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In this paper we report the public availability of transcriptome resources for the aposematic wood tiger moth
(Parasemia plantaginis). A comprehensive assembly methods, quality statistics, and annotation are provided.
This reference transcriptome may serve as a useful resource for investigating functional gene activity in apose-
matic Lepidopteran species. All data is freely available at the European Nucleotide Archive (http://www.ebi.ac.

uk/ena) under study accession number: PRJEB14172.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Direct link to deposited data

http://www.ebi.ac.uk/ena. Study accession number: PRJEB1417.

2. Specifications

Organism/cell line/tissue ~ Wood tiger moth (Parasemia plantaginis)/whole larva
Sex Undetermined

Sequencer or array type [llumina HiScanSQ

Data format FASTQ

Experimental factors De novo assembly, completeness assessment,
and annotation

RNA-seq from whole larvae (n = 16) of
Wood tiger moth (Parasemia plantaginis)
from different developmental stages.
Consent N/A

Sample source location Jyvaskyld, Central Finland

Experimental features

3. Introduction

Many plants and animals advertise unpalatability through conspicu-
ous colouration as a form of warning signals to potential predators (i.e.
aposematism). This defensive strategy is used by many Lepidopterans
(butterflies and moths), and while its ecological and evolutionary con-
sequences are relatively well-studied [2,14] scarce information is avail-
able about their molecular bases. The wood tiger moth (Parasemia
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plantaginis) is a diurnal aposematic species that shows considerable col-
our variation throughout its distribution range [6]. It has been recently
classified as Arctia plantaginis [ 13]. Two male colour morphs and one fe-
male colour morph co-exist within local populations. It has been shown
that the two male colour morphs differ in their warning signal efficacy,
one being better protected than the other against avian predators [9].
Furthermore, in southern Finland, the genetic composition of the popu-
lations fluctuates between generations [4]. Thus, this species provides a
valuable opportunity to investigate frequency-dependent selection pro-
cesses in nature. However, the warning signals displayed by adults are
pre-determined during the larval stage, when bodily resources are allo-
cated to determine their shape and pattern. After metamorphosing into
the adult stage, no further development or adaptations take place at the
phenotypic level. Thus, functional gene activity during early life-stages
must be investigated to gain insight about its possible effects on the
adult phenotype.

Here we report a de novo transcriptome assembly of the wood tiger
moth at its larval stage. Our aim was to obtain a high-coverage, high-
quality reference transcriptome representative of different develop-
mental stages. The data presented here are the first transcriptome re-
sources available for the wood tiger moth.

4. Experimental design, materials and methods

Larvae originated from populations of Central Finland. A total of 16
larvae from instar 1 to instar 5 were selected for sequencing. All larvae
were fed dandelion (Taraxacum spp.) and reared individually in petri
dishes before immersion in RNAlater stabilising buffer. All samples
were kept at —20C° until RNA extraction.
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Table 1
Properties and statistic of the Final_Assembly transcriptome for the wood tiger moth
(Parasemia plantaginis).

Total unigenes 54,657
Unigenes after ribosomal filtering 54,346
N50(bp) 10,747
Mean coverage 39.12x
No. mapped reads 366,046,742(98.44%)
Annotated in nr 17,800

Annotated in Swiss-Prot 6309
Annotated in GO 16,936
Annotated in Inter-Pro 20,020

4.1. RNA extraction

Total RNA was extracted using RNeasy Mini Kit (Qiagen) according
to manufacturer's instructions with additional TriReagent (MRC, Inc.)
and DNase (Qiagen, Valencia, US.A.), treatments. The quality and quan-
tity of total RNA was inspected in a BioAnalyzer 2100 using RNA 6000
Nano Kit (Agilent). Subsequently, mRNA was isolated by means of two
isolation cycles using Dynabeads mRNA purification kit (Ambion®)
and quantified using RNA 6000 Pico Kit in a BioAnalyzer 2100 (Agilent).
Pair-end (2 x 100 pb) cDNA libraries were constructed for each sample
according to Illumina's TruSeq Stranded HT protocol. The libraries were

individually indexed and sequenced in an Illumina HiScanSQ sequencer
at the DNA sequencing and genomics laboratory, Institute of Biotechnol-
ogy, of the University of Helsinki, Finland.

4.2. Transcriptome assembly

The quality of the raw reads was first inspected with FastQC (http://
www.bioinformatics.babraham.ac.uk/pro-jects/fastqc/). Based on this
initial quality check, we used the FASTX toolkit (http://hannonlab.cshl.
edu/fastx_toolkit/) to remove low quality bases and sequencing arti-
facts. Bases with a Phred quality score of <25 were filter out, and
reads shorter than 85 bases after trimming were removed. Pair-end
reads were then sorted and synchronized using custom scripts.

We used the high-quality reads from all samples obtained after
FastQC and FASTX to perform an initial assembly (K25_Assembly)
using Trinity (trinityrnaseq_r2013-02-25) software [5] with the follow-
ing parameters: 4 CPUs for Inchworm and Butterfly, a maximum mem-
ory 200 GB, a minimum contig length of 200 bp, and K-mer = 25. The
default K-mer of 25 recovered most full-length transcripts across a
broad range of expression levels. To identify any unassembled reads,
we mapped back the reads to the K25_Assembly using bowtie v.
0.12.7 [8]. The unassembled reads were then used to construct two fur-
ther assemblies namely; K21_Assembly and K29_Assembly using two
different K-mer settings of 21 and 29 respectively. A fourth assembly
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Fig. 1. (A) Ortholog hit ratios (OHR) of unigenes from Final_Assembly against silkworm (Bobyx mori) genome. (B) Coverage obtained from the different assemblies with varying K-mer

length from 21 to 29.


http://www.bioinformatics.babraham.ac.uk/pro-jects/fastqc
http://www.bioinformatics.babraham.ac.uk/pro-jects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit

JA. Galarza et al. / Genomics Data 12 (2017) 71-73 73

(Final_Assembly) was constructed by combining the K25_Assembly
with the other two K21 and K25 assemblies using CAP3 [7]. The Scaf-
folding software was run with default parameters making sure that
the minimum overlap between two contigs was at least 100 bp with a
95% sequence similarity for building supercontigs.

We mapped back all reads to the Final_Assembly using bowtie as
above to calculate the overall expression profile for all transcripts. We
then removed any miss-assemblies or assembly errors by manual in-
spection of transcripts that showed RPKM (Reads Per Kilobase of tran-
script per million mapped reads) values of <1. Finally, we used
Vmatch (http://www.vmatch.de) to filter out possible redundant
unigenes present in this Final_Assembly. The complete assembly
workflow is presented in Supplementary file 1.

4.3. Transcriptome validation

Transcriptome validation for non-model organisms is especially
challenging because of the noisy nature of transcripts and lack of a ref-
erence genome to perform a guided assembly. Orthology check with
the genome of the closest reference species available is one way to as-
sess the quality of the de novo assembly. Hence, we computed the
ortholog hit ratio [11] of the Final_Assembly using the silkworm moth
(Bombyx mori; taxa ID: 17,701 Uniref90), which is the closest species
with a thoroughly annotated genome. Ratios close to 1 are indicative
that contigs of transcripts (i.e. unigene) matching the ortholog locus
have been fully assembled.

4.4. Transcriptome annotation

For annotating the transcriptome, the Final_Assembly was first
checked for possible ribosomal contamination that may have survived
the RNA purification phase. The transcriptome was blasted [1] (BLASTn;
e-value < 10~°) against publicly available ribosomal databases for ar-
chaea, bacteria, and eukaryote domains
(SILVA_123_SSUParc_Taxa_Trunc & SILVA_123_LSUParc_Taxa_Trunc -
Release 123; [12]. All unigenes that showed significant hits were re-
moved (<3%). The remaining unigenes were compared against a non-
redundant protein database (nr) (NCBI; last updated 30-05-2016) and
the Swiss-Prot (last updated 26-05-2016) to retrieve basic annotation
using BLASTX. After blasting, all hits that showed <70% amino acid iden-
tity, sequence length of <200 bp, and e-value < 10~ > were filtered out
using custom scripts. Gene ontology terms (GO) and information of
the protein family was obtained using Blast2Go v.4.0 [3].

5. Results

A total of 372,037,058 pairs of reads were obtained from the se-
quencing runs (Phred 4 33; ASCII range “!” to “J”). After trimming and
filtering, 371,847,565 pairs of reads (%GC 45) with a length of 85 bp
were used for the transcriptome assemblies. The basic descriptors and
quality metrics of the Final_Assembly are presented in Table 1 and Fig.
1. To evaluate the best transcript assembly method (TA), we compared
the completeness (coverage) of TA's produced from each K-mer assem-
bly to the closest annotated genome (Bombyx mori), as proposed by
[10]. The results showed that merging assemblies of different K-mers
yield the highest coverage (Fig. 1).

5.1. Annotation results

A total of 17,800 unigenes returned a blast hit with e-value < 107>
and <70% amino acid identity. Of these unigenes, 16,036 had gene on-
tology (GO) annotation available with a mean GO level of 6.2 across bi-
ological processes (P), molecular (F) function and cellular components
(C) categories. The main P,F,C after removing redundant GO terms are
summarized in Supplementary file 1. The number of unigenes annotat-
ed to the different databases is shown in Table 1 and its functional anno-
tation is provided in the Supplementary file 2.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2017.03.008.
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