

ES 0.059 0.046 0.055 0.043 0.053

RT 0.040 0.044 0.054 0.046 0.058

Table 1.  Type I error of the five statistics.

Figure 3. The power of the five statistics when two groups have same structure as in Fig. 1A, under the 
scenario only nodes change. (A) Only edge change (B), both nodes and edges change with the relative weight 
of the changing node greater than one (C), and both nodes and edges change with the relative weight of 
changing node equal to one (D).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:34159 | DOI: 10.1038/srep34159

Shown in Fig. 5 is the power with another weight, + +log (2 )w w
2 2

k
D

k
C

, under the same design as in Fig. 3, it 
indicates that WNES still has better performance.

Figure 6 shows the simulated results based on the real gene expression data of lung cancer, with network struc-
ture extracted from the Wnt signaling pathway. Similar phenomenon can be observed.

Figure 4. The power of the five statistics when two groups have different structure (Fig. 1A vs Fig. 1B), 
under the scenario only edge direction change (A), only edge direction change but treat 

 →
X X4 6  and 

 →
X X6 4  as 

the same edge (B).

Figure 5. The power of the five statistics from another weight + +log 2( )w w
22

k
D

k
C

 under the same design as in 
Fig. 3.
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Applications. For GWAS data of leprosy, all five methods except the RT and ES statistic can detect the net-
work difference significantly (Table 2). The statistic ES only capturing the edges changes presents no signifi-
cance, which may be partly due to that these 6 genes locate on different chromosome and have little correlation 
(Supplementary Table S1). All the network difference may be attributed to the node changes. For the AML data, 
simple Wilcoxon rank-sample test shows only IL-10 and TGF-β have the significant difference (Supplementary 
Table S2), while all five methods present significant network difference, though the edge changes statistic ES 
shows P value nearly 0.05. It seems that the network difference can be ascribed to both node and edge changes, 
and the WNES shows smaller P value than that of the other methods. For gene expression data of lung cancer, all 
methods except ES show significant network difference, and WNES shows smallest P value.

Discussion
Numerous risk factors are woven into biological networks that dominate the disease occurrence, development 
and prognosis. The effect of one single factor can change substantially when put it within one network, or vice 
versa. From the perspective of systems medicine, different physiological conditions such as cases and controls 
manifest as different biological networks. Two sample statistical comparison between biological networks can 
provide not only new insight into the disease mechanism but also statistical guidance for drug development. 
Meanwhile, although the traditional epidemiology has successfully identified a list of risk factors, there still exist a 
black box from the exposures to the disease. Recent advances in high-throughput technologies allow a shift from 

Figure 6. The power of the five statistics when two groups have the same structure as in Fig. 2A (35 nodes 
and 79 edges) under the same design as in Fig. 3.

GWAS of Leprosy AML Data Lung Cancer Data

WNES 0.007 0.0016 0.0086

NES 0.012 0.0028 0.0125

NS 0.0003 0.0038 0.0209

ES 0.305 0.0471 0.0813

RT 0.142 0.0040 0.0228

Table 2.  P-values of the five statistics for the three real data sets.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:34159 | DOI: 10.1038/srep34159

the single paradigm to a new paradigm based on systems epidemiology, which aims to integrate putative lifestyle 
exposures and biomarkers, extracted from multiple omics platforms, to offer new insights into the network mech-
anisms underlying disease at the human population level. A key but inadequately addressed issue is to develop 
valid statistical method to test possible differences of the networks between two groups.

Bearing in mind that network difference can result from not only changes in the nodes but also changes in the 
edges (both the magnitude and direction), we proposed a novel statistic WNES for detecting the group difference 
between directed networks, accounting for network structure through putting more weights on the difference of 
nodes locating on relatively more important position, which was determined by the number of their own children 
nodes. Simulations showed that the proposed statistic was stable and had comprehensively better performance 
under various scenarios, except the case that only the edge change. The changes in biological network can be 
first attributed to changes in the nodes with a larger probability. Biologically, the change in the edge should be 
probably due to the changes in some nodes (linking this edge or not). On the other hand, the change in the node 
is statistically corresponding to the change of one moment of random variables, while the change in the edge is 
corresponding to the change of second moment of random variables, the calculation of the second moment usu-
ally depends on the one moment. Furthermore, decomposing the whole network difference into changes in the 
nodes and changes in the edges can help to interpret the whole network better. It naturally provides us whether 
the network difference is due to changes in the nodes or changes in the edges or both.

Network comparison for GWAS of leprosy and AML data further confirm that the proposed WNES have 
advantages in practice. All the network difference from GWAS data of leprosy may be attributed to nodes differ-
ences given that the 6 genes locate on different chromosome and thus have little correlation. This finding is con-
sistent with the results reported earlier21, and provides the statistical evidence for gene interaction network 
obtained from an ingenuity pathways analysis. HLA-DR molecules present M. leprae peptide antigens to CD4+  
T cells, which allows the T cells to be activated. In leprosy, this process is thought to lead to the generation of Th1 
cells, which produce interferon-γ , resulting in macrophage maturation and the production of antimycobacterial 
molecules. Failure of this process is thought to be critical for susceptibility to leprosy and infection by other myco-
bacteria29. NOD2 and RIPK2 can be regulated by interferon-γ , which is consistent with the finding that persons 
with mutant interferon-γ  are susceptible to mycobacterial infection30. RIPK2 can regulate the CARD gene, and 
ligand bound to NOD2 initiates signaling, can be also mediated by RIPK2 through a ubiquination process that 
involves the recruitment of TAK1 and NEMO to the NOD2–RIPK2 complex31. The network difference of AML 
data can be owed to both the changes in nodes and changes in edges, Foxp3 was demonstrated to be exclusively 
expressed by Treg cells32, which mediate suppression in a cell contact-dependent manner or via 
cytokine-dependent pathways by releasing suppressor cytokines such as IL-10 and TGF-β33. Also, it was reported 
that Treg-derived TGF-β actually promoted the development of Th17 cells34. For gene expression data of lung 
cancer, all methods except ES show significant network difference and WNES presents smallest P value. The role 
of Wnt signaling in lung cancer is well established35,36. Several Wnt proteins are differentially expressed in non–
small cell lung cancer (NSCLC) specimens, for instance, WNT1 is overexpressed in NSCLC samples, and cancer 
cells expressing WNT1 are resistant to apoptotic therapies. The WNT regulator, WIF, as well as SFRP1 and DKK3, 
are down-regulated in NSCLC due to transcriptional silencing via hypermethylation of their promoters. It has 
been illustrated that active WNT signaling in NSCLC is mediated by overexpression of the intracellular signal 
transducer, DVL. Specifically, DVL3 was overexpressed in microdissected NSCLC samples, and inhibition of DVL 
decreased b-catenin expression and cell growth37.

The motivation to the weight is that two nodes, even with the same magnitude of nodes difference, may still 
contribute unequally to the whole network difference due to the different relative position hiding behind the 
topology structure. More weight should be put on the difference of nodes locating on relatively important posi-
tion, which was represented by the number of child nodes ( + +1 w w

2
k
D

k
C

). The intuition is that the baseline  
weight is one for difference of nodes without children, and the average of the number of child nodes should be 
added to the difference of nodes with some children. One important question is how to choose the appropriate 
weight to measure the strength that topological differences contribute to the overall network difference, we here 
introduce two optional user-adjustable weights ( + +a w w

2
k
D

k
C

) and + +blog ( )b
w w

2
k
D

k
C

, where smaller a and b rep-
resent more contribution of topological differences. One limitation of the proposed test is that the theoretical 
property is difficult to obtain in its current form, thus lead to relatively high computation burden. Meanwhile, the 
loop regulation can be commonly encountered in biological networks, such as feedback loops, a circular chain of 
interaction, which can affect dynamical behaviors in the course of network evolution, particularly the robustness 
of a network38,39. In this case, the weight of a node determined by the number of daughter nodes is invalid, since 
it is difficult to capture the parent node when there is loops, other measures to characterize node importance in 
looped biological networks is highly desirable, and can be adopted to develop the loop version of the proposed 
test. The current method is limited to directed acyclic graph.

The proposed statistic can be treated as the extension for directed network of our recent study40. Little atten-
tion has been paid on the biological network structure learning problem. It needs to determine every possible 
edge with highest degree of data matching to constructing network structure, including whether the edge exists 
and which direction the edge orients. The network topology depends heavily on the structure learning algorithm. 
However, it is still of great significance to consider the case when the real network is unknown. Actually, most 
biologists often have a growing awareness of the interplay between the biological components and can depict 
more or less the specific network or pathway for the corresponding biological process. Meanwhile, numerous 
databases (e.g. KEGG, GO) can help us to further establish the network structure.

Recently, several approaches using network-information to score differences between groups have been pro-
posed41–43, including methods that take both the network topology and scores for individual nodes into account 
and evaluate the predictive power of the scores for sample classification. For instance, Rapaport et al.41 have 
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concluded introducing a priori knowledge of a gene network for gene expression data analysis leads to good clas-
sification performance. The main motivation of our manuscript is to develop a new statistic for detecting group 
difference of directed biological networks, which is independent of the nature of the network. Furthermore, one 
whole network or system can be decomposed into many specific subnetworks or pathways, we can use the pro-
posed statistic to explore which pathway is most statistically significant. This may provide the statistical evidence 
to give the most significant pathway priority for potential drug development. It can also be utilized to identify 
whether one specifically functional pathway is responsible for the disease. Nevertheless, it is also great signifi-
cance to use the associated network or pathway for classification, the key is how to integrate the whole directed 
pathway information into one score, which should retain the node, edge and direction information.

Statistical comparisons between biological networks are in great need in many disciplines. The proposed 
WNES is powerful to detect group difference between directed biological networks. Source R code for the pro-
posed methods is available on our website (http://119.188.112.184:107/comparison.txt).
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